
Algorithms for 2-Route Cut Problems

Chandra Chekuri∗ Sanjeev Khanna†

May 8, 2008

Abstract

In this paper we study approximation algorithms for multi-route cut problems in undirected
graphs. In these problems the goal is to find a minimum cost set of edges to be removed from a
given graph such that the edge-connectivity (or node-connectivity) between certain pairs of nodes is
reduced below a given threshold K. In the usual cut problems the edge connectivity is required to
be reduced below 1 (i.e. disconnected). We consider the case of K = 2 and obtain poly-logarithmic
approximation algorithms for fundamental cut problems including single-source, multiway-cut, mul-
ticut, and sparsest cut. These cut problems are dual to multi-route flows that are of interest in
fault-tolerant networks flows. Our results show that the flow-cut gap between 2-route cuts and
2-route flows is poly-logarithmic in undirected graphs with arbitrary capacities. 2-route cuts are
also closely related to well-studied feedback problems and we obtain results on some new variants.
Multi-route cuts pose interesting algorithmic challenges. The new techniques developed here are of
independent technical interest, and may have applications to other cut and partitioning problems.

1 Introduction

We study multi-route cut problems in undirected graphs which generalize well-known and standard
(1-route) cut problems. Consider a single pair of nodes s, t in an edge-weighted G = (V,E) with ce

denoting the weight/cost of edge e ∈ E. Then a K-route cut for s, t is a subset E′ ⊆ E such that
removing E′ would leave at most K − 1 edge-disjoint paths between s and t. In other words s and t
are not K-edge-connected in G[E \E′]; we say that s, t are K-separated by E′ or that E′ is a K-route
cut. A regular s-t cut is a 1-route cut. We are interested in finding a minimum weight K-route cuts
for K > 1. In this paper we focus on K = 2 as the first non-trivial case in this class of problems.
We consider several natural and well-studied cut problems such as the single-source multiple-sink cut,
multiway cut, and multicut in this new setting. We also consider two orthogonal generalizations in
the definition of the cut: the first is to find a set of edges that reduces the node-connectivity, and the
second is to find node-weighted cuts instead of edge-cuts. We start by motivating the study of the
multi-route cut problems.

Our primary inspiration comes from the fact that multi-route cuts are the natural dual problems
to multi-route flows. To describe multi-route flows it is useful to consider the standard (1-route)
flow between s and t in a graph G as an assignment of non-negative numbers to the set of all the
paths P from s to t. Let PK denote the set of all tuples (p1, p2, . . . , pK) where pi ∈ P and the

∗Dept. of Computer Science, University of Illinois, Urbana, IL 61801. Email: chekuri@cs.uiuc.edu. Supported in
part by NSF grants CCF-0728782 and CNS-0721899, and a US-Israeli BSF grant 2002276.

†Department of Computer and Information Science, University of Pennsylvania, Philadelphia PA. Email:
sanjeev@cis.upenn.edu. Supported in part by a Guggenheim Fellowship, by NSF Award CCF-0635084, and by US-Israel
BSF grant 2002276.

1



paths p1, p2, . . . , pK are edge-disjoint. A tuple (p1, p2, . . . , pK) of this form is called an elementary
K-flow. A K-route flow between s, t is simply an assignment of non-negative numbers to elementary
K-flows. Multi-route flows arise in several applications where fault-tolerance to edge (or node) failures
is relevant [20, 1, 5, 6, 2], and are implicitly used in LP-relaxations for connectivity problems such as the
survivable network design problem (SNDP). Kishimoto [20], building on some earlier work, introduced
multi-route flows. For any K, the maximum K-route flow between s and t can be computed via the
ellipsoid method for linear programming. Kishimoto [20] gave an algorithm that requires solving at
most K regular maximum flows. Aggarwal and Orlin [1] simplified the ideas and analysis in [20] (see
also [3]), and showed several interesting applications of multi-route flows to combinatorial problems.
Just as a regular s-t minimum-cut upper bounds the s-t maximum flow, a minimum K-route cut
bounds the maximum K-route flow. However, for K > 1, the flow-cut equivalence no longer holds
even for a single pair s, t. Thus it is of interest to study the two following questions. What is the gap
between the maximum K-route flow and the minimum K-route cut for a single pair as well as more
general multi-pair settings? What is the complexity of finding minimum K-route cuts? Some of these
questions have been raised in the recent work Bruhn et al. [7] who studied multi-route flows and cuts
in the single source setting for unit-capacity graphs and suggested several open problems, including
some of which we study in this paper.

Another motivation for multi-route cuts, and in particular for 2-route-cuts, comes from feedback
problems in undirected graphs. The input to a feedback problem is a graph with either edge or node
weights, and a set of (simple) cycles C that is usually specified implicitly. The goal is to remove edges
(or nodes) of minimum-cost such that the remaining graph has no cycle from C. These problems
have received considerable attention in the past and have several applications. In the subset feedback
problem, a set of terminals S ⊆ V defines C; a cycle C ∈ C iff C contains a terminal. An O(1)-
approximation is known for this problem even in the node-weighted setting [14]. We observe that a
2-route cut corresponds to removing edges (or nodes) such that the remaining graph does not have
2-edge-disjoint (or 2-node-disjoint) paths between specified terminal pairs. In undirected graphs, a 2-
route cuts for node-disjoint paths give rise to new and interesting feedback problems, e.g., the 2-route
multiway-cut problem corresponds to the feedback problem where C is the set of cycles that contain at
least two terminals from a given terminal set S ⊆ V . Note that the edge-disjoint 2-route cuts require
more than simple cycles to be removed (see Fig 2).

Finally, we remark that 2-route cuts, and more generally K-route cuts, are algorithmically chal-
lenging. Many of the techniques that have been developed for the regular cut problems cannot be
applied directly. We develop some new techniques in this paper and we believe that a proper and
full understanding of these problems would require new algorithmic ideas of broader applicability. We
discuss the technical challenges in more detail after we describe our results.
2-route Cut Problems: In this paper we restrict our attention to K = 2 and study several natural 2-
route cut problems in undirected graphs. In particular we consider the following problems in undirected
graph G = (V,E).

• Single-source multiple-sink. Given a source s and multiple sinks t1, t2, . . . , th, find a minimum
weight cut to 2-separate s from ti for 1 ≤ i ≤ h.

• Multiway-cut. Given h terminals s1, s2, . . . , sh, find a minimum weight cut that 2-separates si

from sj for each i 6= j.

• Multicut. Given h node pairs s1t1, s2t2, . . . , shth, find a minimum weight cut that 2-separates si

from ti for 1 ≤ i ≤ h.

2



• Sparsest cut. Given h node pairs s1t1, s2t2, . . . , shth, find a cut that minimizes the ratio of the
cut cost to the number of pairs that are 2-separated.

Results: We first describe our results for the case of edge-disjoint 2-route cut problems in edge-
weighted graphs. We obtain poly-logarithmic approximations for the four 2-route cut problems that
we mentioned above. In particular, we achieve approximation ratios of O(log n), O(log n log h) and
O(log2 n log h) for the single-source, multiway-cut and multicut problems respectively. The multicut
result can be used to obtain an O(log2 n log2 h) approximation for the sparsest cut problem using
standard ideas. Our results are obtained via a natural LP relaxation whose dual corresponds to a
maximum 2-route flow problem. Thus we obtain poly-logarithmic upper bounds on 2-route flow-cut
gaps.

Our techniques can be adapted to get approximation guarantees similar to the corresponding edge-
disjoint version for the single-source multiple-sink and the multiway cut problem in the node-disjoint
setting; however, the multicut problem introduces some additional technical difficulties and we leave
this as a direction for future work. All our results, including those for node-disjoint paths version,
extend to node-weighted problems with identical performance guarantees.

It is easy to show that the 2-route cut problems considered here are at least as hard to approximate
as their 1-route counterparts (modulo constant factors). Moreover, it is easy to show that the LP
integrality gap is Ω(log n) for the 2-route multiway-cut problem even when the terminals span the
vertex set. In the rest of the paper, we focus on the 2-route edge-disjoint cut problems in edge-
weighted graphs. Most proofs are omitted due to space limitations; please see the author web pages
for a longer version of the paper.

Algorithmic ideas: We illustrate the new algorithmic ideas needed to address 2-route problems by
considering the simplest setting, namely the s, t 2-route cut problem. An optimal solution to this
problem may be obtained as follows: guess an edge e, and output the edges in a minimum s, t cut in
G − e. We leave the proof of the optimality of this procedure as a useful exercise to the reader. For
general K, one needs to guess K − 1 edges. Thus, the single pair problem for any fixed K can be
solved optimally even in directed graphs. Now consider the single-source multiple-sink problem where
we wish to 2-separate s from t1, t2, . . . , th. When K = 1 this problem can be reduced to the single pair
case by simply connecting t1, t2, . . . , tk to a super-sink t with infinite cost edges. However, for K ≥ 2
this reduction does not work. In fact, the 2-route single-source multiple-sink problem is at least as
hard as the regular multiway-cut problem which is known to be APX-hard. We therefore resort to
approximation algorithms and consider the natural LP relaxation for these problems. The relaxation
assigns lengths to the edges such that for each pair siti that needs to be separated, the minimum
length of 2-edge disjoint paths between them is at least 1. The main challenge is to round a fractional
solution to this relaxation.

One of the difficulties with rounding for K-route-cuts when K ≥ 2 is that the cut does not
disconnect the graph into connected components with the source and sink of a terminal pair in different
components. In fact, for K ≥ 2, if the original graph G is connected, then deleting the edges in any
minimal solution, would yield a residual graph that is still connected. Thus the standard technique of
using a “ball-growing” procedure to identify the set of edges to be deleted, is not directly applicable
in this setting. To concretely illustrate the difficulty of adapting classical ball-growing techniques to
our setting, consider the simple example shown in Figure 1. It shows a feasible fractional solution for
a 2-route cut separating s from t. The shortest distance from s to t in this example is 0, while the two
edge-disjoint path distance from s to t is 1. Thus any ball-growing procedure that uses shortest path
distances, will place both s and t inside the same ball, no matter how small the radius of the ball. On

3



the other hand, in this example, any ball grown from s w.r.t. 2 edge-disjoint path distance contains
only vertex s if the radius is less than 1, and the entire graph if the radius is 1. In case of former,
the only edges leaving the ball have a fractional length of 0. Thus these edges cannot be deleted in
any solution with a finite performance guarantee. In case of latter, we do not get to separate s from
t. This simple example also highlights that the two-edge-disjoint-path distance measure behaves quite
differently from the usual shortest path distance metric. It appears that the standard region growing
algorithms [21, 15] and embedding methods are difficulty to adapt to the 2-route setting.

0

s t

0
0

1/2
1/2

0

Figure 1: Ball-growing w.r.t. 2 edge-disjoint
paths distance

s t
u

Figure 2: There is no simple cycle between s
and t but an edge has to be removed to 2-
separate s from t in the edge-disjoint case.

To overcome these difficulties, we introduce a novel randomized rounding technique that allows
us to reduce 2-route cut problems to 1-route problems (not in a one-to-one correspondence). An
interesting aspect of our reduction is that it maps feasible fractional solutions to 2-route cut problems
to feasible fractional solutions to appropriate 1-route cut problems. We can then use standard rounding
algorithms for the 1-route cut problems to output a feasible solution for the initial 2-route cut problem.
The indirect nature of this rounding process creates technical difficulties in arguing feasibility of the
final solution. We note that the random scaling we use is non-standard and there does not appear to
be a natural deterministic analogue (yet) of the procedure. We believe these new techniques are of
independent technical interest, and may have applications to other cut and partitioning problems.

Related Work: Cut and flow problems are ubiquitous in combinatorial optimization and hence we do
not discuss this well known area. As mentioned earlier, multi-route flows have been of interest since the
work of Kishimoto and others [20]. Recently, Bruhn et al. [7] considered the gap between a maximum
K-route flow and a maximum 1-route flow for the single-source multiple-sink problem. They showed
that for unit capacity undirected graphs, the maximum 1-route flow is not more than 2(1−1/K) times
the maximum K-route flow. In particular this implies that for any K, in unit-capacity graphs one
can obtain a simple 2(K − 1) approximation for the single-source multi-sink K-route cut problem.
We note that the unit-capacity problem is very different in nature from the problem with general
capacities for K ≥ 2. In a regular 1-route problem one can replace an edge with integer capacity ce

by ce edges of unit capacity without changing the problem. However, for K ≥ 2 this transformation
does not preserve the flow! It is easy to construct examples where this transformation would increase
the K-route flow by an unbounded amount. For instance, consider a network with two nodes s and t
and two parallel edges, one with capacity 1 and other with capacity M for some integer M ≥ 1. Then
the maximum 2-route flow between s and t is 1. However, if we replace the capacity M edge by M
parallel copies of unit capacity, the 2-route flow value increases to Ω(M).

4



2 Preliminaries

Given a (multi-)graph G, we will use n and m to denote the number of vertices and edges in G
respectively. For convenience, we will assume that m is polynomially bounded in n. We let c(e)
denote the cost of an edge e. We say that a vertex s is K-separated from a vertex t if the maximum
K-route flow from s to t is 0.

For any two nodes s, t ∈ V , let PG
` (s, t) denote the set of all tuples (p1, p2, . . . , p`) where each pi

is a path from s to t and pi and pj are edge-disjoint for i 6= j. Let x : E → R+ be an assignment of
non-negative weights to the edges and for a path p let x(p) =

∑
e∈p x(e). For two nodes s, t ∈ V (G) we

let dG
1 (s, t;x) denote the length of a shortest path between s and t with respect to edge weights x in the

graph G. In other words dG
1 (s, t;x) = minp∈PG

1 (s,t) x(p). We let dG
2 (s, t;x) = min(p,q)∈PG

2 (s,t) x(p)+x(q)
denote the minimum length of two edge disjoint paths from s to t with respect to edge weights
x. We define dG

` (s, t;x) for any integer ` in a similar fashion. Finally, for any vertex s we define
BG

` (s, θ;x) = {v|dG
` (s, v;x) ≤ θ}. We drop the superscript G when the graph is clear from the

context.

LP Relaxation: We now describe an LP relaxation for our problems - this is a natural generalization
of the K = 1 case and has been considered earlier. Since the multicut problem captures the other two
problems in our study as special cases, it suffices to only give a formulation for multicut. Recall that
we restrict attention to the edge-weighted case of the 2-route edge-disjoint cut problems. For each
e ∈ E there is a variable x(e) that in the binary case models whether e is in the cut (x(e) = 1) or not
(x(e) = 0). In the LP relaxation, we let x(e) be any non-negative number. If x is a feasible solution
to the LP then d2(si, ti;x) ≥ 1 for 1 ≤ i ≤ h.

min
∑
e∈E

c(e)x(e)

x(p) + x(q) ≥ 1 (p, q) ∈ PG
2 (si, ti), 1 ≤ i ≤ h

xe ≥ 0 e ∈ E.

One can solve the LP in polynomial time using the ellipsoid method: the separation oracle is a
simple min-cost flow problem (can be solved by the successive shortest path algorithm). We remark
that the LP can be generalized in straight forward fashion for K-route cuts where K is any integer.
The dual of the above LP can be seen to be a maximum 2-route multicommodity flow LP; there is a
scaling factor of K involved depending on whether one counts the total flow or the total elementary
K-flow and we ignore this issue for now.

For the single-source multiple-sink problem the pairs to be separated are sti, 1 ≤ i ≤ h and for
the multiway-cut problem the pairs are sisj , i 6= j. In the sequel we work with a feasible fractional
solution to the LP and all our approximation bounds will be with respect to the lower bound provided
by an optimum solution to the LP.

2.1 A Useful Lemma

The simple lemma below will be useful in our analysis.

Lemma 1 Let G = (V,E) be a graph and let x : E → [0, 1/3) be an edge weight function. Let s ∈ V
such that for all u ∈ V \ {s}, dG

2 (s, u;x) ≥ 1. Then for any cycle C containing s there is a node v in
C such that dG

1 (s, v;x) > 1/3.

5



Proof: Let a1, a2, . . . , ap be the neighbours of s. From the assumptions of the lemma, there is no ai

such that s has two parallel edges to ai. Without loss of generality we assume that x(s, ai) = 0 for
1 ≤ i ≤ p for otherwise we can split the edge (s, ai) into two edges by inserting a dummy node and
setting the edge closer to s have x value 0. Let G′ = G[V \ {s}] and Ai be the set of all nodes u in G′

such that dG′
1 (ai, u;x) ≤ 1/3. We observe that Ai ∩ Aj = ∅ for i 6= j for otherwise we would have a

cycle in G containing s, ai, aj of total length 2/3. Further, there is no edge between Ai and Aj since
x(e) < 1/3 for all e.

Let C be any cycle containing s and say it contains ai and aj . Let P be the path between ai and
aj obtained by removing the edges (s, ai) and (s, aj) from C. We need to show that there is some node
v in P such that dG

1 (s, v;x) ≥ 1/3. Let Vi = V (P ) ∩ Ai and Vj = V (P ) ∩ Aj . As we argued before
Vi and Vj are disjoint and further there are no edges between Vi and Vj . Since P connects ai and aj

there must be a node v ∈ V (P ) − Vi − Vj such that v has an edge to Vi. This node v cannot belong
to Ah for any 1 ≤ h ≤ p again because that would imply an edge between Ai and Ah. Therefore
dG′

1 (ai, v;x) > 1/3 for 1 ≤ i ≤ p. Since any path from s to v has to use one of the nodes a1, a2, . . . , ap,
we have that dG

1 (s, v;x) > 1/3.

Corollary 1 Let G = (V,E) be a graph and let x : E → [0, 1/3) be an edge weight function. Let s ∈ V
and B = B2(s, 0;x) such that for all u ∈ V \ B, dG

2 (s, u;x) ≥ 1. Then for any cycle C containing s
and a node u ∈ V \B, there is a node v ∈ C such that dG

1 (s, v;x) > 1/3.

Proof: Obtain a new graph G′ by shrinking Bx
2 (s, 0) into s. Then apply Lemma 1 to G′ and s.

Application to Feedback Problems: The integrality gap of the standard LP for feedback vertex
set is shown to be O(log n) in [4] and O(log k) for the more general subset feedback vertex set in [13]
(hence also for the feedback edge problems). The above lemma combined with the O(log k) integrality
gap for the 1-route multicut problem [15] yields simple alternate proofs of these results. Note that
these problems now have a constant factor approximation but via more involved relaxations [14].

3 Single-Source 2-Route Cuts

We are given a graph G, a source s, and a set T = {t1, t2, . . . , th} of terminals that need to be 2-route
separated from the source s. We first point out an easy reduction from multiway cut problem to this
problem, establishing its APX-hardness. The reduction is essentially the same as the one in [13] for
the subset feedback edge set problem.

Lemma 2 The single-source 2-route cut problem is APX-hard.

Proof: Suppose we are given an instance G of multiway cut with terminals t1, t2, ..., tk. Obtain a new
graph G′ from G by adding a new vertex s and connecting s to the terminals t1 through tk by edges
of cost ∞. Now any finite cost 2-route cut that separates s from T = {t1, t2, ..., tk} in G′ is a multiway
cut of the same cost in G for the given terminals, and vice versa. Note that 2-separating s from T in
G′ is equivalent to 2-separating s from V (G′)− {s}. It follows that the single-source uniform 2-route
cut problem is APX-hard.

Note that the reduction shows that even the restricted case of the single-source 2-route cut problem
where T = V \ {s} is APX-hard.

6



We now give a rounding algorithm for single-source multi-sink problem. Let x be a feasible frac-
tional solution for the 2-route cut instance on G. We will assume that in the solution x, each variable
x(e) is assigned a value that is an integral multiple of 1/n. This can be ensured by replacing each x(e)
with min{1, (b4nx(e)c)( 1

n)}. Since no minimal edge-disjoint collection of paths contains more than 2n
edges, it is easy to see that the resulting solution is feasible; the new solution’s cost is at most four
times that of the original. For a number α ∈ [0, 1] we let n(α) denote the number bnαc 1

n .
Now pick a radius θ ∈ (0, 1) uniformly at random. Let B = B2(s, θ;x) = {v | dG

2 (s, v;x) ≤ θ}, and
let A = V \B. Note that all terminals lie in A and that the induced graph G[B] is 2-edge-connected.
Our goal now is to alter the original LP solution x into another solution x′ so that dG

2 (s, v;x′) ≥ 1 for
all v ∈ A and dG

2 (s, v;x′) = 0 for all v ∈ B.
For an edge e = (u, v), let r(e) denote the least radius r such that dG

2 (s, u;x) ≤ r and dG
2 (s, v;x) ≤ r.

Note that r(e) is the same as the length of the shortest (not-necessarily simple) cycle containing s and
e with edge lengths given by x. We set x′(e) as follows. If r(e) ≤ θ we set x′(e) = 0, otherwise we
scale up x(e) by a factor of 1/(r(e) − n(θ)), that is, we set x′(e) = x(e)/(r(e) − n(θ)). We observe
that e ∈ G[B] implies x′(e) = 0. An equivalent scaling process is to pick i uniformly at random from
0, 1, . . . , n− 1 and set θ = i/n.

Lemma 3 In the solution x′, dG
2 (s, u;x′) ≥ 1 for all u ∈ A. Moreover, for all v ∈ B, u ∈ A,

dG
2 (v, u;x′) ≥ 1.

Proof: For clarity of exposition, let α(v) = dG
2 (s, v;x) and β(v) = dG

2 (s, v;x′). Assume by way of
contradiction that there is some v ∈ A such that β(v) < 1. Among all such vertices choose w such
that α(w) is largest. Let P and Q be two edge-disjoint paths from s to w such that x′(P )+x′(Q) < 1.
By the choice of w, for any edge e ∈ P ∪ Q, r(e) ≤ α(w). Walk from w to s along P to find the
first node a such that a ∈ B (a exists since s ∈ B) and let P ′ be the sub-path of P from w to
a. Using Q, define b and Q′ as above. We claim that x(P ′) + x(Q′) ≥ α(w) − θ for otherwise we
can use P ′ and Q′ to find two disjoint paths between s and w of total x length strictly less than
α(w). We prove this claim after we use it to finish the proof of the lemma. Note that for any edge
e in P ′ ∪ Q′, x′(e) = x(e)/(r(e) − n(θ)) ≥ x(e)/(r(e) − θ) ≥ x(e)/(α(w) − θ). Thus, after scaling
x′(P ′ ∪Q′) ≥ 1 which implies that x′(P ∪Q) ≥ 1 contradicting our assumption. For the second part
of the lemma, we observe that dG

2 (s, v;x′) = 0 for any v ∈ B. Further, by the triangle inequality
dG

2 (s, u;x′) ≤ dG
2 (s, v;x′) + dG

2 (v, u;x′) and hence dG
2 (v, u;x′) < 1 implies dG

2 (s, u;x′) < 1.
Now we prove the claim. Since a ∈ B, there are two edge disjoint paths Pa and Qa from a to s

such that x(Pa) + x(Qa) ≤ θ. Further, Pa and Qa have all their edges in G[B]. Similarly let Pb and
Qb be the paths for b. We claim that P ′ ∪Q′ ∪Pa ∪Qa ∪Pb ∪Qb contain two edge disjoint paths from
w to s of total length at most

x(P ′) + x(Q′) + (x(Pa) + x(Qa))/2 + (x(Pb) + x(Qb))/2 < α(w)− θ + θ/2 + θ/2 < α(w).

It is easy to see that P ′ ∪ Q′ ∪ Pa ∪ Qa ∪ Pb ∪ Qb contains two edge disjoint paths from w to s.
To bound the total x-length of these paths, we create a fractional flow of two units from w to s of
the desired length such that no edge has more than one unit of flow. Then the claim follows by
using the fact that there exists an integer flow of no higher cost than the fractional flow. Send one
unit of flow from w along P ′ to a which then splits the flow into a half unit along Pa and another
half along Qa. The other unit of flow is sent along Q′ and split at b for Pb and Qb. It can be
checked that no edge has more than one unit of flow and that the x-length of this flow is equal to
x(P ′) + x(Q′) + (x(Pa) + x(Qa))/2 + (x(Pb) + x(Qb))/2.

7



We next show that the expected cost of the resulting solution is only O(log n) times larger than
the cost of the original solution.

Lemma 4 Eθ[x′(e)] = O(log n) · x(e).

Proof: Let r(e) = i/n for some integer i. Note that x′(e) = 0 if θ ≥ r(e) and otherwise x′(e) =
x(e)/(r(e)− n(θ)). Therefore

Eθ[x′(e)] =
∫ r(e)

0

x(e)
r(e)− n(θ)

· dθ = x(e)
∑
j<i

1
n
· 1
i/n− j/n

= O(log n)x(e).

Remark 3.1 Lemmas 3 and 4 hold for the following modified scaling procedure as well: x′(e) = x(e)
if θ ≥ r(e) and x′(e) = x(e)/(r(e)− n(θ)) otherwise.

The rounding procedures for 2-route multiway cut and 2-route multicut implicitly need the modifed
analysis mentioned in the above remark. The analysis given in Lemma 4 is tight even when there is
a single terminal to be separated from the source, and all edge weights are 1. Consider a graph G
with vertices v0 through vn. Let s = v0 and t = vn. For each 0 ≤ i < n, there are two parallel edges
between vi and vi+1. Consider an LP solution that for each pair of parallel edges assigns xe = 1/n on
one of the edges and 0 on the other. Then d2(s, vi) = i/n. Now consider the edge e between vn/2−1

and vn/2. With probability 1/n the initial radius r is between i/n and (i + 1)/n. When i < n/2,
we scale e by a factor roughly 1/(1/2 − i/n). Thus the expected scaling factor is Ω(log n); a similar
argument shows that this holds for Ω(n) edges.

We now complete the description of the algorithm by showing how we can use the solution x′

to find a feasible cut. We remove any edges e such that x′(e) ≥ 1/3. In the remaining graph let
T ′ = {u | dG

1 (s, u;x′) ≥ 1/3}. We solve a single source min-cut problem to disconnect s from T ′. Note
that 3x′ is sufficient to pay for both the above steps since the single source min-cut problem has an
integrality gap of 1. By Corollary 1, any cycle involving s and a node from A contains a node from T ′.
Therefore, separating T ′ from s ensures that there is no cycle involving s and a node from A. Since
all terminals are in A, the solution is feasible. The expected cost is 3

∑
e c(e)x′(e) which by Lemma 4

is O(log)
∑

e c(e)x(e). We can easily derandomize the procedure by using standard ideas; the proof
of Lemma 4 shows the existence of a θ ∈ [0, 1) such that

∑
e c(e)x′(e) = O(log n)

∑
e c(e)x(e). We

observe that there are only n distinct values in {d2(s, v;x) | v ∈ V } that are relevant in choosing
θ, hence we can try all these values and pick the one which results in the least cost. This gives the
following theorem.

Theorem 1 Single-source 2-route cut problem has an O(log n)-approximation.

4 2-Route Multiway Cut

Let S = {s1, s2, . . . , sh} ⊆ V be a set of terminals. In the 2-route Multiway Cut problem the goal is
to find a minimum cost set of edges whose removal 2-separates si and sj for all 1 ≤ i < j ≤ h. The
isolating cut heuristic [11] and a greedy splitting algorithm [22] give a 2(1 − 1/h)-approximation for
the standard (1-route) multiway cut problem. The generalization of the isolating cut heuristic to the
2-route problem is the following. For each i, find Ei ⊆ E to 2-separate si from all nodes in S \ {si}

8



using either an exact or an approximate algorithm. Output ∪1≤i<hEi where we assume without loss of
generality that Eh is the set of largest weight amongst E1, . . . , Eh. The following example shows that
this can give a solution of value ' (h − 1)OPT. Consider a cycle on h nodes v1, v2, . . . , vh with each
edge of the cycle of weight 1. Connect si to vi using two parallel edges of weight 1− ε. An optimum
isolating cut for si consists of one of the edges that connects si to vi. Thus the isolating cut heuristic
can output a solution of value (1 − ε)(h − 1). In this example OPT = 1; simply remove any edge of
the cycle. Note that this example is similar to the one that demonstrates that the greedy algorithm
gives a tight 2− 2/k ratio for the multiway-cut problem [22].

Lemma 5 The integrality gap of the LP for 2-route multiway-cut is Ω(log n) even when S = V .

Note that when S = V the problem is equivalent to the feedback edge set problem and the LP
solution for the 2-route problem is equivalent to the LP solution for the feedback edge problem for
which the Ω(log n) gap was observed in [13] using high-girth expanders.

We give an LP rounding approach that gives an O(log n log h) approximation. Let x be a feasible
solution to the LP. As before we will assume that x(e) is an integer multiple of 1/n. Let e = (u, v).
We let ri(e) to be the smallest r such that B2(si, r;x) contains both end points of e. We set r(e) =
mini ri(e). The algorithm consists of the following steps.

1. Pick θ uniformly at random from [0, 1/4).

2. For each e, set x′(e) = max{2x(e), x(e)/(r(e)− n(θ))}.

3. Remove edges e such that x′(e) ≥ 1/3.

4. Separate all pairs (si, v) with dG
1 (si, v;x′) ≥ 1/3 by solving a multi-cut prob.

5. Output edges removed in Steps 3 and 4.

We analyze the algorithm to prove the theorem below.

Theorem 2 The 2-route multiway cut problem has an O(log n log h)-approximation.

The analysis is based on the following lemmas.

Lemma 6 For 1 ≤ i ≤ h define x′i by x′i(e) = x′(e) if ri(e) > θ and x′i(e) = 0 otherwise. Then for
any u ∈ V \B2(si, θ;x), dG

2 (si, u, x′i) ≥ 1.

Proof: Let θ ∈ [0, 1/4) and i ∈ {1, . . . , h}. Define x′′i by x′′i (e) = 0 if ri(e) ≤ θ and x′′i (e) =
x(e)/(ri(e) − θ) otherwise. Then by essentially the same argument as in Lemma 3, dG

2 (si, u, x′′i ) ≥ 1
for any u ∈ V \ B2(si, θ;x). We claim that x′i(e) ≥ x′′i (e) for all e. To see this we consider two cases.
If θ < r(e) then x′(e) = x(e)/(r(e)− θ) and r(e)− θ < ri(e)− θ and hence x′i(e) ≥ x′′i (e). If θ > r(e)
it implies that r(e) < 1/4. There are two sub-cases. If ri(e) = r(e) then x′i(e) = x′′i (e) = 0. Otherwise
r(e) = rj(e) for j 6= i. We claim that that ri(e) ≥ 3/4 for otherwise the end points of e are in both
B2(sj , r(e);x) and B2(si, 3/4;x) and since r(e) < 1/4, we have d2(si, sj ;x) < 1 which contradicts the
feasibility of x. If ri(e) ≥ 3/4 then x′′i (e) ≤ 2x(e) ≤ x′(e) = x′i(e).

Lemma 7 Let F be the set of edges removed by the multi-cut algorithm in Steps 3 and 4. Then F is
a feasible solution to the given instance.

9



Proof: After removing edges in Step 3, consider the remaining graph. Let x′i(e) be defined as in
Lemma 6. Let Ti be the set of nodes u such that dG

1 (si, u, x′i) ≥ 1/3. Since x′ ≥ x′i, dG
1 (si, u;x′) ≥ 1/3

for each node u ∈ Ti. By Corollary 1, separating si from nodes in Ti removes all cycles that contain
si and any node in V \ B2(si, θ;x). Note that every terminal sj , j 6= i is in V \ B2(si, θ). Since the
multicut instance separates si from Ti, after removing F , there are no cycles containing two or more
terminals.

Lemma 8 The total weight of edges removed is in expectation O(log n log h)
∑

e∈E(G c(e)x(e).

Proof: The expected value of x′(e), as in the proof of Lemma 4, is O(log n)x(e). In Step 4 we solve
a multicut problem. Notice that 3x′ gives a feasible fractional solution to the multicut instance that
we define. Using [15, 18] there is an integral multicut of value O(log h) times the fractional solution
value. Thus the expected weight of the edges removed is O(log n log h)

∑
e c(e)x(e).

5 2-Route Multicut

We now consider the 2-route multicut problem. We are given G and h pairs s1t1, s2t2, . . . , shth and
the goal is to 2-separate si from ti for 1 ≤ i ≤ h.

We give an LP rounding algorithm that essentially reduces it to the standard multicut problem.
Our algorithm is inspired by the algorithms of Calinescu, Karloff and Rabani for multiway-cut [8] and
0-extension [9]; the underlying idea has seen several applications subsequently. Let x be a feasible
solution to the LP. For an edge e = uv, we let ri(e) = max{d2(si, u;x), d2(si, v;x)}.

1. For each u ∈ V (G), set ρ(v) = 0.

2. Pick θ uniformly at random from [0, 1/2) and pick a random permutation σ of {1, 2, . . . , h}.

3. For i = 1 to h do

• For v ∈ B2(sσ(i), θ;x), if ρ(v) = 0 then ρ(v) = i.

4. For each edge e:

• Find the least index j such that rσ(j)(e) ≤ θ; if no such j exists then set j = h + 1.

• If j = 1, set x′(e) = x(e), else set x′(e) = maxi<j x(e)/(rσ(i)(e)− n(θ)).

5. Remove edges e such that x′(e) ≥ 1/10.

6. In G separate all pairs (p, q) with dG
1 (p, q;x′) ≥ 1/6 via a multicut algorithm.

7. Output edges removed in Steps 5 and 6.

We observe that the first three steps of the above algorithm are similar to the adaptation of the
CKR procedure and analysis from [9] for the (1-route) multicut problem (see lecture notes [17, 10] for
details of this). The only difference is that step 3 is performed with respect to 1-route distance. At the
end of step 3, the 1-route multicut algorithm outputs as solution all edges (u, v) such that ρ(u) 6= ρ(v).
The feasibility of this solution is immediate since the radius of each ball is less than 1/2, and hence
no ball can contain both a source and its corresponding sink. An elegant argument from [9] can then

10



be used to show that the expected cost of this solution is within an O(log n) factor of the optimal.
We note that the classical region growing algorithm of [15] may be viewed as a deterministic version
of this randomized ball-growing process.

In contrast, for 2-route multicut, a critical step is the randomized scaling (step 4) which allows us
in effect to reduce our problem to an instance of 1-route multicut. The cost analysis of the resulting
solution combines the scaling analysis from Lemma 4 with the argument from [9] followed by the
integrality gap for the standard 1-route multicut [15]; this is not too difficult. The main difficulty,
however, is in proving the feasibility of the resulting solution. In the setting of 2-route distance, the
sets {v |ρ(v) = i} are difficult to visualize, and the intuitive distance based arguments are no longer
applicable. We rely on a careful inductive proof to argue for the feasibility of the cut produced by the
algorithm.

5.1 Feasibility

We will show that the solution obtained in the step 7 above is indeed a feasible solution. For clarity of
exposition, assume without loss of generality that the permutation σ is an identity permutation. For
i ∈ [1..h] let Vi = {w | ρ(w) = i}.

Lemma 9 For any node w ∈ Vi and u ∈ V \ Vi, we have d2(w, u;x′) ≥ 1.

Proof: We will prove this by induction on i. The base case of the hypothesis (i = 1) is true by
Lemma 3. Assume the hypothesis is true for 1 ≤ ` < i. Now consider any vertex w ∈ Vi and
u ∈ V \ Vi.

Consider any pair of edge-disjoint paths P,Q from vertex w to u. Let z be a vertex on V (P ∪Q)
such that ρ(z) is minimum over all vertices in V (P ∪Q). Suppose ρ(z) = q. If q ≥ i, we say that the
pair of paths P,Q is clean. Consider first the case q < i. We claim that x′(P )∪x′(Q) ≥ 1 by applying
induction hypothesis to Vq, and noting that w ∈ V \ Vq.

Now consider all nodes u such that there is an infeasible clean pair of paths P,Q connecting w
to u, that is, x′(P ) + x′(Q) < 1. Now we derive a contradiction in a manner very similar to that in
the proof of Lemma 3. The reason for this is the fact that P and Q are clean and hence the scaling
process is essentially similar to the single source case where the source is now si.

The main technical lemma needed to establish feasibility is the one below.

Lemma 10 For any i ∈ [1..h], let C be any cycle (possibly non-simple) that involves a node w ∈ Vi

and a node u ∈ V \ Vi. Then after scaling in the step 4 of the algorithm, either the cycle C has a pair
of nodes p, q such that d1(p, q;x′) ≥ 1/6 or there is an edge e on C such that x′(e) ≥ 1/10.

Proof: We focus on cycles that do not contain any edge e with x′(e) ≥ 1/10. We will prove this also
by induction on i. The base case with i = 1 follows from Lemma 1. Consider the inductive step. Let
z be a vertex on C such that ρ(z) is minimized. Suppose ρ(z) = q. If q ≥ i, we say that the cycle C
is clean. Consider first the case when q < i. In this case, the assertion follows by applying induction
hypothesis to Vq, and noting w ∈ V \ Vq.

Now we consider the case when C is a clean cycle. We can assume without loss of generality that
C is a simple cycle. If not, consider an Eulerian traversal of C that decomposes it into a collection of
simple cycles. Since C involves a vertex in Vi and a vertex in V \ Vi, at least one of the cycles in the
decomposition, say C ′, satisfies this property as well. Thus we can set C = C ′.

11



For clean simple cycles, we prove a stronger statement. Let C be a clean (simple) cycle containing
a node u with ρ(u) > i. Let a, b ∈ Vi ∩ V (C) (not necessarily distinct) be such that the two paths
P 1

a,b and P 2
a,b induced by C between a and b satisfy the following property: P 1

a,b contains only nodes
in Vi and P 2

a,b = av1 . . . v2b where v1, v2 6∈ Vi. Then there is a node t on C such that d1(a, t;x′) ≥ 1/6
(by symmetry, same holds for b). Note that for any clean cycle there exist a, b satisfying the above
properties. To see this, say C connects u to w ∈ Vi. Traverse the cycle starting at u and let a be
the first node encountered in Vi. Continue the traversal and let b be the last node after a before the
traversal encounters a node outside Vi. It can be easily checked that a, b satisfy the desired properties.

u

w
Vi

a b

v1
v2

C

Figure 3: Illustration for proof of Lemma 10.

Now we prove the claim by way of contradiction. Consider the smallest length (w.r.t. x′) clean
cycle that does not satisfy the claim. Also, we focus on the case where a 6= b. Let α be the shortest
path distance from a to b in the graph G[Vi] with respect to x′. We consider two cases based on α.

Case 1: α ≥ 1/2. Consider the segment P 1
a,b as defined above. Recall that P 1

a,b contains only
vertices from Vi. Traverse P 1

a,b from a to b, and let t be the first node such that the distance traversed
along P 1

a,b is at least 1/4. If d1(a, t;x′) ≥ 1/6, the node t is the desired node. Otherwise, there is
a path Pa,t of length < 1/6 from a to t. If Pa,t leaves Vi then it either touches a node z such that
ρ(z) < i or ρ(z) > i. In either case, the path will induce a cycle of length < 1 that contains some node
on P 1

a,b and the node z. This is a contradiction to Lemma 9.
If Pa,t is completely contained in Vi then we obtain a strictly shorter cycle C ′ by shortcutting

P 1
a,b using the new path. If C ′ is a simple cycle then it satisfies the properties with respect to u, a, b;

therefore there is a node t′ on C ′ such that d1(a, t′;x′) ≥ 1/6. Note that t′ cannot be on Pa,t and hence
must be on C. If C ′ is not a simple cycle then again we get a contradiction to the choice of C as the
smallest cycle that does not satisfy the claim.

Case 2: α < 1/2. Consider the segment P 2
a,b as defined above. Note that the length of P 2

a,b must
be at least 1/2. Otherwise, we obtain a clean cycle containing u, a, b that has length < 1: concatenate
P 2

a,b with the shortest path from a to b inside Vi. By Lemma 9, this is a contradiction.
Let v1 be the neighbour of a on P 2

a,b and let v2 be the neighbour of b on P 2
a,b. Note that v1, v2 6∈ Vi.

Let t be the first node on P 2
a,b at distance > 1/4 along the path from a, and let P 2

a,t denote this segment
of P 2

a,b. Since x′(e) < 1/10 for each e ∈ C, we have t 6= v1, v2. If d1(a, t;x′) ≥ 1/6, then t is the desired
node. Otherwise, there is a path Pa,t of length < 1/6 from a to t. Let v be the first node on the path
P 2

a,t that Pa,t touches. Since Pa,t ends at t, v exists. We consider two sub-cases based on v. Let Pa,v

denote the segment of the path Pa,t from a to v.

12



If v 6= v1 then the path Pa,v and P 2
a,v form a cycle that contains v1 and a but has length < 1: a

contradiction to Lemma 9.
If v = v1, then the first edge on Pa,v must be the edge (a, v1). Otherwise, we get a cycle of

length < 1 that contains node a ∈ Vi and node v1 ∈ V \ Vi: once again, a contradiction to Lemma 9.
Moreover, by the same reason, the path Pa,t must be vertex-disjoint from P 1

a,b. Also, we can assume
without loss of generality that Pa,t is a simple path.

Suppose the path Pa,t contains a node z with ρ(z) < i. Then consider the graph induced by
E(Pa,t)⊕E(P 2

a,t) (the symmetric difference). The induced graph is Eulerian and hence can be decom-
posed into a collection of simple cycles, say C1, C2, ..., Cγ . There is at least one cycle since z is in Pa,t

and not in P 2
a,t. The total length of these cycles is no more than x′(Pa,t) + x′(P 2

a,t) which is at most
1/6 + 1/4 + 1/10 < 1 and hence each cycle is of length < 1. Moreover, since the ρ() value of every
vertex on P 2

a,b is at least i, at least one of these γ cycles contains a pair of vertices z1, z2 such that
ρ(z1) ≥ i and ρ(z2) < i. By Lemma 9, this is a contradiction.

Thus for every vertex z on Pa,t, we have ρ(z) ≥ i. Recall that Pa,t is vertex disjoint from P 1
a,b.

Consider the shortest path Q′ between v1 and b in the graph induced by E(Pv1,t) ∪ E(P 2
v1,b); the

length of Q′ is strictly less than the length of P 2
v1,b since Pa,t and P 2

a,t both share the edge av1 but
x′(Pa,t) < 1/6 and x′(P 2

a,t) ≥ 1/4. Now consider the cycle C ′ obtained by concatenating the edge av1

with Q′ and P 1
a,b. We thus have x(C ′) < x(C) and C is a clean simple cycle that contains a and v1.

And hence there is a node t′ on C such that d1(a, t′;x′) ≥ 1/6. Moreover, t′ 6∈ V (Pa,t) and hence
t′ ∈ C.

We now finish the proof of the feasibility of the solution output by the algorithm. For any pair siti,
1 ≤ i ≤ h, we claim that ρ(si) 6= ρ(ti). Suppose not. Let ρ(si) = ρ(ti) = q. Then si ∈ B2(sσ(q), θ;x)
and ti ∈ B2(sσ(q), θ;x) which implies that d2(si, ti;x) ≤ 2θ. Since θ < 1/2 this would imply that
d2(si, ti;x) < 1 which contradicts the feasibility of x.

From above and Lemma 10, for any cycle C that contains both si and ti, either there is any edge
e in C such that x′(e) ≥ 1/10 or there are nodes p, q in C such that d1(p, q;x′) ≥ 1/6. Since the
algorithm removes all edges f with x′(f) ≥ 1/10 (in Step 5) and ensures that there is no path between
nodes p, q with d1(p, q;x′) ≥ 1/6 (in Step 6), every cycle C between si and ti is removed.

5.2 Cost Analysis

We will first analyze the cost of the solution x′. To do so, it suffices to consider the expected
scaling factor for any edge in G. Fix θ ∈ (0, 1/2) and an edge e = (u, v). Recall that ri(e) =
max{d2(si, u;x), d2(si, v;x)}. By renumbering pairs, assume that r1(e) ≤ r2(e) ≤ ... ≤ rh(e). We
will denote by f(e) the scaling factor for edge e. Define fi(e, θ) = 1 if ri(e) ≤ θ and 1

(ri(e)−n(θ))

otherwise. The scaling factor f(e) for edge e is determined to be fi(e, θ) only if in the random per-
mutation σ, the source si occurs before each one of s1, s2, ..., si−1. The probability of this event is at
most 1/i. Thus for a fixed choice of θ, the expected scaling factor for an edge e can be bounded by
Eσ[f(e)] ≤

∑h
i=1

1
i fi(e, θ).

Taking the expectation over θ, which is independent of σ, we get the expected scaling factor for
the edge e is at most

Eθ,σ[f(e)] ≤
∫ 1/2

0

h∑
i=1

1
i
fi(e, θ) · dθ =

h∑
i=1

1
i

(∫ ri(e)

0

1
ri(e)− n(θ)

· dθ +
∫ 1/2

ri(e)
1 · dθ

)
= O(log h log n).

13



Thus the expected cost of the solution x′ is O(log h log n) times the cost of the solution x. Finally,
we lose another factor of O(log n) in solving the multicut instance on x′. We thus get the following
theorem.

Theorem 3 There is an O(log h log2 n)-approximation algorithm for the 2-route multicut problem.

6 Conclusions

We obtained the first poly-logarithmic approximation guarantees and flow-cut gap results for 2-route
cut problems in graphs with arbitrary edge or node capacities. In the process, we developed some
new rounding techniques. Many problems remain open. The bounds we establish on the integrality
gap are not tight. It seems particularly challenging to establish strong lower bounds on the gaps. In
particular, does the single-source multiple-terminal problem admit a constant factor approximation via
the LP? The multicut problem in the 2-node-disjoint setting generalizes the subset feedback problem,
and it would be interesting to see if one can obtain a poly-logarithmic approximation for this problem.
Finally, K-route cut problems for K ≥ 3 require substantially new ideas. It would also be interesting
to explore the hardness of approximation of many of these problems, even when K is large.
Acknowledgments: We thank anonymous reviewers for detailed and useful comments on previous
versions of this paper.

References

[1] C. Aggarwal and J. Orlin. On Multi-route Maximum Flows in Networks. Networks, 39:43–52,
2002.

[2] A. Bagchi, A. Chaudhary and P. Kolman. Short length Menger’s theorem and reliable optical
networking. Theoretical Computer Science, 339:315–332, 2005.

[3] A. Bagchi, A. Chaudhary, P. Kolman and J. Sgall. A simple combinatorial proof for the duality
of multiroute flows and cuts. TR 2004-662, Charles Univ., 2004.

[4] R. Bar-Yehuda, D. Geiger, J. Naor, R. M. Roth. Approximation Algorithms for the Feedback
Vertex Set Problem with Applications to Constraint Satisfaction and Bayesian Inference. SIAM
J. Comput. 27(4): 942-959 (1998).

[5] G. Brightwell, G. Oriolo and F. B. Shepherd. Some strategies for reserving resilient capacity.
SIAM J. on Discrete Math., 14(4):524–539, 2001.

[6] G. Brightwell, G. Oriolo and F. B. Shepherd. Reserving Resilient Capacity for a Single Commodity
with Upper Bound Constraints. Networks, 41(2): 87–96, 2003.

[7] H. Bruhn, J. Cerny, A. Hall and P. Kolman. Single Source Multiroute Flows and Cuts on Uniform
Capacity Networks. Proc. of ACM-SIAM SODA, 2007.

[8] G. Călinescu, H. Karloff, and Y. Rabani. An improved approximation algorithm for multiway
cut. Journal of Computer and System Sciences, 60:564–574, 2000.

[9] G. Călinescu, H. Karloff, and Y. Rabani. Approximation algorithms for the 0-extension problem.
SIAM J. on Computing, 34(2): 358–372, 2004.

14



[10] C. Chekuri. Lecture notes on “Multicut rounding via CKR method”.
http://www.cs.uiuc.edu/homes/chekuri/teaching/fall2006/lect15.pdf

[11] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis. The
complexity of multiterminal cuts. SIAM J. on Computing, 23:864–894, 1994.

[12] G. Even, J. Naor, S. Rao and B. Schieber, Divide-and-conquer approximation algorithms via
spreading metrics. JACM, 47:585–616, 2000.

[13] G. Even, J. Naor, B. Schieber, L. Zosin. Approximating minimum subset feedback sets in undi-
rected graphs with applications. SIAM J. Disc. Math, 13(2):255–267, 2000.

[14] G. Even, J. Naor and L. Zosin. An 8-approximation for the subset feedback vertex set problem.
SIAM J. on Computing, 30(4):1231–1252, 2000.

[15] N. Garg, V. Vazirani, and M. Yannakakis. Approximate Max-Flow Min-(Multi)Cut Theorems
and Their Applications. SIAM J. Comput., 25(2): 235-251, 1996.

[16] M. Grötschel, L. Lovász and A. Schrijver. Geometric Algorithms and Combinatorial Optimization.
Springer-Verlag, 1987.

[17] A. Gupta and R. Ravi. Lecture notes on “LP solutions as Metrics: MultiCut, and Region
Growing”. http://www.cs.cmu.edu/afs/cs/academic/class/15854-f05/www/scribe/lec20.pdf

[18] O. Günlük. A new min-cut max-flow ratio for multicommodity flows. SIAM J. on Discrete Math.,
21(1):1–15, 2007. Preliminary version in Proc. of IPCO, 2002.

[19] D. Karger, P. Klein, C. Stein, M. Thorup, and N. Young. Rounding algorithms for a geometric
embedding of minimum multiway cut. In Proceedings of the 29th ACM Symposium on Theory of
Computing, 668–678, 1999.

[20] W. Kishimoto. A method for obtaining the maximum multi-route flow in a network. Networks,
27(4):279–291, 1996.

[21] T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their use in designing
approximation algorithms. JACM, 46(6):787–832, 1999. Prelim. version in Proc. of IEEE FOCS,
1988.

[22] V. Vazirani. Approximation Algorithms. Springer, 2001.

15


