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Abstract— We study the generalized sorting problem where
we are given a set of n elements to be sorted but only a subset of
all possible pairwise element comparisons is allowed. The goal is
to determine the sorted order using the smallest possible number
of allowed comparisons. The generalized sorting problem may be
equivalently viewed as follows. Given an undirected graph G(V,E)
where V is the set of elements to be sorted and E defines the set of
allowed comparisons, adaptively find the smallest subset E′ ⊆ E of
edges to probe such that the directed graph induced by E′ contains
a Hamiltonian path.

When G is a complete graph, we get the standard sorting
problem, and it is well-known that Θ(n logn) comparisons are
necessary and sufficient. An extensively studied special case of
the generalized sorting problem is the nuts and bolts problem
where the allowed comparison graph is a complete bipartite graph
between two equal-size sets. It is known that for this special
case also, there is a deterministic algorithm that sorts using
Θ(n logn) comparisons. However, when the allowed comparison
graph is arbitrary, to our knowledge, no bound better than the
trivial O(n2) bound is known. Our main result is a randomized
algorithm that sorts any allowed comparison graph using Õ(n3/2)
comparisons with high probability (provided the input is sortable).
We also study the sorting problem in randomly generated allowed
comparison graphs, and show that when the edge probability is p,
Õ(min{ n

p2
, n3/2√p}) comparisons suffice on average to sort.
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1. INTRODUCTION

Sorting is a problem of central importance both in the-
oretical and practical computing. While the complexity of
sorting is very well understood in the standard model,
recently there has been a lot of interest in models where the
cost of comparisons between elements is not uniform. One
can regard the elements to be sorted as nodes in a graph and
pairs of comparable elements as adjacent. The problem of
matching nuts and bolts [12] corresponds to the case where
this graph is a complete bipartite graph. Charikar et al. [3]
introduced the general problem of finding query strategies
for priced information. The model here is that each probe of
the data has an associated cost and our goal is to evaluate a
function with minimum total cost. In the context of sorting
and selection, the model is that comparisons have known
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costs associated with them and we want to minimize the
total cost of the comparisons used to solve the problem. The
goal is to design algorithms whose total cost is competitive
with the cost of the cheapest certificate that proves the
correctness of the solution. Unfortunately, it is known [3]
that if comparison costs are arbitrary, then this competitive
ratio can be arbitrarily bad for sorting. Subsequent papers
[7], [9] consider more structured costs and achieve better
competitive ratios.

In this paper we consider a very natural model that can
be viewed as a special case of the non-uniform cost model
of [3] but incomparable to the structured cost models of
[7], [9]. Our model is also a natural generalization of the
nuts and bolts model. We assume that only a subset of the
comparisons are allowed and each allowed comparison has
unit cost. Thus we could view this as the non-uniform model
where some comparisons have cost 1 while others have cost
∞. The set of allowable comparisons is given to us as an
undirected graph G. The algorithm may probe any edge and
find out the direction of that edge. In other words, it may
compare any two elements that are comparable. Importantly,
we are promised that if we probe all edges, we would
discover a total order on the nodes, i.e. a directed Hamilton
path with all other edge directions implied by transitivity.

As a simple motivating scenario, consider an academic
department that is deciding between candidates for a position
based on letters of recommendation. Two candidates are
comparable if there is a letter writer who is competent to
compare them. A probe involves asking a letter writer for a
comparison. Of course it is not clear if enough comparisons
can be performed to lead to a total order, or even whether
they will be consistent and lead to a partial order. However,
scenarios like this are common in a number of settings -
websites that seek to rank the hotels or restaurants in a city,
movie ratings, committee reviews of proposals or papers,
etc.

Prior to this paper no deterministic or randomized algo-
rithm was known for this problem that uses a sub-quadratic
number of probes. To understand the difficulty we face here
it is useful to examine the techniques used in solving the
related problems mentioned above and understand why they
do not seem to work for our problem.



Alon et al. [2] were the first to give a sub-quadratic
deterministic algorithm for the nuts and bolts problem.
Their O(n log4 n) algorithm (using O(n log3 n) compar-
isons) builds a number of expanders, performs comparisons
corresponding to the edges of these expanders, and proves
running time bounds using properties of these expanders.
A sequence of improvements culminated in a paper by
Komlos et al. [10] that showed that the problem could be
solved in time O(n log n) using ideas from Ajtai-Komlos-
Szemeredi sorting networks [1]. These papers exploit the
fact that the graph of allowed comparisons is a complete
bipartite graph and hence there exist expander subgraphs
of this graph with arbitrary subsets of the vertices from
the two parts of the bipartite graph. Unlike the nuts and
bolts problem, since the graph here is adversarially chosen,
it may not have large expander subgraphs, and even if
it does, it is not clear whether the comparisons in this
subgraph are useful in making progress, since an adversary
could potentially ensure that any bipartite expanders have
vertices of widely different ranks on the left and right sides.
Without the promise that the allowed comparisons induce
a total order, we can see that discovering all the order
relationships will take Ω(n2) probes, for example, when the
directed graph being discovered is a dense bipartite graph
with all edges going from left to right. This immediately
rules out a MergeSort-like approach since, if we partition
the nodes arbitrarily, the promise will typically not hold in
the subproblems. Similarly, approaches like QuickSort prove
difficult to emulate since no (good) pivot element might
be comparable to all other elements. For a pivot x and an
element y that is not directly comparable to x, it is not clear
how one can discover the relationship between x and y with
a few probes.

The structured cost models assume that the cost of a
comparison is a monotone function of the known ‘size’
of the elements being compared. Unfortunately this crucial
assumption is invalid in our model where the comparison
graph can be arbitrary.

If all comparisons were allowed, we know that given
any partial order there is a comparison that will reduce the
number of possible linear extensions by a constant factor, no
matter what its outcome. We will quantify this idea later and
call such comparisons balanced. However, in our problem
it is possible that at some stage of the algorithm there are
no balanced comparisons and every edge has an assumed
direction, meaning, ‘most’ surviving linear extensions are
compatible with this direction of the edge.

In this paper, we introduce several new ideas for sorting
and show the following results:
• For an arbitrary graph of comparisons with the promise

of a directed Hamilton path, we can sort with Õ(n3/2)
probes with high probability.

• On random graphs with edge probability p, we can
sort with Õ(min{ np2 , n

3/2√p}) probes with high prob-

ability, where the probability is over the input and
the random choices of the algorithm. Thus the aver-
age probe complexity in the random graph model is
Õ(n7/5) for any choice of p. In particular, when the
density p is Ω(1) we get a near optimal algorithm that
uses O(n log3 n) probes.

We prove the first result by setting up several potential
functions and arguing that we can decrease at least one of
them at a good rate at all times. Our results for random
graphs build on our ideas for the arbitrary graph case as well
as utilize a QuickSort-like pivoting scheme when the random
graph is sufficiently dense. The fact that random graphs
may be easier than arbitrary graphs suggests that careful
combinatorial constructions may be needed to improve the
lower bound beyond Ω(n log n) probes. Although we are
primarily interested in the number of probes, all of our
algorithms above run in polynomial time.

Organization: Section 2 formally defines the problem
and introduces some key concepts used in our algorithms.
We present in Section 3 our main result, namely, a random-
ized algorithm to sort any allowed comparison graph using
Õ(n3/2) comparisons. Section 4 presents our algorithms for
random graphs. We conclude with some remarks in Section
5.

2. PRELIMINARIES

The input to the generalized sorting problem is an undi-
rected graph G(V,E) where an edge (u, v) ∈ E indicates
that the element u can be compared to the element v. By
probing (u, v), we reveal a directed edge (u, v) or (v, u),
depending on whether u < v or v < u. Let ~G(V, ~E) denote
the directed graph where (u, v) ∈ ~E iff (u, v) ∈ E, and
u < v. Given the promise that ~G(V, ~E) is an acyclic graph
that contains a directed Hamiltonian path, the problem is to
find this path by adaptively probing the smallest number of
edges in E.

When G is the complete graph, then this becomes the
regular sorting problem, and Θ(n log n) probes are necessary
and sufficient to reveal the underlying Hamiltonian path. If
G is the complete bipartite graph with n/2 vertices on each
side, then this becomes the problem of matching nuts and
bolts. Again, Θ(n log n) probes are necessary and sufficient
as mentioned earlier.

2.1. Linear Extensions and Average Rank

We let Π denote the set of bijections π : V 7→ [n]. Each
bijection π ∈ Π specifies a total order (V,<π): For every
pair of vertices u and v, u <π v if π(u) < π(v) and vice
versa. For every bijection π ∈ Π and every vertex v ∈ V ,
we refer to π(v) as the rank of v with respect to π.

We will let Ẽ denote the set of directed probed edges.
The edges in Ẽ define a partial order (V,<Ẽ): For every
pair of vertices u and v, u <Ẽ v if and only if there exists a
directed path from u to v in G̃ = (V, Ẽ). A linear extension



of Ẽ is a bijection π ∈ Π such that (V,<π) is consistent
with the partial order (V,<Ẽ). We let ΠẼ denote the set
of linear extensions of Ẽ. Note that this definition includes
linear extensions some of whose “successor edges” may not
exist in G. For every vertex v, we let πẼ(v) denote the
average rank of v among all linear extensions of Ẽ, that is,
πẼ(v)

def
=
∑
π∈ΠẼ

π(v)/
∣∣ΠẼ

∣∣.
For every pair of vertices u and v, we will let ΠẼ(u < v)

denote the set of linear extensions π of Ẽ such that u <π v.
It is easy to see that ΠẼ(u < v) = ΠẼ∪(u,v).

2.2. Balanced Edges and Assumed Directions
We will use the lemma below that states that if two

vertices u and v have similar average rank, then a non-
trivial fraction of the linear extensions will reverse the order
indicated by the average rank. This is a natural generalization
of the result in [8] and can be proved by the same technique.
The proof is deferred to Appendix A.

Lemma 2.1: If πẼ(v)−πẼ(u) ≤ c ≥ 0, then |ΠẼ(v<u)|
|ΠẼ|

>

1
ec+1 .

Balanced edges: An unprobed edge is balanced if
probing the edge would reduce the number of linear ex-
tensions by at least a

(
1− 1

e
√
n

)
factor, regardless of the

underlying direction of the edge. The following result is a
simple corollary of Lemma 2.1.

Corollary 2.2: If
∣∣πẼ(v)− πẼ(u)

∣∣ ≤ lnn/2 for some
unprobed edge {u, v} ∈ E, then {u, v} is a balanced edge.

Suppose there always exists a balanced edge. Then, since
the total number of linear extensions is initially n! and
probing a balanced edge reduces the number of linear
extensions by at least a

(
1− 1

e
√
n

)
factor, we only need to

probe O(n3/2 log n) edges to reduce the number of linear
extensions to one, and hence sort the n elements.

Assumed directions: Suppose at some point we reach a
stage in which for every edge {u, v} ∈ E with unknown
direction, either πẼ(v) < πẼ(u) − lnn/2 or πẼ(u) <
πẼ(v) − lnn/2. We will assign an assumed direction to
each unprobed edge (u, v): in the first case (when the
average rank of v is much smaller than that of u), the
assumed direction is (v, u), and it is (u, v) otherwise. We
let Ĝ = (V, Ê) denote the directed graph in which each
edge with unknown direction is replaced by an edge with
the assumed direction. (Directions of edges with known
directions are preserved in Ĝ.)

Inversions: If the true direction of an unprobed edge
(u, v) contradicts the assumed direction, then we call such
edge an inversion. By letting c = 0 in Lemma 2.1, we
get that finding an inversion reduces the number of linear
extensions by at least a 1

e factor.

3. GENERALIZED SORTING IN Õ(n3/2) COMPARISONS

At a high-level, the algorithm proceeds by maintaining at
all times an assumed direction graph Ĝ that indicates for

each edge (u, v) ∈ E, the likely relationship between u and
v. Then at each step, the algorithm either identifies an edge
(u, v) ∈ Ê to probe, or it identifies a set of O(

√
n) vertices

for which the direction of all unprobed incident edges can
be confirmed at a total cost of O(n log n). Clearly, the total
cost incurred over all steps in the latter case is O(n3/2 log n).
In the former case, if probing of the edge (u, v) reveals an
inversion, then once again the total cost incurred over all
such steps can be bounded by O(n3/2 log n). However, not
every probed edge may reveal an inversion. We handle this
by showing that at each step, the edge (u, v) can be chosen
such that over all iterations, the number of probed edges that
do not reveal an inversion is bounded by O(n3/2 log n).

We now describe the algorithm in detail. We will consider
a constant number of budgets of O(n3/2 log n) probes each.
Then, every probe in our approach will be charged to one of
these budgets. Hence, the total number of probes is at most
O(n3/2 log n).

3.1. Potentials and Budgets

We will consider the following potentials:

• ΦV : Number of vertices with at least one incident edge
with unknown direction.
We say a vertex exhausted if all its incident edges have
known directions and is live otherwise.

• ΦLE : Logarithm of number of feasible linear exten-
sions.

We will consider the following budgets, each of which is
of size O(n3/2 log n).

• Static Budgets:

– Binit : Budget for sampling at most O(n3/2 log n)
edges initially to estimate the in-degree of each
vertex in ~G(V, ~E) to within an

√
n additive error.

– Bin : Budgets for probing at most O(
√
n) incom-

ing edges for each vertex.

• Dynamic Budgets:

– BV : Budget for decreasing potential ΦV at a cost
of O(

√
n log n) per unit decrease.

– BLE : Budget for decreasing ΦLE at a cost of
O(
√
n) per unit of decrease.

Note that ΦV = n at the beginning, and ΦV = 0 at
the end, the total charge to this budget does not exceed
O(n3/2 log n). Similarly, ΦLE = O(n log n) at the begin-
ning (all n! total orders are feasible), and ΦLE = 0 at
the end, the total charge to this budget does not exceed
O(n3/2 log n).

3.2. Key Subroutines

We will first introduce several key subroutines that will
serve as the building blocks for our algorithm.



3.2.1. Estimating the Average Ranks: The first subroutine
aims to compute the approximate average ranks of the
vertices efficiently. Recall that an edge has an assumed
direction only when the expected rank of the two vertices are
well-separated. In this case, the well-approximated average
ranks suffice to imply the assumed direction. Hence, we can
indeed compute the assumed directions of the edges.

We now describe a subroutine to compute average ranks
efficiently.

1: Sample N = 2(n+1)2 lnn points x1, . . . ,xN in
the order polytope independently and uniformly
at random (see [4] for a poly-time implementa-
tion of this sampling step.).

2: Compute the average

x̄ =
1

N

N∑
i=1

xi .

3: Let (n + 1)x̄v be the approximate average rank
of vertex v for every v ∈ V .

Figure 1. Algorithm for computing average ranks

Lemma 3.1: With probability at least 1− 1
n2 , (n + 1)x̄v

in the procedure in Figure 1 approximates the average rank
of each vertex v up to an additive error of 1 for all v ∈ V .

Proof: For each 1 ≤ i ≤ N and v ∈ V , xiv is
a random variable with value range [0, 1] and expectation
πẼ(v). So by Chernoff-Höeffding bound (see [11], for
instance) we get that Pr

[∣∣∣∑N
i=1 x

i
v −NπẼ(v)

∣∣∣ ≥ N
(n+1)

]
≤

2 exp
(
−2 N

(n+1)2

)
= 2 exp (−4 lnn) < 1

n3 .

Note that if
∣∣∣∑N

i=1 x
i
v −NπẼ(v)

∣∣∣ ≤ N
(n+1) , then∣∣(n+ 1)x̄v − πẼ(v)

∣∣ ≤ 1 By union bound, with probability
at least 1− 1

n2 , this sampling error bound holds for all v ∈ V .

We highlight below a useful property of the vector x̄.
Lemma 3.2: With probability at least 1− 1

n2 , the estimated
average ranks (n+1)x̄v have the property that for each pair

of vertices u and v, if x̄v ≥ x̄u then |ΠẼ(v>u)|
|ΠẼ|

≥ 1
e3 .

Proof: By Lemma 3.1, with probability at least 1− 1
n2 ,

we have that
∣∣(n+ 1)x̄v − πẼ(v)

∣∣ ≤ 1 for all v ∈ V . In
this case, x̄v ≥ x̄u implies that πẼ(v) ≥ πẼ(u)−2. Lemma
2.1 then implies the corollary.

3.2.2. Initial Sampling: Estimating the In-Degrees: We
say a vertex v becomes active if the number of unverified
in-edges to v is at most 4

√
n log n. We now give a sampling

scheme that uses O(n3/2 log n) probes to estimate the in-
degree of each vertex in ~G(V, ~E) to within an additive error
of 3
√
n log n. This will help determine the set of active

vertices. After a vertex v becomes active, we can safely
probe any incoming-edge incident to v in Ĝ because we are

in a win-win situation: Either the we find an inversion, in
which case we decrease ΦLE at a good rate, or we verify
one of the at most 4

√
n log n unverified in-edges of the

vertex and charge that probe to Bin. (The algorithm below
is applied when there are no balanced edges since as long
as there are balanced edges we can probe them and reduce
ΦLE at a good rate.)

1: while there is a vertex v ∈ V whose in-degree is
not estimated do

2: Estimate the average ranks and compute the
assumed direction graph Ĝ.

3: Sample the edges incident to v independently
with probability 1√

n
.

4: if there are no inversions among the sampled
edges then

5: Let v’s estimated in-degree d̄−v be its in-
degree in Ĝ .

6: end if
7: end while

Figure 2. Algorithm INIT-SAMPLE

Lemma 3.3: With high probability, we can get estimates,
d̄−v , for the in-degrees such that

∣∣∣d̄−v − ~d−v

∣∣∣ ≤ 3
√
n log n for

every v ∈ V in O(n3/2 log n) probes.
Proof: We will show that if the estimated expected

ranks are within the desired additive error every time,
which holds with high probability, then we will obtain the
estimated in-degree with the desired accuracy and within
O(n3/2 log n) probes with high probability.

Inside each while loop, we claim that if there are at least
3
√
n log n inversions among the edges incident to v, then the

sampling will catch at least one inversion with probability
at least 1− 1

n3 . This is because the probability that none of

the 3
√
n log n inversions is sampled is

(
1− 1√

n

)3
√
n logn

<
1
n3 .

We call a while loop iteration bad if there are at least
3
√
n log n inversions and yet the sampling does not catch

any of them. By union bound, with probability at least 1−
1
n there are no bad iterations among the first O(n log n)
iterations of the while loop.

Finally, we argue that if there are no bad iterations within
the first O(n log n) iterations of the while loop, then the
algorithm will provide estimated in-degrees that satisfy the
desired accuracy requirement. Inside each while loop, two
things may happen. First, we may find an inversion with at
most

√
n probes. In this case we will charge these probes

to BLE . Since finding an inversion will decrease ΦLE by
a constant, it cannot happen more than O(n log n) times.
Second, we do not find any inversion. By our assumption
that this is not a bad loop, we conclude that there are at



most 3
√
n log n inversions among the in/out-edges. In this

case, using the in-degree in Ĝ as our estimated in-degree
d−v satisfies the error bound stated in the lemma.

Remark 1: The sampling algorithm above works for any
DAG (not necessarily sortable), and implies the following
result, which may be of independent interest. Suppose we
are given a graph where the edge directions are not revealed,
and we want to estimate the in-degrees of the vertices in
the underlying directed graph to within an additive error of√
n. If the directed graph is arbitrary, then arguably the best

we can do is uniform sampling which requires sampling at
rate Ω(1), and hence uses Ω(n2) probes. However, if the
underlying graph is a DAG, then this algorithm illustrates
how to sample more efficiently with Õ(n3/2) probes.

Remark 2: If the maximum degree is dmax, then we
may sample edges with probability 4√

dmax
to obtain the

estimated in-degree of every vertex within an additive error
of
√
dmax log n using O(n

√
dmax log n) probes.

3.2.3. Decreasing ΦV via Binary Search: Finally, we use
a subroutine that decreases ΦV at a good rate provided Ĝ
has a large number of live vertices with a known total order.

Input: A set S = {v1 < · · · < vk} of k ≥
√
n live

vertices with known total order.
1: for v ∈ V \ S do
2: Let vi1 , . . . , vi` be its neighbors in S, i1 ≤

· · · ≤ i`.
3: Let L = 1 and H = `.
4: while H ≥ L do
5: Let ij be the median of iL, . . . , iH . Probe

the edge (v, vij ).
6: If v < vij then let H = j−1; otherwise, let

L = j + 1.
7: end while
8: end for

Figure 3. Algorithm for decreasing ΦV via binary search

Lemma 3.4: The total number of probes in the binary
search algorithm in Figure 3 is at most O(n log n), and the
potential ΦV decreases by at least k ≥

√
n.

3.3. The Algorithm

Now we are ready to describe our algorithm.
Recall that a vertex is active if the estimated number of

unprobed in-edges (i.e. d̄−v minus the number of probed in-
edges) is at most 4

√
n log n. We say that an unprobed edge

(u, v) is free if (u, v) ∈ Ê and v is active. The lemma below
asserts that there are always some active vertices.

Lemma 3.5: The
√
n lowest rank live vertices in the

underlying graph ~G are all active.
Proof: Let S be the set of

√
n lowest rank live vertices.

Fix any vertex v ∈ S. Then any unprobed incoming edge

1: Init: Estimate the in-degrees d̄−v , ∀v ∈ V , by the
sampling subroutine.

2: while the vertices are not completely sorted do
3: while there is a balanced edge e do
4: Probe e
5: end while
6: Estimate average ranks and compute the as-

sumed direction graph Ĝ.
7: Case 1: There exists a free edge (u, v). In this

case, simply probe the edge.
8: Case 2: There exists a set S of at least

√
n live

vertices with known total order. In this case,
use the binary search subroutine.

9: end while

Figure 4. Algorithm for sorting with restricted comparisons

to v must necessarily come from a vertex in S since every
other vertex of rank smaller than v is already exhausted.
Thus the unprobed in-degree of v is bounded by

√
n. Since

we know the in-degree of v to within an additive error of
3
√
n log n, it follows that v must be active.

The next lemma argues that the two cases we consider in
the algorithm cover all possibilities.

Lemma 3.6: If there are no free edges, then there exists
a set of at least

√
n live vertices with known total order.

Proof: Consider the set S of
√
n lowest rank, live

vertices, say, v1, . . . , v√n, in the underlying graph ~G. By
Lemma 3.5, these vertices are active. If there are no free
edges, we argue that the total order among vertices in
S = {v1, . . . , v√n} is known.

For each 1 ≤ i <
√
n, there are two cases. In the first

case, suppose π(vi+1) = π(vi) + 1, that is, vi+1 and vi are
two adjacent vertices on the underlying Hamiltonian path,
then we have (vi, vi+1) ∈ E. Moreover, this edge is an in-
edge of vi+1 in Ĝ. Since vi and vi+1 are both active and
there are no “free” edges, this edge must have already been
probed, and hence vi < vi+1 is known. Now we turn to the
case π(vi+1) > π(vi) + 1. By our choice of S, all vertices
with rank between π(vi) and π(vi+1) must be exhausted and
hence all their incident edges have known directions. So we
have a verified path that confirms the order vi < vi+1.

Finally, we will show that the algorithm uses
O(n3/2 log n) probes.

Lemma 3.7: The total number of probes used by the
algorithm in Figure 4 is O(n3/2 log n).

Proof: The number of probes used in the initial sam-
pling step is at most O(n3/2 log n) according to Lemma
3.3. We will charge these probes to Binit and BLE as we
discussed in Lemma 3.3. Probes in line 4 are charged to
BLE . Each probe used in case 1 is charged to Bin if the
edge is not inverted and to BLE otherwise. By our definition



of “free” edges and inversions, the total number of probes
of this type does not exceed O(n3/2 log n). The probes used
in case 2 are charged to BV . By Lemma 3.4, there are at
most O(n3/2 log n) such probes. In sum, the total number
of probes used by the algorithm is at most O(n3/2 log n).

Theorem 3.8: There is a poly-time algorithm that reveals
with high probability the underlying Hamiltonian path for
any graph G within O(n3/2 log n) probes.

4. SORTING IN RANDOM COMPARISON GRAPHS

In this section, we will consider a random graph model
that is similar to the Erdös-Rényi model: Given a set of n
vertices, first pick a random order of the vertices v1 < · · · <
vn; let (vi, vi+1) ∈ ~E for 1 ≤ i ≤ n − 1; for every other
edge e = (vi, vj), i < j − 1, let e ∈ ~E with probability p.

We will refer to the probability p in this model as the
density of the random graph. We will consider the probe
complexity of algorithms in the fashion of average case
analysis in the random graph model. The goal is to design
good algorithms whose average performance, i.e. expected
number of probes over random realizations of ~G, is non-
trivially better than Õ(n3/2).

Summary of results: Our first result is a QuickSort
like algorithm, called SORT-DENSE-RG, that performs well
when edge density is large. Its average probe complexity
is Õ(n/p2) when the density is p > n−1/3. Thus when
p = Ω(1), the algorithm sorts uses Õ(n) probes on average.
Our second result is a complementary algorithm, SORT-
SPARSE-RG that performs well in the sparse edge density
regime. Its average probe complexity is Õ(n3/2√p). Com-
bined together, these results show that the average probe
complexity in the random graph model is Õ(n7/5) for any
choice of p.

4.1. Algorithm SORT-DENSE-RG

The algorithm is modeled after QuickSort. However, non-
trivial changes are needed both to find the relationship of all
elements with the pivot and to handle the base case of the
recursion. The algorithm starts by picking a random vertex v
as the pivot. Since the comparison graph is not complete, it is
non-trivial to partition all elements with respect to the pivot.
Nevertheless, we show that an adaptive sampling approach
combined with special handling when only O(log n/p3)
elements remain to be partitioned, produces a complete
partition. Unfortunately, these remaining elements may not
be of contiguous rank and so some care is needed to ensure
that the probes reveal the order between them and the
pivot. We then recursively apply QuickSort to the two sets
produced by this partition. Again, the base case is when the
block of elements to be sorted has size O(log n/p3). But in
this case we are assured that this is a contiguous block and
hence can simply apply the algorithm for general graphs to
this base case, using Õ(p−9/2) probes.

We first introduce some notation and a lemma that sum-
marizes some properties that are useful for our algorithm and
its analysis. The proof of the lemma is a straightforward
applications of the Chernoff-Höeffding bound and union
bound, and hence omitted.

For any three vertices u, v, and w, we say w is sandwiched
between u and v if (u,w), (w, v) ∈ ~E.

Lemma 4.1: With high probability, for every pair of ver-
tices u and v such that π(v)−π(u) ≥ 64 log n/p3, we have
the following properties:
(a) There are at least p2(π(v) − π(u))/2 vertices and at

most 2p2(π(v)−π(u)) vertices sandwiched between u
and v. Moreover, at least one quarter of the vertices
sandwiched between u and v have rank in the range
[ 3
4π(u) + 1

4π(v), 1
4π(u) + 3

4π(v)].
(b) Every vertex w has at least p3(π(v)− π(u))/2 neigh-

bors that are sandwiched between u and v; thus a
random vertex sandwiched between u and v has a
probability at least p/4 of being a neighbor of w.

Suppose we randomly choose 16 log n/p vertices that are
sandwiched between u and v and probe all their incident
edges. As a simple corollary of the lemma we get the
following facts with high probability. For all w with rank
lower than u, we have verified the order w < v via one
of the sandwiched vertices. Similarly, for all w with rank
greater than v, we have verified the order w > u.

We are now ready to describe the partitioning step and
the base case handling for our quicksort-like algorithm.

Partitioning Step: The heart of the algorithm is an
efficient way of partitioning around a randomly chosen
pivot element v whenever the instance contains at least
(256 log n)/p3 elements. We describe how elements smaller
than v can be identified efficiently; a symmetric procedure
will verify elements greater than v. The algorithm will main-
tain a lower marker v− < v. This marker will progressively
shift closer to v in rank through the stages of the algorithm
as long as π(v) − π(v−) ≥ 64 log n/p3. The invariant we
will maintain is that all vertices lower in rank than v− have
been verified to be less than v.

Initially v− is a virtual vertex that loses directly to all
other vertices. It is vacuously true that vertices lower in
rank than v− have been verified to be less than v. We first
probe every edge incident to v. Let V − be the set of vertices
sandwiched between v− and v. Initially this is the set of
all vertices that have directed edges to v. Randomly pick
a set W of 16 log n/p vertices in V − and probe all their
incident edges. By Lemma 4.1, we have verified u < v
for every vertex u whose rank is less than the rank of v−

with high probability. (For the initial step where v− is the
virtual lowest-rank vertex this step will not reveal any new
vertices u of lower rank than v− that are verified to be less
than v, because there are none. But this step is necessary in
subsequent rounds.) Let W ′ ⊆W denote the set of vertices
w ∈ W such that there are at least 16 log n/p vertices that



are sandwiched between w and v. If |W ′| < log n/p, we
conclude that π(v) − π(v−) < 64 log n/p3. By Lemma
4.1 if v− and v are sufficiently far in rank, with high
probability at least one quarter of the vertices in W are
16 log n/p3 from v in rank and hence will be in W ′. Thus
when |W ′| < log n/p we can conclude that v− and v
were close in rank. Otherwise, pick a random vertex in
W ′ and let it be the new lower marker v−. What is the
probe complexity of this partition step? It uses O(n log n)
probes in each iteration because it probes the incident edges
of O(log n/p) vertices and with high probability no vertex
has more than 3np incident edges. By Lemma 4.1, the rank
difference between v and the lower marker v− decreases by
at least a 3

4 factor with probability at least 1
4 . So the expected

number of rounds is O(log n) and the probe complexity of
this phase is O(n log2 n).

We now describe how to finish off pivoting around the
vertex v. Using the above algorithm we can verify the order
u < v for every vertex u that is much smaller than v.
Similarly, we can verify the order w > v for every vertex
w that is much larger than v.

We let v− denote the lower marker in the last iteration
of the above algorithm and symmetrically let v+ denote
the upper marker. By Lemma 4.1 and the definition of
our algorithm, we have π(v) − π(v−) < 64 log n/p3 and
π(v+) − π(v) < 64 log n/p3. We will also verify the
relation u < v− for every vertex u with rank π(u) <
π(v−)−64 log n/p3 using the same recursive procedure we
used to do this for v. Similarly we will do this for v+.
We observe that it suffices to probe edges between vertices
that are unverified to be smaller than v− or larger than v+.
This is because all unresolved vertices are between v− and
v+ and the vertices that are not between v− and v+ will
not help resolve them. By our discussion, there are only
O(log n/p3) candidate vertices which could potentially be
between v− and v+. So we can probe all edges both of
whose end points lie in this set. Taking into account that
the density is p gives a probe complexity of O(log2 n/p5)
for this clean-up step. Thus the overall probe complexity of
partitioning with respect to one pivot is O((n+p−5) log2 n).

We have described how to partition around one pivot. We
now mimic QuickSort until we get down to subproblems of
size O(log n/p3). Using a recursion tree approach to analyze
the recurrence relation for probe complexity of this part and
noting that the number of leaves in the tree is O(np3/ log n)
we find that the probe complexity of all partition steps is
O(n log3 n+ n log n/p2).

Base Case: Once the problem size becomes
O(log n/p3), Lemma 4.1 does not apply any more.
At this stage, we will simply sort these using the
O(n3/2 log n) probe-algorithm. Since each base case
requires O(p−9/2(log n)5/2) and there are np3/ log n
base cases, the probe complexity of the base cases is
O(n(log n/p)3/2).

SORT-SPARSE-RG
1: Choose markers: Pick a subset M ⊆ V of

markers s.t. each vertex is chosen independently
w.p.

√
p/n log−1 n. Let K be the number of

markers.
2: Initial sampling: Estimate the in-degree of every

vertex up to an
√
np log n additive error via

INIT-SAMPLE with sampling rate 4√
np .

3: for i from 1 to K + 1 do
4: Probe “free” edges: While there is a free

edge, probe the edge and update the assumed
direction graph.

5: Find long path: Find the directed path Pi
consisting of all active vertices that are not
verified to be larger than any marker. Remove
these vertices.

6: end for

Figure 5. The algorithm SORT-SPARSE-RG which sort vertices using
Õ(n3/2√p) probes with high probability in the random graph model.

Putting it all together the overall probe complexity of
SORT-DENSE-RG is O(n log3 n+ n log n/p2) = Õ(n/p2).
(The base case probe complexity is dominated by one of the
terms in the complexity of recursive partitioning no matter
whether p is above or below the critical value of 1/ log n.)

4.2. Algorithm SORT-SPARSE-RG

In this section, we will introduce the algorithm SORT-
SPARSE-RG that sorts using Õ(n3/2√p) probes in the
random graph model. Assume that p > 4 log n/n since
otherwise exhaustive probing works.

With high probability, the degree of each vertex v is
O(np). By using the subroutine INIT-SAMPLE with sam-
pling rate 4/

√
np, we can estimate the in-degree of ev-

ery vertex up to an additive error of
√
np log n using

O(n3/2√p log n) probes. We will modify the criterion of
activating a vertex as a function of the density: A vertex
v ∈ V is marked as active if the initial sampling and
the probed edges indicate that v has at most 6

√
np log2 n

unprobed incoming edges. Similar to the case for the general
graph, we will have a static budget Bin of O(n3/2√p log2 n)
probes for probing the incoming edges of active vertices. We
will refer to such edges as “free” edges.

Using the next lemma we can prove that w.h.p the
√
n/p

lowest rank vertices will be active. Note that the lowest
rank vertices can have in-edges only from other lowest rank
vertices at rate p.

Lemma 4.2: For each subset of vertices U ⊆ V such that
|U | ≥ 4 log n/p, with probability at least 1 − O( 1

n3 ), we
have that for every vertex v ∈ V , E(v, U), the number of
edges between v and the vertices in U is at least 1 and at
most 2p |U |.



If we can recursively find and remove a verified directed
path of length k ≥

√
n/p consisting of the k lowest

rank vertices, then the total number of probes would be
Õ(n3/2√p) as desired.

There may be other paths in the graph, but removing
the vertices in one of the other paths may lead to a sub-
problem that does not contains a Hamiltonian path. In
order to identify the path consisting of the lowest rank
vertices, we introduce the idea of markers. For each vertex
v independently, we pick it as a marker with probability√
p/n log−1 n. We will let m1 < · · · < mK denote

the markers. We note that the order of the markers is
unknown to the algorithm and needs to be revealed as
the algorithm proceeds. These markers naturally divide the
vertices into K + 1 blocks, each of which consists of the
set of vertices between two consecutive markers (w.r.t. the
underlying Hamiltonian path). For notational convenience,
we let m0 and mK+1 denote two virtual vertices of rank
0 and n + 1. Let Bi denote the set of vertices between
mi−1 and mi (w.r.t. the underlying Hamiltonian path), that
is, Bi

def
= {v ∈ V : mi−1 < v ≤ mi}.

By the Chernoff-Höeffding bound, we easily get that with
high probability the number of markers is O(

√
np log−1 n).

Furthermore, with high probability we have that for every
1 ≤ i ≤ K + 1, 4 logn

p ≤ |Bi| ≤ 4
√
n/p log2 n. The upper

bound holds due to Chernoff-Höeffding bound. The lower
bound follows from an argument similar to the birthday
paradox. In the following discussion, we will assume these
claims indeed hold.

The size of each Bi is large enough that Lemma 4.2 holds
with high probability, and is small enough that the vertices
in Bi would become active if the algorithm has removed
all vertices in B1, . . . , Bi−1. Our strategy is to recursively
identify and remove Bi A careful analysis (details are
deferred to the full proof) shows that every other vertex
is either inactive or verified to be larger than the lowest
remaining marker. Hence, all other paths will be ruled out.

The formal description of the algorithm is presented in
Figure 5.

Theorem 4.3: The algorithm SORT-SPARSE-RG sorts the
vertices in O

(
n3/2√p log2 n

)
probes with high probability

(over random realizations of graph ~G and random coin flips
used by the algorithm).

Proof: It is easy to see that the probe complexity
is O(n3/2√p log2 n). Now we prove the correctness (with
high probability) of the algorithm. We can show using the
Chernoff-Höeffding and union bounds that none of the bad
events we have identified such as too many markers or
vertices of too high degree, occur. In particular, Lemma 4.2
holds for all Bi’s. Next, we will show that the algorithm
sorts the vertices as desired when these claims hold. Here
is the key lemma that we need.

Lemma 4.4: In each iteration of the for-loop, we have
Pi = Bi.

Proof of Lemma 4.4: We will prove it by induction
on i. Let us first consider the base case: i = 1. The proof
consists of two parts. First, we will show the algorithm has
probed all edges along the path consists of the vertices in
B1. Second, we will prove that every other vertex is either
inactive or verified to be larger than m1.

The first part is true for the following reason. By the upper
bound on the size of B1 (Lemma 4.2), and the error bound
of initial sampling, all vertices in B1 are active. So algorithm
has probed all edges with both endpoints in B1 in Step 4.
In particular, the algorithm has probed the edges along a
subpath of the Hamiltonian path consisting of the vertices
in B1.

Now let us proceed to the second part. We will rephrase
the statement as follows: For every active vertex u that is not
in B1, the algorithm has probed a directed path that certifies
the fact that u is larger than m1. Let us first consider the
vertices in B2. By the upper bound on the size of B1 and
B2, and the error bound of initial sampling, we conclude
that the vertices in B2 are active. Similar to the argument
in the previous paragraph, the algorithm has revealed the
underlying subpath of the Hamiltonian path consisting of
the vertices in B2 and mi. So the vertices in B2 are verified
to be larger than m1. Next, consider an active vertex u ∈
V \ (B1 ∪B2). We have that |E(u,B2)| > 0 (Lemma 4.2).
Let w ∈ B2 be a vertex such that (u,w) ∈ E. The edge
(u,w) is an incoming edge of either u or w. Since both u
and w are active, the algorithm has probed this edge. Hence,
w is verified to wins against m1.

Now suppose the lemma holds for 1, . . . , i− 1. Then, by
the recursive structure of the algorithm, we have removed
all vertices in B1, . . . , Bi−1. So the case is now identical to
the case i = 1. In sum, Lemma 4.4 holds for all i.

Suppose the w.h.p. events indeed hold. Then, by Lemma
4.4, the algorithm recursively reveals and removes a subpath
of the underlying Hamiltonian path consisting of a subset of
lowest rank vertices, and have removed all vertices by the
end. So the algorithm sorts the vertices correctly.

5. CONCLUSIONS

We give the first non-trivial algorithms for the gener-
alized sorting problem where only a subset of all pair-
wise comparisons are allowed. When the graph of allowed
comparisons is adversarially chosen, we give an algorithm
that sorts with high probability using Õ(n3/2) comparisons.
On the other hand, if the allowed comparison graph is
randomly generated, then we show sorting can be done
using Õ(min{ np2 , n

3/2√p}) = Õ(n7/5) comparisons. In
particular, when the density p is Ω(1) we use a near-optimal
O(n log3 n) probes.

Algorithms for the classical sorting problem implicitly
utilize the existence of balanced comparisons at every stage
of the algorithm. This plays a crucial role in getting the



O(n log n) comparison bound for the classical sorting prob-
lem. In contrast, when the set of allowed comparisons is
restricted, balanced edges may not exist in intermediate
stages of the algorithm. Sorting in this general setting
thus becomes a considerably more challenging problem.
Nonetheless, the best known lower bound even in our re-
stricted comparison setting remains the classical Ω(n log n)
information-theoretic lower bound on sorting. We note that
for some non-trivial generalizations of the sorting problem,
the information-theoretic lower bound is known to be es-
sentially tight. In particular, Fredman [5] showed that when
the sorted sequence is known to belong to a subset Γ of
all possible permutations, then log |Γ|+ O(n) comparisons
suffice to sort. Thus the information-theoretic lower bound of
log |Γ| is tight to within an additive O(n) term in Fredman’s
generalization of the sorting problem. However, this upper
bound result requires that all possible comparisons are
allowed. A natural question is if in our restricted comparison
model, the lower bound for sorting can be strengthened to
Ω(n1+ε) for some constant ε > 0.
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APPENDIX

Lemma A.1 (Lemma 2.1 restated): If πẼ(v) − πẼ(u) =

c ≥ 0, then |ΠẼ(v<u)|
|ΠẼ|

> 1
ec+1 .

We will use the Brunn-Minkowski Theorem (Theorem
A.2) and Lemma A.3, the proof of which also follows from
the Brunn-Minkowski Theorem, to show Lemma A.1.

Theorem A.2: Let n ≥ 1. For any compact convex set
K,L ⊆ Rn, the nth root of the Euclidean volume Vol(·) is
concave with respect to Minkowski combination:

∀λ ∈ [0, 1] : Vol ((1− λ)K + λL)
1/n ≥

(1− λ)Vol(K)1/n + λVol(L)1/n .

Lemma A.3 (e.g. [6]): Let K be a n-dimensional convex
body in Rn with centroid c. Let H = {x ∈ Rn : x·v = c·v}
be a hyperplane through the centroid of K and H+ = {x ∈
Rn : x · v ≥ c · v}. Then, Vol(K ∩H+) ≥ 1

eVol(K).
Order polytope. [8]: The order polytope PẼ is the set

of mappings f : V 7→ R such that:

∀v ∈ V : 0 ≤ f(v) ≤ 1

∀(u, v) ∈ Ẽ : f(u) ≤ f(v)

With each linear extension π ∈ ΠẼ , we let Σπ denote the
following simplex:

Σπ = {f ∈ PẼ : 0 ≤ f(π−1(1)) ≤ · · · ≤ f(π−1(n)) ≤ 1} .

We have the following facts.
Fact A.4: 1) The simplices Σπ triangulate PẼ ;
2) Vol(PẼ) =

∣∣ΠẼ

∣∣ /n!
3) The centroid of PẼ is 1

n+1πẼ .
Proof: The first two facts follow from symmetricity.

Now we prove the third fact. The n + 1 vertices of the
simplex Σπ are

f0 : f0(π−1(1)) = · · · = f0(π−1(n)) = 0 ;

f1 : f1(π−1(1)) = · · · = f1(π−1(n− 1)) = 0 ,

f1(π−1(n)) = 1 ;

f2 : f2(π−1(1)) = · · · = f2(π−1(n− 2)) = 0 ,

f2(π−1(n− 1)) = f1(π−1(n)) = 1 ;

. . . . . .

fn : fn(π−1(1)) = · · · = fn(π−1(n)) = 1 .

Hence, the centroid of Σπ is
1

n+1

(
f0 + f1 + · · ·+ fn

)
= 1

n+1π. We get that the
centroid of PẼ is 1

|PẼ|
∑
π∈PẼ

1
n+1π = 1

n+1πẼ .



Proof of Lemma A.1: By Fact A.4, we have that
Vol(PẼ) =

∣∣ΠẼ

∣∣ /n!. Also, we have Vol
(
PẼ∪(v,u)

)
=∣∣∣ΠẼ∪(v,u)

∣∣∣ /n! =
∣∣ΠẼ(v < u)

∣∣ /n!. Hence, it suffices to

show that Vol
(
PẼ∪(v,u)

)
> 1

ec+1 Vol(PẼ).
For every −1 ≤ λ ≤ 1, we let Hλ

(v,u) denote the
hyperplane {f ∈ RV : f(v) + λ = f(u)}. And let
H≥λ(v,u) =

⋃
µ≥λH

µ
(v,u) = {f ∈ RV : f(v) + λ ≤ f(u)}.

Then, PẼ∪(v,u) = PẼ ∩H
≥0
(v,u) and H

− c
n+1

(v,u) is a hyperplane
through the centroid of PẼ . Without loss of generality, let
us assume that 0 ∈ H1 ∩ PẼ .

By Lemma A.3, we get that

Vol
(
PẼ ∩H

≥− c
n+1

(v,u)

)
≥ 1

e
Vol

(
PẼ
)
. (1)

Let K = PẼ ∩ H
≥− c

n+1

(v,u) , L = {0}, and λ =

c
n+1/

(
1 + c

n+1

)
in Theorem A.2. We get that

Vol

(
1

1 + c
n+1

PẼ ∩H
≥− c

n+1

(v,u)

)1/n

≥

1

1 + c
n+1

Vol
(
PẼ ∩H

≥− c
n+1

(v,u)

)1/n

(2)

Note that
1

1 + c
n+1

PẼ ∩H
≥− c

n+1

(v,u) ⊆ PẼ ∩H
≥0
(v,u) . (3)

Hence, we have that

Vol
(
PẼ ∩H

≥0
(v,u)

)
≥Vol

(
1

1 + c
n+1

PẼ ∩H
≥− c

n+1

(v,u)

)
(by (3))

≥

(
1

1 + c
n+1

)n
Vol

(
PẼ ∩H

≥− c
n+1

(v,u)

)
(by (2))

≥

(
1

1 + c
n+1

)n+1

Vol
(
PẼ ∩H

≥− c
n+1

(v,u)

)
>

1

ec
Vol

(
PẼ ∩H

≥− c
n+1

(v,u)

)
(1 + x < ex for any x > 0)

>
1

ec+1
Vol

(
PẼ
)

(by (1))

This finishes the proof of Lemma A.1.


