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Abstract— Any physical channel of communication offers two
potential reasons why its capacity (the number of bits it can
transmit in a unit of time) might be unbounded: (1) (Uncountably)
infinitely many choices of signal strength at any given instant of
time, and (2) (Uncountably) infinitely many instances of time at
which signals may be sent. However channel noise cancels out
the potential unboundedness of the first aspect, leaving typical
channels with only a finite capacity per instant of time. The
latter source of infinity seems less extensively studied. A potential
source of unreliability that might restrict the capacity also from
the second aspect is “delay”: Signals transmitted by the sender
at a given point of time may not be received with a predictable
delay at the receiving end. In this work we examine this source
of uncertainty by considering a simple discrete model of delay
errors. In our model the communicating parties get to subdivide
time as microscopically finely as they wish, but still have to cope
with communication delays that are macroscopic and variable. The
continuous process becomes the limit of our process as the time
subdivision becomes infinitesimal. We taxonomize this class of
communication channels based on whether the delays and noise
are stochastic or adversarial; and based on how much information
each aspect has about the other when introducing its errors. We
analyze the limits of such channels and reach somewhat surprising
conclusions: The capacity of a physical channel is finitely bounded
only if at least one of the two sources of error (signal noise or delay
noise) is adversarial. In particular the capacity is finitely bounded
only if the delay is adversarial, or the noise is adversarial and
acts with knowledge of the stochastic delay. If both error sources
are stochastic, or if the noise is adversarial and independent of
the stochastic delay, then the capacity of the associated physical
channel is infinite!

Keywords-Communication, Delays, Physical channels, Adver-
sarial errors, Stochastic errors.

1. INTRODUCTION

It seems to be a folklore assumption that any physical
medium of communication is constrained to communicating
a finite number of bits per unit of time. This assumption
forms the foundations of both the theory of communication
[7] as well as the theory of computing [9]. The assumption
also seems well-founded given the theory of signal process-
ing. In particular the work of Shannon [8] explains reasons
why such a statement may be true.

Any physical channel (a copper wire, an optical fiber,
vaccuum etc.) in principle can be used by a sender to
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transmit a signal, i.e., a function f : [0, T ] → [0, 1] for
some time duration T . The receiver receives some function
f̃ : [0, T ] → [0, 1], which tends to be a noisy, distorted
version of the signal f . The goal of a communication
system is to design encoders and decoders that communicate
reliably over this channel. Specifically, one would like to
find the largest integer kT such that there exist functions
E : {0, 1}kT → {f : [0, T ]→ [0, 1]} and D : {f̃ : [0, T ]→
[0, 1]} → {0, 1}kT such that Prf̃ |E(m)[D(f̃) 6= m] → 0

where m is chosen uniformly from {0, 1}kT and f̃ is
chosen by the channel given the input signal E(m). The
capacity of the channel, normalized per unit of time, is the
lim supT→∞ kT /T .

In a typical such channel there are two possible sources of
infinite capacity. The number of possible signal values f(t),
for any t ∈ [0, T ] is uncountably large and if the channel
were not “noisy” this would lead to infinite capacity, even
if time were discrete. But Shannon, in his works [7], [8],
points out that usually f(t) is not transmitted as is. Typical
channels tend to add noise, typically a random function η(t),
which is modeled as a normally distributed random variable
with mean zero and variance σ2, and independent across
different instances of time t. He points out that after this
noise’s effect is taken into account, the channel capacity is
reduced to a finite number (proportional to 1/σ2) per instant
of time.

Still this leaves a second possible way the channel ca-
pacity could be infinite, namely due to the availability of
infinitely many time slots. This aspect has been considered
before in the signal processing literature, and the works of
Nyquist [6] and Hartley [4] (see the summary in [8]) once
again point out that there is a finite limit. However the reason
for this finite limit seems more axiomatic than physical.
Specifically, these results come from the assumption that
the signal f is a linear combination of a finite number
of basis functions, where the basis functions are sinusoids
with frequency that is an integral multiple of some minimal
frequency, and upper bounded by some maximum frequency.
This restriction is then translated into a “discretization”
result showing it suffices to sample the signal at certain
discrete time intervals, reducing the problem thus to a finite



one.
In this work we attempt to explore the effects of “contin-

uous time” more in the spirit of the obstacle raised in the
context of the signal strength, namely that there is an obsta-
cle also to assuming that time is preserved strictly accross
the communication channel. We do so by introducing and
studying a “delay channel” where signals transmitted by the
sender arrive somewhat asynchronously at the receiver’s end.
We model and study this process as the limit of a discrete
process.

In our discrete model the sender/receiver get to dis-
cretize time as finely as they wish, but there is uncer-
tainty/unreliability associated with the delay between when
a signal is sent and when it is received. Thus in this sense,
there is timing noise, that is similar in spirit to the signal
noise. A signal that is sent at time t is received at time
t+η(t) where η(t) could be a random, or adversarial, amount
of delay, but whose typical amount is a fixed constant
(independent of the granularity of the discretization of time
chosen by sender/receiver). Note that this could permute the
bits in the sequence sent by the sender (or do more complex
changes). We consider the effect of this delay on the channel
capacity. For the sake of simplicity (and since this is anyway
without loss of generality) we assume sender only sends a
sequence of 0s and 1s. In addition to delays we also allow
the channel to inject the usual noise.

We discuss our model and results more carefully in
Section 2, but let us give a preview of the results here. It
turns out that the question of when is the channel capacity
finite is a function of several aspects of the model. Note
there are two sources of error - the signal error, which we
simply refer to as noise, and the timing error, which we refer
to as delay. As either of these error sources could be proba-
bilistic or adversarial, we get four possible channel models.
Complicating things further is the dependence between the
two – does either of the sources of error know about the
error introduced by the other? Each setting ends up requiring
a separate analysis. We taxonomize the many classes of
channels that arise this way, and characterize the capacity
of all the channels. The final conclusion is the following:
If the delays are adversarial, or if the delay is stochastic
and the noise is adversarial and acts with knowledge of the
delay, then the channel capacity is finite (Theorem 2.1), else
it is infinite (Theorem 2.2). In particular if both sources are
adversarial then the channel capacity is finite; and perhaps
most surprisingly and possibly the most realistic setting, if
both sources are probabilistic, then the channel capacity
is infinite: finer discretization always leads to increased
capacity.

Organization: Section 2 formally describes our model and
results. In Sections 3 and 4, we prove our results for finite
and infinite channel capacity regimes respectively. Finally,
we give some concluding thoughts in Section 5.

2. PRELIMINARIES, MODEL, AND RESULTS

2.1. Continuous channels

We start by describing the basic entities in a communica-
tion system and how performance is measured. Most of the
definitions are “standard”; the only novelty here is that we
allow sender/receiver to choose the “granularity” of time.
We first start with the standard definitions.

Channel(Generic): Given a fixed period of time T , a
signal is a function f : [0, T ] → R. We say the signal
is bounded if its range is [0, 1]. A time T (bounded-input)
channel is given by a (possibly non-deterministic, possibly
probabilistic, or a combination) function channelT : f 7→ f̃
whose inputs is a bounded signal f : [0, T ] → [0, 1] and
output is a signal f̃ : [0, T ]→ R.

A probabilistic channel is formally given by a transition
probability distribution which gives the probability of out-
putting f̃ given input f . An adversarial channel is given
by a set of possible functions f̃ for each input f . We use
f̃ = channelT (f) as shorthand for f̃ drawn randomly from
the distribution specified by channelT (f) in the case of
probabilistic channels. For adversarial channels, we use the
same notation f̃ = channelT (f) as shorthand for f̃ chosen
adversarially (so as to minimize successful communication)
from channelT (f).

Channels can be composed naturally, leading to interest-
ing mixes of adversarial and stochastic channels, which will
lead to interesting scenarios in this work.

Encoder/Decoder: Given T and message space
{0, 1}kT , a time T encoder is a function E : m 7→ f where
m ∈ {0, 1}kT and f : [0, T ]→ [0, 1]. Given T and message
space {0, 1}kT , a time T decoder is a function D : f 7→ m
where f : [0, T ] → R and m ∈ {0, 1}kT . (More generally,
encoders, channels, and decoders should form composable
functions.)

Success Criteria, Rate and Capacity: The decoding
error probability of the system (ET , DT , channelT ) is the
quantity Prdec,T given by

Prm←{0,1}kT ,channel[m 6= DT (channelT (ET (m)))].

We say that the communication system is reliable if
limT→∞{Prdec,T} = 0.

The (asymptotic) rate of a communication system is
the limit lim supT→∞{kT /T}. The capacity of a channel,
denoted by Cap, is defined to be the supremum of the rate
of the communication system over all encoding/decoding
schemes.

2.2. Channel models

We now move to definitions specific to our paper. We
study continuous channels as a limit of discrete channels. To
make the study simple, we restrict our attention to channels
whose signal strength is already discretized, and indeed
we will even restrict to the case where the channel only



transmits bits. The channel will be allowed to err, possibly
probabilistically or adversarially, and ε will denote the error
parameter.

We now move to the more interesting aspect, namely the
treatment of time. Our model allows the sender and receiver
to divide every unit of time into tiny subintervals, which we
call micro-intervals, of length µ = 1/M (for some large
integer M ), and send arbitrary sequences of M bits per
unit of time. This granularity is compensated for by the
fact that the channel is allowed to introduce relatively large,
random/adversarial, delays. However the channel is allowed
to introduce uncertain delays into the system, where the de-
lays average to some fixed constant ∆ which is independent
of µ. Given that all aspects are scalable, we scale time so
that ∆ = 1. Again we distinguish between the adversarial
case and the probabilistic case. In the adversarial case every
transmitted symbol may be delayed by up to 1 unit of time
(or by up to M microintervals). In the probabilistic case
every transmitted symbol may be delayed by an amount
which is a random variable distributed exponentially with
mean 1. Finally, if multiple symbols end up arriving at the
receiver at the same instant of time, we assume the receiver
receives the sum of the value of the arriving symbols.

We now formally describe the model.

Encoding: For every T , the sender encodes kT bits as MT
bits by applying an encoding function ET : {0, 1}kT →
{0, 1}MT . The encoded sequence is denoted X1, . . . , XMT .

Noise: The noise is given by a function ξ : [MT ] →
{0, 1}. The effect of the noise is denoted by the sequence
Z1, . . . , ZMT , where Zj = Xj ⊕ ξ(j). (We stress that Zj’s
are not necessarily “seen” by any physical entity — we just
mention them since the notation is useful. Also, the ⊕ is
merely a convenient notation and is not meant to suggest
that the bits are elements of some finite field. We will be
thinking of the bits as integers.)

Throughout this paper, when considering random noise
at some rate ε ∈ (0, 1), we assume that for every packet
released by the sender, the bit encoded in the packet is
flipped with probability ε, independently of other packets.
Similarly, when considering adversarial noise at some rate
ε ∈ (0, 1), we assume that the noise adversary can flip
encoded bits in up to ε-fraction of packets released by the
sender.

Delay: The delay is modeled by a delay function ∆ :
[MT ]→ Z≥0 where Z≥0 denotes the non-negative integers.

Throughout this paper, when considering random delays,
we assume that the packets delays are geometrically dis-
tributed with mean 1 – a packet released by the sender is
transmitted over the channel in any micro-interval with prob-
ability 1/M . Similarly, when the delay is adversarial, we
assume that any packet released by the sender is transmitted
by the delay adversary at an arbitrarily chosen micro-interval
among the M micro-intervals that follow the release of the

packet.
Received Sequence: The final sequence received by the re-
ceiver, on noise ξ and delay ∆, is the sequence Y1, . . . , YMT ,
where Yi =

∑
j≤i s.t. j+∆(j)=i Zj and Zj = Xj ⊕ ξ(j).

Decoding: The decoder is thus a function DT : (Z≥0)MT →
{0, 1}kT .

Note that while the notation suggests that the noise
operates on the input first, and then the delay acts on it,
we do not view this as an operational suggestion. Indeed
the order in which these functions (ξ and ∆) are chosen
will be crucial to our results.

Our channels are thus described as a composition of
two channels, the noise-channel with parameter ε, denoted
N(ε) and the delay-channel D. Since each of these can
be probabilistic or adversarial, this gives us four options.
Furthermore a subtle issue emerges which is: Which channel
goes first? Specifically if exactly one of the channels is
adversarial, then does it get to choose its noise/delay before
or after knowing the randomness of the other channel. We
allow both possibilities which leads syntactically to eight
possible channels (though only six of these are distinct).

Notation: We use D to denote the delay channel and
N(ε) to denote the noise channel with parameter ε. We use
superscripts of A or P to denote adversarial or probabilistic
errors respectively. We use the notation X|Y to denote that
channel X goes first and then Y acts (with knowledge of the
effects of X). Thus the eight possible channels we consider
are NP |DP , DP |NP , DA|NP , NA|DP , DP |NA, NP |DA,
NA|DA, and DA|NA.

2.3. Our results

Given that the adversarial channels are more powerful
than the corresponding random channels, and an adversary
acting with more information is more powerful than one
acting with less, some obvious bounds on the capacity of
these channels follow:

Cap(DA|NA) = Cap(NA|DA) ≤ Cap(NP |DA)

≤ Cap(DA|NP ) ≤ Cap(DP |NP ) , (1)

and

Cap(DA|NA) ≤ Cap(DP |NA) ≤ Cap(NA|DP )

≤ Cap(NP |DP ) = Cap(DP |NP ) . (2)

The equalities above occur because if both channels
are adversarial, or both are probabilistic, then ordering is
unimportant.

Our main results are summarized by the following two
theorems.

Theorem 2.1 (Finite Capacity Case): For every positive
ε, the capacity of the channels DA|N(ε)A,DP |N(ε)A,
DA|N(ε)P ,and N(ε)P |DA are finite. That is, for every one
of these channel types, and ε > 0 there exists a capacity



C < ∞ such that for every µ, a µ-discretized encoder and
decoder with rate R > C, there exists a γ > 0 such that the
probability of decoding error Prdec ≥ γ.

Theorem 2.2 (Infinite Capacity Case): There exists a
positive ε such that the capacity of the channels DP |N(ε)P

and N(ε)A|DP are infinite. That is, for every one of these
channel types, there exists an ε > 0 such that for every
finite R, there exists a µ and a µ-discretized encoder and
decoder achieving rate R, with decoding error probability
Prdec → 0.

The theorems above completely characterize the case
where the capacity is infinite. The theorems show that the
capacity is infinite if either both channels are probabilistic
(the most benign case) or if the noise is adversarial but acts
without knowledge of the randomness of the probabilistic
delay. On the other hand, the channel capacity is finite if
the delay is adversarial, or if the noise is adversarial and
acts with knowledge of the probabilistic delay.

Relying on the “obvious” inequalities given earlier, it
suffices to give two finiteness bounds and one “infinite-
ness” bound to get the theorems above, and we do so in
the next two sections. Theorem 2.1 follows immediately
from Lemmas 3.2 and 3.3 (when combined with Equa-
tions (1) and (2)). Theorem 2.2 follows immediately from
Lemma 4.1 (again using Equations (1) and (2)).

3. FINITE CAPACITY REGIME

In this section we prove that the capacity of our channels
are finite, when the delay channel is adversarial (and acts
without knowledge of the noise) or when the noise is ad-
versarial and acts with knowledge of the delay. We consider
the case of the adversarial noise first, and then analyze the
case of the random errors adversarial delay first, and then
consider the case of the adversarial noise. In both cases we
use a simple scheme to show the capacity is limited. We
show that with high probability, the channel can force the
receiver to receive one of a limited number of signals.

The following simple lemma is then used to lower bound
the probability of error.

Lemma 3.1: Consider a transmission scheme with the
sender sending message from a set S with encoding scheme
E, where the channel channel can select a set R of receiver
signals such that

Prm∈S,channel[channel(E(m)) 6∈ R] ≤ τ,

then the probability of decoding error is at least 1 − (τ +
|R|/|S|).

Proof: Let R̃ denote the space of all received signals
and fix the decoding function D : R̃ → S. Now consider
the event that a transmitted message m is decoded correctly.
We claim this event occurs only if only of the two events
listed below occur:

1) channel(E(m)) 6∈ R, which happens with probability
at most τ .

2) m = D(r) for some r ∈ R, which happens with
probability at most |R|/|S|.

If neither of the events listed above occur then the received
signal r ∈ R and D(r) 6= m implying the decoding is
incorrect. The lemma follows immediately.

3.1. Random Delay followed by Adversarial Noise
(DP |NA)

Here we consider the case where the delays are random,
with expectation 1, and the noise is adversarial. In this
section, it is useful to view the delay channel as a queueing
system, under the noise channel’s active control. To explain
the queueing system, notice that geometric delays lead to a
memoryless queue. At each microinterval of time, a packet
enters the queue (the new bit sent by the sender). And then
each packet in the queue chooses to depart, independent of
other packets, with probability µ. (Note that the geomet-
ric delay/memorylessness renders the packets in the queue
indistinguishable in terms of their arrival times.)

For the noise channel also, we will adopt a slightly
different view. In principle, it is capable of looking at the
entire sequence of bits in the order in which they depart
the queue, and then decide which ones to flip. However
our adversary will be much milder. It will divide time into
small intervals with the total number of intervals being
N = O(T/ε). In each interval it will “hold” most arriving
packets, releasing only those that are supposed to leave
the queue. If packets are released during the interval, the
noise adversary sets their value to 0. With the remaining
packets it inserts them into the queue, with an integer
multiple of εM/c of them being set to 1 (and flipping a
few bits to 0 in the process as needed) for some constant
c = c(ε). The remaining departures from the queue will
then be transmitted untampered to the receiver. We will
show that this departure process can be simulated by just
the knowledge of the number of 1s injected into the queue
at the end of each interval, and the number of possibilities is
just (c+1)N = c(ε)O(T/ε)) which is independent of M . The
adversary will be able to carry out its plan with probability
1−exp(−T ), giving us the final result. The following lemma
and proof formalize this argument.

Lemma 3.2: For every positive ε, there exists a capacity
C = C(ε) such that the capacity of the channel DP |N(ε)A

is bounded by C. Specifically, for every rate R > C, for
every M (and µ = 1/M ), every T , every kT > R · T , and
every pair of encoding/decoding functions ET : {0, 1}kT →
{0, 1}MT and DT : (Z≥0)MT → {0, 1}kT , the decoding
error probability Prdec = 1− exp(−T ).

Proof: We start with a formal description of the channel
action, and then proceed to analyze the probability of
decoding error and channel capacity.



Channel action: Let X1, . . . , XMT denote the MT bit
string being sent be the sender. We will use Zj = Xj⊕ξ(j)
to denote the value of the jth bit after noise (even though the
noise acts after the delay and so Zj may not be the jth bit
received by the receiver). We let ∆ : [MT ] → Z≥0 denote
the delay function.

Let ε′ = ε/5 and L = ε′M . The noise adversary partitions
the MT microintervals into T/ε′ intervals of length L each,
where the ith interval Γi = {(i−1)L+1, . . . , iL}. For every
index i ∈ {1, . . . , T/ε′}, the adversary acts as follows to set
the noise function for packets from Γi:

1) Let ni denote the Hamming weight of the string
X(i−1)L+1 . . . XiL, i.e., the weight of the arrivals in
the queue in interval i.

2) Let ñi denote the rounding down of ni to an integer
multiple of ε′ ·L = (ε′)2 ·M (we assume all these are
integers).

3) Let Ri denote the set of packets that arrive and leave
in the ith interval, i.e., Ri = {j ∈ Γi|j + ∆(j) ∈ Γi}.

4) For every j ∈ Ri, the adversary sets Zj = 0 (or ξ(j) =
Xj). Let yi = |Ri| and let n̂i = min{ñi, L− yi}.

5) The adversary flips the minimum number of packets
from Γi \Ri so that exactly n̂i of these are ones.

If at any stage the adversary exceeds its quota of εMT errors
it stops flipping any further bits.

Error Analysis: We claim first that the probability that
the adversary stops due to injecting too many errors is
exponentially low. This is straightforward to bound. Notice
that the number of bits of flipped in the ith interval due
to early departures, is at most yi, and E[yi] ≤ 1

2ε
′L. The

number of bits flipped for packets that wait in the queue
(i.e., from Γi \ Ri) is at most max{yi, ni − ñi}. Again
the expectation of this is bounded by the expectation of
yi + (ni − ñi) which is at most 3

2 (ε′)L. Thus adding up
the two kinds of errors, we find the expected number of
bits flipped in the ith interval is at most 5

2ε
′L. Summing

over all intervals and applying Chernoff bounds, we find the
probability that we flip more than (5ε′ = ε)-fraction of the
bits is exponentially small in T .

Capacity Analysis: For the capacity analysis, we first note
that the departure process from the delay queue (after
the ξ function has been set) is completely independent of
the encoding X1, . . . , XMT , conditioned on ñ1, . . . , ñT/ε′
and on the event that the adversary does not exceed its
noise bounds. Indeed for any fixing of the ∆ function
where the adversary does not exceed the noise bound, the
output of DP |NA channel on X1, . . . , XMT is the same
as on the string X̃1 . . . X̃MT , where for each i, the string
X̃(i−1)L+1 . . . X̃iL is set to 1ñi0L−ñi . Furthermore, note that
the number of possible values of ñi is at most 1/ε′. We thus
conclude that with all but exponentially small probability,
the number of distinct distributions received by the receiver
(which overcounts the amount of information received by

the receiver) is at most (1/ε′)T/ε
′

= (1/ε)O(T/ε). An
application of Lemma 3.1 now completes the proof.

3.2. Adversarial Delay followed by Random Noise
(DA|NP )

Lemma 3.3: For every positive ε ≤ 1
2 , there exists a

capacity C = C(ε) such that the capacity of the channel
DA|N(ε)P is bounded by C. Specifically, for every rate
R > C, there exists a γ > 0 and T0 < ∞ such that for
every M (and µ = 1/M ), every T ≥ T0, and every pair of
encoding/decoding functions ET : {0, 1}kT → {0, 1}MT

and DT : (Z≥0)MT → {0, 1}kT , the decoding error
probability Prdec > γ if kT > R · T .

Proof Idea: We upper bound the channel capacity in two
steps. In the first step we create an adversarial delay function
that attempts to get rid of most of the “detailed” information
being sent over the channel. The effect of this delay function
is that most of the information being carried by the channel
in M microintervals can be reduced to one of a constant
(depending on ε) number of possibilities – assuming the
errors act as they are expected to do. The resulting process
reduces the information carrying capacity of the channel to
that of a classical-style (discrete, memoryless) channel, and
we analyze the capacity of this channel in the second step.
We give a few more details below to motivate the definition
of this classical channel.

We think of the delay function as a “queue”, and the bits
being communicated as “packets” arriving/departing from
this queue. We call a packet a 0-packet if it was a zero
under the encoding and as a 1-packet if it was a one under
the encoding. Note that both types of packets, on release,
get flipped with probability ε and the receiver receives one
integer per time step representing the total number of ones
received. The delay adversary clusters time into many large
intervals and holds on to all packets received during an
interval, and releases most of them at the end of the interval.
In particular if it releases ñ0 0-packets and ñ1 1-packets at
the end of an interval, it makes sure that εñ0+(1−ε)ñ1 takes
on one of a “constant” number of values independent of M .
(For some integer c, the actual value will be within ± 1

2 of an
integer multiple of M/c due to integrality issues, but in this
discussion we pretend we get an exact multiple of M/c.)
Note that the quantity εñ0 + (1− ε)ñ1 denotes the expected
value of the signal received by the receiver when ñ0 0-
packets and ñ1 1-packets are released, and so we refer to this
quantity as the signature of the interval. If the errors were
“deterministic” and flipped exactly the expected number of
bits, then the channel would convey no information beyond
the signature, and the total number of possible signatures
over the course of all intervals would dictate the number
of possible messages that could be distinguished from each
other.



However the errors are not “deterministic” (indeed — it
is not even clear what that would mean!). They are simply
Bernoulli flips of the bits being transmitted, and it turns out
that different pairs (ñ0, ñ1) with the same signature can be
distinguished by the receiver due to the fact that they have
different variance. This forces us to quantify the information
carrying capacity of this “signal-via-noise” channel.

In the sequel, we first introduce this “signal-via-noise”
channel (Definition 3.4) and bound its capacity (Lem-
mas 3.5 and 3.9). We then use this bound to give a proof of
Lemma 3.3.

3.2.1. The “signal-via-noise” channel: We introduce the
“signal-via-noise” channel which is a discrete memoryless
channel, whose novelty is in the fact that it attempts to
convey information using the variance of the signal. We
assume that the reader is familiar with basic definitions from
information theory, such as entropy, conditional entropy
and mutual information (denoted H(·), H(·|·) and I(·; ·)
respectively) which we will use to bound the capacity of
this channel. (These can be found in [2, Chapter 2] or in the
full version of this paper.)

A discrete channel C is given by a triple (X ,Y,P), where
X denotes the finite set of input symbols, Y denotes the
finite set of output symbols, and P is a stochastic matrix
with Pij denoting the probability that the channel outputs
j ∈ Y given i ∈ X as input. We use C(X) to denote the
output of this channel on input X . The information capacity
of such a channel is defined to be the maximum, over all
distributions D on X , of the mutual information I(X;Y )
between X drawn according to D and Y = C(X).

The information capacity turns out to capture the opera-
tional capacity (or just capacity as introduced in Section 2)
of a channel when it is used many times (see Lemma 3.9
below). Our first lemma analyzes the information capacity
of the “signal-via-noise” channel, which we define formally
below.

In what follows, we fix positive integers M and c and a
rational ε.

Definition 3.4: For integers M, c and ε > 0, the
collection of (M, ε, c)-channels is given by {Cµ|µ ∈
{M/c, . . . ,M}}, where the channel Cµ = (Xµ,Yµ,Pµ) is
defined as follows: (a) Xµ = {(a, b) ∈ Z≥0 × Z≥0} such
that a+ b ≤M and

µ− 1

2
< εa+ (1− ε)b ≤ µ+

1

2
,

(b) Yµ = {0, . . . ,M}, and (c) Pµ is the distribution that, on
input (a, b), outputs the random variable Y =

∑a
i=1 Ui +∑b

j=1 Vj , where the Ui’s and Vj’s are independent Bernoulli
random variable with E[Ui] = ε and E[Vj ] = 1− ε.

Note that the expectation of the output of the channel Cµ
is roughly µ, and the only “information carrying capacity” is
derived from the fact that the distribution over {0, . . . ,M} is

different (and in particular has different variance) depend-
ing on the choice of (a, b) ∈ Xµ. The following lemma
shows that this information carrying capacity is nevertheless
bounded as a function of ε and c (independent of M ). Later
we follow this lemma with a standard one from information
theory showing that the information capacity does bound the
functional capacity of this channel.

Lemma 3.5: For every 0 < ε ≤ 1
2 and c < ∞, there

exists C0 = C0(ε, c) such that for all M the information
capacity of every (M, ε, c)-channel is at most C0.

Proof: The lemma follows from the basic inequality
for any pair of random variables X and Y that I(X;Y ) =
H(Y )−H(Y |X), where H(·) denotes the entropy function
and H(·|·) denotes the conditional entropy function. Thus to
upper bound the capacity it suffices to give a lower bound
on H(Y |X) and an upper bound on H(Y ).

We prove below some rough bounds that suffice for
us. Claim 3.6 proves H(Y |X) ≥ 1

2 log2M − C1(ε, c)
and Claim 3.8 proves H(Y ) ≤ 1

2 log2M + C2(ε, c). It
immediately follows that the capacity of the channel Cµ
is at most C1(ε, c) + C2(ε, c). We now proceed to prove
Claims 3.6 and 3.8.

Claim 3.6: There exists C1(ε, c) such that for every
(a.b) ∈ Cµ, H(Y |X = (a, b)) ≥ 1

2 log2M − C1(ε, c).
Proof: This part follows immediately from the claim

below which asserts that for every j ∈ Yµ, Pr[Y = j|X =
(a, b)] ≤ 8(c/ε)3/2M−

1
2 . We thus conclude H(Y |X =

(a, b)] ≥ 1
2 logM − 3

2 log
(
c
ε

)
− 3.

Claim 3.7: For every j ∈ Yµ, we have that

Pr[Y = j|X = (a, b)] ≤ 8(c/ε)3/2M−
1
2 .

The proof follows easily from an application of the Berry-
Esséen theorem [3, Chapter 16]; we omit details from this
version.

Claim 3.8: There exists C2 such that for every random
variable X supported on Xµ and Y = Cµ(X), we have
H(Y ) ≤ 1

2 log2M + C2.
The claim roughly follows from the fact that the variance

of Y is O(M). Details omitted from this version.

Our analysis of the DA|NP channel immediately yields a
lower bound on the “operational capacity” of any sequence
of channels {Cµi}Ni=1. Standard bounds in information the-
ory (see, for instance, [2, Chapter 8, Theorem 8.7.1]) imply
immediately that a bound on the capacity also implies that
any attempt to communicate at rate greater than capacity
leads to error with positive probability. We summarize
the resulting consequence below. (We note that while the
theorem in [2] only considers a single channel and not a
collection of channels, the proof goes through with only
notational changes to cover a sequence of channels.)

Lemma 3.9: Transmission at rate R greater than C0, the
information capacity, leads to error with positive probability.



More precisely, for any 0 < ε ≤ 1
2 , let C0 = C0(ε, c) be

an upper bound on the information capacity of a collection
of channels {Cµ|µ}. Then for every R > C0, there exists
a γ0 > 0 and N0 < ∞ such that for every N ≥ N0 the
following holds: For every sequence {Cµi

}Ni=1 of (M, ε, c)
channels, and every encoding and decoding pairs E :
{0, 1}RN →

∏N
i=1 Xµi

and D : {0, . . . ,M}N → {0, 1}RN ,
the probability of decoding error Prdec ≥ γ0.

3.2.2. Proof of Lemma 3.3:
Proof: We now formally describe the delay adversary

and analyze the channel capacity. Let c = 4/ε and let C0 =
C0(ε, c) be the bound on the capacity of (M, ε, c)-channels
Cµ from Lemma 3.5. We prove the lemma for C(ε, c) =
2(C0 + log c).

Delay: Let X1, . . . , XMT denote the encoded signal the
sender sends. The noise channel picks ξ(j) independently
for each j with ξ(j) being 1 w.p. ε. We now describe the
action of the delay channel (which acts without knowledge
of ξ).

We divide time into 2T intervals, with the ith interval
denoted Γi = {(i−1)(M/2)+1, . . . , i(M/2)}. Let n1(i) =∑
j∈Γi

Xj and n0(i) = M/2− n1(i) denote the number of
1-packets and 0-packets that arrive in the queue in the ith
interval. The delay adversary acts as follows:

1) Initialize n′1(1) = n1(1) and n′0(1) = n0(1).
2) For i = 1 to 2T do the following:

a) If n1(i) ≥ n0(i) then set ñ0(i) = n′0(i) and
round n′1(i) down to ñ1(i) so that (1−ε)ñ1(i)+
εñ0(i) is within 1

2 of the nearest integer multiple
of M/c.

b) Else let ñ1(i) = n′1(i) and round n′0(i) down to
ñ0(i) so that (1 − ε)ñ1(i) + εñ0(i) is within 1

2
of the nearest integer multiple of M/c.

c) Finally set n′0(i+1) = n0(i+1)+n0(i)− ñ0(i).
and n′1(i+ 1) = n1(i+ 1) + n1(i)− ñ1(i).

d) At the end of interval i, output ñ0(i) 0-packets
and ñ1(i) 1-packets from the queue to the noise
adversary. Formally, the delay channel outputs a
set Λi of packets that are to be released at the end
of interval Γi, where Λi includes all packets that
arrived in Γi−1 but were not included in Λi−1.

e) The noise adversary simply flips the bits accord-
ing to the noise function and outputs the sum of
these bits. Specifically it sets Zj = Xj + ξ(j)
and outputs Yi =

∑
j∈Λi

Zj .

Analysis: We start by establishing that the delay adversary
never delays any packet by more than M microintervals.
Note that the number of packets that arrive in interval i, but
are not released at the end of the interval is given by (n′1(i)−
ñ1(i)) + (n′0(i)− ñ0(i)). One of the two summands is zero
by construction, and the other is at most M/(εc) ≤M/4 by
our construction. Since the total number of packets arriving

in an interval is M/2, this ensures that the total number
released in an interval is never more than 3M/4 ≤ M (as
required for an (M, ε, µ)-channel). Next we note that packets
delayed beyond their release interval do get released in the
next interval. Again, suppose n0(i) > n1(i). Then all 1-
packets are released in interval i. And the number of 0-
packets held back is at most M

εc ≤ M/4 which is less than
n0(i) the total number of 0-packets arriving in interval Γi.
Thus the adversary never delays any packet more than M
microintervals, and the number of packets released in all
intervals (except the final one) satisfy εñ0(i) + (1− ε)ñ1(i)
in an integer multiple of M/c.

For an encoded message X1, . . . , XMT , let µi = [εñ0(i)+
(1 − ε)ñ1(i)], where the notation [x] indicates the nearest
integer to x, denote the signature of the ith interval; and let
~µ = (µ1, . . . , µ2T ) denote its signature. Note that µi takes
one of at most c distinct values (since it is between M/c
and M and always an integer multiple of M/c). Thus the
number of signatures is at most c2T .

Now since the total number of distinct messages is 2kT ,
the average number of messages with a given signature
sequence is at least 2kT /c2T . Furthermore, with probability
at least 1 − δ, a random message is mapped to a signature
sequence with at least δ2kT /c2T preimages. Suppose that
such an event happens. Then, using the fact that R >
2(C0 + log c) − 1

T log δ, we argue below that conditioned
on this event the probability of correct decoding is at most
1−γ0 (where γ0 > 0 is the constant from Lemma 3.9). This
yields the lemma for γ = (1− δ)γ0.

To see this, note that the signal Y1, . . . , Y2T received by
the receiver is exactly the output of the channel sequence
{Cµi
}2Ti=1 on input X̃1, . . . , X̃2T where X̃i = (1−ε)ñ1(i)+

εñ0(i). If the receiver decodes the message (more precisely,
its encoding) X1, . . . , XMT correctly from Y1, . . . , Y2T ,
then we can also compute the sequence X̃1, . . . , X̃2T cor-
rectly (since the delay adversary is just a deterministic
function of its input X1, . . . , XMT ). Thus correct decoding
of the DA|NP (ε) channel also leads to a correct decoding
of the channel sequence {Cµi}. But the number of distinct
messages being transmitted to this channel is δ2kT /c2T .
Denoting this by 2R̃·2·T and using the fact that R̃ > C0,
we get that the channel must err with probability at least γ.

4. INFINITE CAPACITY REGIME

In this section we show that the capacity of the channel
with adversarial noise followed by random delay (NA|DP )
is infinite. Specifically, we establish the following result:

Lemma 4.1: There exists a positive ε, such that the ca-
pacity of the channel N(ε)A|DP is unbounded. Specifically,
for every rate R, there exists a constant M (and µ = 1/M ),
such that for sufficiently large T , there exist encoding
and decoding functions ET : {0, 1}kT → {0, 1}MT and



DT : (Z≥0)MT → {0, 1}kT , the decoding error probability
Prdec ≤ exp(−T ), with kT = R · T .

Proof Idea: The main idea here is that the encoder encodes
a 0 by a series of 0s followed by a series of 1s and a 1 by
a series of 1s followed by a series of 0s. Call such a pair of
series a “block”. If the noisy adversary doesn’t corrupt too
many symbols within such a block (and it can’t afford to do
so for most blocks), then the receiver can distinguish the two
settings by seeing if the fraction of 1s being received went
up in the middle of the block and then went down, or the
other way around. This works with good enough probability
(provided the delay queue has not accumulated too many
packets) to allow a standard error-correcting code to now be
used by sender and receiver to enhance the reliability.

Proof: We prove below the lemma for ε < 1/64 1. Let
k = kT = RT . We will set M = O(R5). Let L = M4/5,
and L′ = M3/4, Γi = {(i − 1)L + 1, . . . , iL}, and Γ′i =
{iL− L′ + 1, . . . , iL}. As a building block for our sender-
receiver protocol, we will use a pair of classical encoding
and decoding algorithms, E′ and D′, that can handle up to
5/24-fraction of adversarial errors. (Note that 5/24 could
be replaced with any constant less than 1/4.) In particular,
for each message m ∈ {0, 1}k, the algorithm E′ outputs
an encoding E′(m) of length N = Θ(k) such that for any
binary string s of length N that differs from E′(m) in at
most ( 5

24 )N locations, D′(s) = m. We now describe our
encoding and decoding protocols.

Sender Protocol: The encoding E = ET works as follows.
Let m ∈ {0, 1}k be the message that the sender wishes to
transmit. The encoding E(m) simply replaces every 0 in
E′(m) with the string 0L1L, and each 1 in E′(m) with the
string 1L0L. Thus E(m) is a string of length 2LN = MT .
The sender transmits the string E(m) over the channel.

Receiver Protocol: Recall that the receiver receives, at
every microinterval of time t ∈ [MT ] the quantity Yt =∑
j≤t|j+∆(j)=tXj ⊕ ξ(j). For an interval I ⊆ [MT ], let

Y (I) =
∑
j∈I Yj . The decoding algorithm D = DT , on

input Y1, . . . , YMT works as follows:
1) For i = 1 to N do:

a) Let αi = Y (Γ′2i−1)/L′.
b) If Y (Γ′2i)−Y (Γ′2i−1) ≤ (−αi+ 1

2 )·M11/20 then
set wi = 1, else set wi = 0.

2) Output D′(w).

Analysis: By the error-correction properties of the pair
E′, D′, it suffices to show that for (19/24)-fraction of the
indices i ∈ [N ], we have wi = E′(m)i.

Fix an i ∈ [N ] and let Qi denote the number of 1’s in the
queue at the beginning of interval Γ′2i−1. We enumerate a

1For clarity of exposition, we do not make any attempt to optimize the
bound on the value of ε.

series of “bad events” for interval i and show that if none of
them happen, then wi = E′(m)i. Later we show that with
probability (1−exp(−T )) the number of bad i’s is less than
(5/24)N , yielding the lemma.

We start with the bad events:

E1(i): Qi > cM (for appropriately chosen constant c).
We refer i as heavy (or more specifically c-heavy)
if this happens.

E2(i): The number of errors introduced by the adversary
in the interval Γ2i is more than 16εL. We refer to
i as corrupted if this happens.

E3(i): i is not c-heavy but one of Y (Γ′2i−1) or Y (Γ′2i) de-
viates from its expectation by more than ω(M1/2).
We refer to i as deviant if this happens.

In the absence of events E1, E2, E3, we first show that
wi = E′(m)i. Denote i to be a 1-block if E′(m)i = 1
and a 0-block otherwise. To see this, we first compute the
expected values of Y (Γ′2i−1), and Y (Γ′2i) conditioned on i
being a 0 block and i being a 1 block. (We will show that
these expectations differ by roughly M11/20, and this will
overwhelm the deviations allowed for non-deviant i’s.)

We start with the following simple claim (whose proof is
omitted in this version).

Claim 4.2: Let `1, `2 be a pair of non-negative integers,
and let E denote the event that a packet p that is in the delay
queue at some time t leaves the queue during the interval
{t+ `1 + 1, . . . , t+ `1 + `2}. Then

(
1− `1

M

) (
`2
M −

`22
M2

)
≤

Pr[E ] ≤
(

1− `1
M +

`21
M2

) (
`2
M

)
. Thus if `1 = 0 and `2 �

M , then `2
M −O

((
`2
M

)2) ≤ Pr[E ] ≤ `2
M .

Let Qi = α̃ ·M . We now analyze the expectations of the
relevant Y (·)’s. We analyze them under the conditions that
α̃ is bounded by the constant c (i.e. i is not heavy) and that
i is not corrupt.

E[Y (Γ′2i−1)]: The probability that a single packet leaves
the queue in this interval is roughly L′/M + O((L′/M)2)
(by Claim 4.2 above). The expected number of packets that
were in the queue at the beginning of Γ′2i−1 that leave the
queue in this interval is thus (α̃ ·M ·L′/M)±O((L′)2/M).
Any potential new packets that arrive during this phase con-
tribute another O((L′)2/M) potential packets, thus yielding
E[Y (Γ′2i−1)] = α̃L′ ±O(

√
M) = α̃M3/4 ±O(

√
M).

E[Y (Γ′2i)] when i is a 1-block: Recall that a 1-block
involves transmission of 1s in Γ2i−1 and 0s in Γ2i. With
the adversary corrupting up to 16εL packets in Γ2i and
the addition of L′ new 1s in the interval Γ′2i−1, at most
L′ + 16εL new ones may be added to the queue at the
beginning of the interval Γ′2i. Using Claim 4.2 with `1 = L
and `2 = L′ to the Qi packets from the beginning of
interval Γ′2i−1, and with `1 = 0 and `2 = L′ to the new
packets that may have been added, we get that E[Y (Γ′2i)] ≤
α̃M3/4 − (α̃− 16ε)M11/20 +O(

√
M).



E[Y (Γ′2i)] when i is a 0-block: In this case the Γ2i−1 is
all 0s and Γ2i is all 1s. So the number of 1s seen in the
Γ′2i should be more than the number of 1s seen in the 0-
block case. In this case, the number of new 1s added to the
queue in the intervals Γ′2i−1 and Γ2i−Γ′2i is lower bounded
by L − L′ − 16εL. Using Claim 4.2 again to account for
the departures from Qi as well as the new arrivals in the
interval Γ′2i, we get E[Y (Γ′2i)] ≥ α̃M3/4− (α̃− (1−16ε)) ·
M11/20 +O(

√
M).

Putting the above together we see that E[Y (Γ′2i−1) −
Y (Γ′2i)] has a leading term of α̃M3/4 in both cases (i being
a 0-block or i being a 1-block), but the second order terms
are different, and these are noticeably different. Now, if we
take into account the fact that the event E3(i) does not occur
(i is not deviant), then we conclude that the deviations do
not alter even the second order terms. We thereby conclude
that if none of the events E1(i) or E2(i) or E3(i) occur, then
wi = E′(m)i.

We now reason about the probabilities of the three events.
The simplest to count is E2(i). By a simple averaging
argument, at most (1/8)th of all indices i can be corrupt,
since the total number of noise errors is bounded by ε(2LN),
and so the probability of E2(i) is zero on at least (7/8)th
fraction of indices. E3(i) can be analyzed using standard tail
inequalities. Conditioned on i being not c-heavy, each Y (·)
is a sum of at most (cM + L + L′) independent random
variables (each indicating whether a given packet departs
queue in the specified interval). The probability that this
sum deviates from its expectation by ω(

√
M) is o(1). Thus,

the probability that E3(i) happens for more than a (1/24)th
fraction of indices i, can again be bounded by exp(−T ) by
Chernoff bounds.

The only remaining event is E1(i). Lemma 4.3 below
shows that we can pick c large enough to make sure the
number of heavy i’s is at most a (1/24)th fraction of all
is, with probability at least 1− exp(−T ). We conclude that
with probability at least 1− exp(−T ) the decoder decodes
the message m correctly.

Lemma 4.3: For every δ > 0, there exists a c = c(δ) such
that the probability that more than δ-fraction of the indices
i are c-heavy is at most e−(MT )/4.

Proof: Recall that an interval i is c-heavy if Qi > cM .
We will show that the lemma holds for c = 4/δ.

For each packet j, recall that ∆(j) indicates the number
of microintervals for which the packet j stays in the queue.
Let W =

∑
j ∆(j). We will bound the probability that W is

“too large” and then use this to conclude that the probability
that too many intervals are heavy is small.

Note W is the sum of MT identical and independent
geometric variables (namely the ∆(j)’s) with expectation of
each being M . Thus the probability that W > K (for any
K) is exactly the probability that K independent Bernoulli
random variables with mean 1/M sum to less than MT . We
can bound the probability of this using standard Chernoff

bounds. Setting K = 2 ·M2 · T , we thus get:

Pr[W > 2M2T ] = Pr[W > 2E[W ]] ≤ exp

(
−MT

4

)
.

It then suffices to show that conditioned on W ≤ 2M2T , the
fraction of c-heavy intervals (i.e., intervals where the queue
contains more than (4M)/δ packets) is bounded by δ.

In order to bound the number of c-heavy intervals using
the bound on W , we first note that W =

∑MT
t=1 Nt, where

Nt denotes the number of packets in the queue at time t
(counted in microintervals). Furthermore, since the number
of packets in the queue can go up by at most one per mi-
crointerval, we see that heavy intervals contribute a lot to W .
To make this argument precise, we partition time into chunks
containing M/δ microintervals each (note that “chunks” are
much larger than the “blocks”). We assume here that M/δ
is an integer for notational simplicity. For 1 ≤ ` < δT ,
the chunk C` spans the range [`(M/δ), (`+ 1)(M/δ)). We
say a chunk C` is bad if the queue contains more than
(3M)/δ packets at the beginning of the chunk, and say that
it is good otherwise. On the one hand, if a chunk is good,
then every interval contained inside the chunk has at most
(4M)/δ packets in the queue, and is hence not c-heavy. On
the other hand, if a chunk C` is bad, then its contribution
to W (i.e.,

∑
t∈C`

Nt) is at least (M/δ)(2M/δ) (since this
is the minimum of Nt for t ∈ C`). This allows us to show
that at most a δ-fraction of chunks can be bad. To see this,
suppose δb is the fraction of bad chunks. Then we have

W =

MT∑
`=1

Nt ≥ δb(δT )(M/δ)(2M/δ) = 2(δb/δ)M
2T.

Now using W ≤ 2M2T , we get δb ≤ δ. Finally note that if
1 − δ fraction of the chunks are good, then 1 − δ fraction
of the blocks are not c-heavy, which completes the proof of
the lemma.

5. CONCLUSIONS

Our findings, in particular the result that the channel
capacity is unbounded in the setting of probabilistic error
and delay, are surprising. They seem to run contrary to most
traditional intuition about communication: all attempts at
reliable communication, either in the formal theory of Shan-
non, or in the organic processes that led to the development
of natural languages, are built on a discrete communication
model (with finite alphabet and discrete time), even when
implemented on physical (continuous time and alphabet)
communication channels. In turn such assumptions also form
the basis for our model of computing (the Turing model)
and the discrete setting is crucial to its universality. In
view of the central role played by the choice of finite
alphabet in language and computation, it does make sense
to ask how much of this is imposed by nature (and the



unreliability/uncertainty it introduces) and how much due
to the convenience/utility of the model.

Of course, our results only talk about the capacity of a
certain mathematical model of communication, and don’t
necessarily translate into the physical world. The standard
assumption has been that a fixed communication channel,
say a fixed copper wire, has an associated finite limit on its
ability to transmit bits (reliably). We discuss below some
of the potential reasons why this assumption may hold and
how that contrasts with our results:
Finite Universe One standard working assumption in
physics is that everything in the universe is finite and
discrete and the continuous modeling is just a mathematical
abstraction. While this may well be true, this points to much
(enormously) larger communication capacities for the simple
copper wire under consideration than the limits we have
gotten to. Indeed in this case, infinity would be a pretty good
abstraction also to the number of particles in the universe,
and thus of the channel capacity. We note here that channel
capacity has been studied from a purely physics perspective
and known results give bounds on the communication rate
achievable in terms of physical limits imposed by channel
cross section, available power, Planck constant, and speed
of light (see, for example, [1], [5]).
Expensive Measurements A second source of finiteness
might be that precise measurements are expensive, and so
increasing the capacity does come at increased cost. Again,
this may well be so, but even if true suggests that we could
stay with existing trans-oceanic cables and keep enhanc-
ing their capacity by just putting better signaling/receiving
instruments at the two endpoints - a somewhat different
assumption than standard ones that would suggest the wires
have to be replaced to increase capacity.
Band-limited Communication A third possibility could be
that signaling is inherently restricted to transmitting from
the linear span of a discrete and bounded number of basis

functions. As a physical assumption on nature, this seems
somewhat more complex than the assumption of proba-
bilistic noisiness, and, we believe, deserves further expla-
nation/exploration.
Adversaries Everywhere Finally, there is always the possi-
bility that the probabilistic modelling is too weak to model
even nature and we should really consider the finite limits
obtained in the adversarial setting as the correct limits. De-
spite our worst-case upbringing, this does seem a somewhat
paranoid view of nature. Is there really an adversary sitting
in every piece of copper wire?
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