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Abstract. We study the complexity of the Accretive Graph Assembly
Problem (AGAP). An instance of AGAP consists of an edge-weighted graph
G, a seed vertex in G, and a temperature τ . The goal is to determine if
there is a sequence of vertex additions which constructs G starting from
the seed. The edge weights model the forces of attraction and repulsion,
and determine which vertices can be added to a partially assembled graph
at the given temperature.

Our first result is that AGAP is NP-complete even on degree 3 planar
graphs when edges have only two different types of weights. This resolves
the complexity of AGAP in the sense that the problem is polytime solvable
when either the degree is bounded by 2 or the number of distinct edge
weights is one, and is NP-complete otherwise. Our second result is a di-
chotomy theorem that completely characterizes the complexity of AGAP
on degree 3 bounded graphs with two distinct weights: wp, wn. We give
a simple system of linear constraints on wp, wn, and τ that determines
whether the problem is NP-complete or is polytime solvable. In the pro-
cess of establishing this dichotomy, we give the first polytime algorithm
to solve a non-trivial class of AGAP. Finally, we consider the optimization
version of AGAP where the goal is to realize a largest-possible subgraph
of the given input graph. We show that even on constructible graphs of
degree at most 3, it is NP-hard to realize a (1/n1−ε)-fraction of the input
graph for any ε > 0; here n denotes the number of vertices in G.

1 Introduction

Self-assembly is a process in which small objects interact autonomously with each
other to form intricate complexes. The self-assembly approach is particularly ap-
pealing for constructing molecular scale objects with nano-scale features [1]. Ex-
amples of its application and practical modeling can be found in [2,3,4,5,6,7,8,9].

Based on the Wang Tiling Models [10], Rothemund and Winfree [11] proposed
the Tile Assembly Model to formalize and facilitate theoretical study of the self-
assembly process. In this model, DNA tiles are abstracted as oriented squares,
where each side has a glue type and (non-negative) strength. An assembly starts
from a designated seed tile and can be augmented by a tile if the sides of the
tile match the glue types of its already assembled neighbors and the total glue
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strength is no less than a threshold parameter τ , referred to as the temperature
of the assembly.

Recently, Reif, Sahu, and Yin [1] proposed a generalization of the Tile As-
sembly Model, i.e., assembly on two-dimensional grids, to one on general graphs,
named the Accretive Graph Self-Assembly Model. The accretive graph assembly
is a sequential process where a weighted graph is assembled one vertex at a
time starting from a seed vertex. The weight of each positive (resp. negative)
edge specifies the magnitude of attraction (resp. repulsion) between the incident
vertices. Again, a vertex is added to the assembly if the net attraction minus
repulsion of the built neighbors is at least τ . Accretive here suggests the mono-
tone property of the process, i.e., an added vertex cannot be removed later, in
contrast to the Self-Destructive Graph Assembly Model [1], or the Kinetic Tile
Assembly Model where tiles can fall off [12,13].

The Accretive Graph Self-Assembly Model addresses some of the deficiencies
of the Tile Assembly Model. Namely, it models repulsion and allows the assem-
bly of general graph structures. A central problem in this model is the Accretive
Graph Assembly Problem (AGAP): Given a weighted graph on n vertices and a
seed vertex, the problem asks for a sequence of vertex additions respecting τ
that builds the graph. Among other results, it was shown in [1] that AGAP is
NP-complete for graphs with maximum degree 4 and for planar graphs (PAGAP)
with maximum degree 5. The authors in [1] posed several natural open problems
related to AGAP which we address in this paper. The first question was to deter-
mine the precise degree bound for which AGAP and PAGAP change in complexity
from polytime solvable to NP-complete, and the second one was to determine
the difficulty of the optimization versions of these problems.

Our Results and Techniques. The complexity of a graph assembly system can be
measured by the degree of the underlying graph G and the number of possible
weights an edge can take. Similarly to the number of different tiles in the Tile
Assembly Model, here we can bound the number of different vertex types, where
a type is determined by the weights of the edges incident to a vertex. A natural
question is under what conditions we can solve AGAP in polytime and what is
the smallest complexity for which we can show the problem to be NP-complete.
Our main results settle open problems posed in [1] and are as follows:

– We show that PAGAP (and hence AGAP) is NP-complete even if the maximum
degree of the input graph is 3 and edges can take only two different weights.
This result is tight in the sense that AGAP is polytime solvable if either the
maximum degree is bounded by two or all edges have identical weights.

– We prove a dichotomy theorem that completely characterizes the complexity
of AGAP on degree 3 bounded graphs with two distinct weights: wp, wn. We
give a simple system of linear constraints on wp, wn, and τ that determines
whether the problem is NP-complete or polytime solvable. In the process of
establishing this dichotomy, we give a polytime algorithm to solve a non-
trivial class of AGAP instances.
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– We show that MAX AGAP, the optimization version of AGAP, is hard to approx-
imate within a factor of O(n1−ε) for any ε > 0 even if the degree of the input
graph is 3; here n denotes the number of vertices of the underlying graph G.
When the graph edges are restricted to only two weights, we show the same
hardness of approximation for degree 5 graphs via a novel reduction from the
directed Hamiltonian path problem on cubic (degree 3) graphs. The results
hold even if the seed vertex is not part of the input.

Our technique for showing NP-hardness extends the reduction from P3SAT
shown in [1] with a modular design using gadgets. Note that these gadgets
might be easy to understand but are hard to find. We also show that some
of the NP-hardness results can be obtained independently by reduction from
the Hamiltonian path problem [14]. Our polytime algorithm for AGAP arises by
a reduction to a problem called the Rainbow Spanning Tree Problem which is
known to be solvable by using a result from matroid theory [15]. The hardness
of approximation relies on the NP-hardness of the underlying problem combined
with additional gadget constructions.

Related Work. Much of the theoretical work on self-assembly to date has focused
on analyzing the complexity of the original Tile Assembly Model. Adleman et
al. [16] showed that determining the minimum number of distinct tiles required to
produce a given shape is NP-complete in general, and polytime solvable for trees
and squares. The authors also gave an O(log n)-approximation algorithm for de-
termining the relative concentration of tile types that achieved optimal assembly
time in partial order systems. In the case of n × n squares, an optimal assembly
requiring Θ(n) time and Θ( log n

log log n ) tile types was described in [11,17] based on
simulation of binary counters. Extensions to the Tile Assembly Model include
consideration of flexible glue-strengths and temperature programming [18,19,20],
fault tolerance and self-correction [12,13,21,22,23,24,25,26], patterning (of com-
ponents) and self-replication [4,6,27,28,29,30].

Among the first works to study the self-assembly process on general graphs
are [31,32,33,34,35,36]. It was shown that 3SAT and 3-Vertex-Colorability can
be solved by self-assembly of DNA graphs using a constant number of labora-
tory steps [31,32]. A generalization of the Tile Assembly Model, where flexible
tiles may connect to more than 4 tiles in a not necessarily planar arrangement,
was investigated in [33]. Graph grammars were used to model self-assembly on
planar graphs [34,35]. Experiments on construction of non-regular graphs were
presented in [36].

Organization. We begin by formally describing the AGAP problem and providing
the necessary notations and definitions. Building on the ideas in [1], in Section 3
we show that AGAP is NP-complete on degree 4 planar graphs. In Section 4 we
introduce new types of constructions showing that AGAP is NP-complete even
on degree 3 planar graphs with two distinct edge weights. In Section 5 we show
our hardness of approximation results for AGAP. We summarize our results and
discuss some open problems in Section 6.
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2 Preliminaries

2.1 Model and Problem Statements

We adopt the Accretive Graph Self-Assembly Model introduced in [1]. A graph
assembly system is a quadruple 〈G, vs, w, τ〉, where G = (V, E) is undirected
weighted graph, vs ∈ V is a seed vertex, w is a weight function: w : E → Z,
and τ ∈ N is the temperature of the assembly. Here the weight of an edge repre-
sents the strength of attraction between adjacent vertices if positive, and their
repulsion if negative. An analogue of the weight function in the Tile Assembly
Model [11] is the glue function (cf. glue strength is non-negative).

The self-assembly process in the Accretive Graph Self-Assembly Model pro-
ceeds as follows. The graph G serves as a template of construction and initially
only the seed vertex vs of G is built. For a vertex v, let Γ (v) represent the set
of neighbors of v in G that are already built. A new vertex v of G can be at-
tached to the construction if and only if

∑
u∈Γ (v) w(u, v) ≥ τ , i.e., the sum of the

weights from v to its already built neighbors is at least equal to the temperature
of assembly. The assembly is sequential, i.e., vertices are built one at a time, and
accretive, i.e., once a vertex is built it cannot be detached from the construction.
We will use u ≺ v to denote that vertex v is built after vertex u.

We consider the following problems:

Definition 1 (Accretive Graph Assembly Problem (AGAP)). Given an ac-
cretive graph assembly system 〈G, vs, w, τ〉, determine if G is sequentially con-
structible (in short, constructible) starting from the seed vertex vs, and provide
a feasible order of construction, π : vs = vπ1 ≺ vπ2 ≺ . . . ≺ vπn , if one exists.

Definition 2 (Planar Accretive Graph Assembly Problem (PAGAP)). The
AGAP problem restricted to planar graphs.

We also consider the following restrictions of AGAP (PAGAP). The k-WEIGHT AGAP
(k-WEIGHT PAGAP) is a special instance of AGAP (PAGAP) such that, there are at
most k different edge weights in G. When the degree of G is restricted to d, we
refer to the problem as d-DEGREE AGAP (d-DEGREE PAGAP).

Since AGAP is NP-complete in general [1], it is natural to consider polytime
approximation algorithms that seek to build a largest subset of vertices of the
input graph.

Definition 3 (Maximum AGAP (MAX AGAP)). Given an instance of AGAP on
a graph G, find a largest subgraph of G which is constructible starting from the
seed vertex, and provide an order of construction.

An α-approximation algorithm for MAX AGAP is a polytime algorithm that on any
given input instance G computes a constructible subgraph of G, say H , such that
|H | ≥ |H∗|/α, where H∗ is a largest constructible subgraph of G.

2.2 Background Results and Definitions

The two propositions below characterize some simple cases where AGAP is poly-
time solvable.
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Proposition 1. [1] AGAP with only positive edge weights can be solved in O(|V |+
|E|) time.

Proposition 2. 2-DEGREE AGAP can be solved in O(|V | + |E|) time.

We, therefore, focus on graphs with maximum degree at least 3 and with at least
one edge with negative weight. In order G to be constructible there must be an
edge of weight at least τ ≥ 0, otherwise the first vertex other than the seed
cannot be built. Hence, we consider graphs with at least two different weights.

We will only show NP-hardness in the NP-completeness proofs for PAGAP since
(P)AGAP is easily shown to be in NP: given an ordering of the vertices, it can be
verified in polynomial time if it is feasible.

Planar 3SAT. In our results we will mostly use a reduction from planar 3SAT
(P3SAT), similar to [1]. Lichtenstein [37] proved that P3SAT, i.e., 3SAT with the
restriction that the identifying graph is planar, remains NP-complete. The identi-
fying graph of a 3SAT formula φ is a graph G = (V, E) where vertices correspond
to literals and clauses; and there is an edge between a literal vertex and a clause
vertex if and only if the literal participates in the clause. Also, there is an edge
between every literal and its complement. Middleton [38] showed that decid-
ing the satisfiability of a P3SAT formula with an identifying graph (see Fig. 1)
obeying the following restrictions is still NP-complete:

(1) There is a cyclic path, called the loop, that can be drawn in the plane such
that it passes between all pairs of complementary literals, but does not in-
tersect any other edges of G.

(2) The boolean formula contains only clauses in which the literals are either all
positive or all negative.

(3) The graph G can be arranged so that interior (resp. exterior) clauses have
only positive (resp. negative) literals.

(4) Let C(	) denote the set of clauses in which a literal 	 participates, then
|C(	)| ≤ 2 for all 	 in φ.

The dashed circle in Fig. 1 corresponds to the loop described above, which
we assume to be directed and denote by L. The loop provides a natural (cyclic)
ordering of the variables, e.g., L = x, y, z, w, x. For variables u and v we will use
uv ∈ L to denote that v follows u in L, e.g., xy ∈ L, but xz /∈ L.

3 4-DEGREE PAGAP Is NP-Complete

The construction in this section is similar to that of [1] but it reduces the degree
of the resulting graph from 5 to 4. We start our reduction from a P3SAT formula
φ and its identifying graph. For every variable x and its negation x̄, we replace
the edge (x, x̄) in the graph (Fig. 1) with the gadget depicted in Fig. 2. For x
and y, xy ∈ L, we connect the corresponding gadgets with edge (tx, sy) with
weight τ = 2. This gadget ensures two vital properties. First, along the loop
L we can build all vertices corresponding to literals which are set to TRUE, and
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(w ∨ z) ∧ (ȳ ∨ z̄) ∧ (w̄ ∨ x̄)

��
sx

�
tx

�
sy

x̄

x

�A

�B

�E

�
�

�
�

�

�
�

�
�

�

�
��

�
�

�
�

��

2

2
2

2

2

2

6
-4

-4

4

Fig. 2. Gadget for degree 4 planar
graphs and τ = 2. Here, sx is the
seed vertex.

therefore all vertices corresponding to clauses. Secondly, we can complete all the
remaining vertices afterwards. On the other hand, if a vertex corresponding to
a literal is built then we need to build tx before we build the complementary
literal. Now, the edges on the complementary literal are such, that we can only
build it if all of its adjacent clauses are already built. This corresponds to the
fact, that if we set x to TRUE, the formula is only satisfiable if the clauses in C(x̄)
can be satisfied independently of x̄. We now describe the construction in detail.

3.1 The Gadget Construction

Figure 2 shows the gadget replacing (x, x̄) in the identifying graph (for τ = 2),
where x and x̄ participate in clauses A and B, and E, respectively. Formally,
we construct the gadget for a variable x as follows. We use additional nodes
sx and tx and introduce new edges with the following weights: w(sx, tx) = 3τ ,
w(x, sx) = w(x̄, sx) = τ , w(x, tx) = w(x̄, tx) = −2τ and w(x, c) = 2τ/|C(x)| for
all clauses c ∈ C(x), and w(x̄, c) = 2τ/|C(x̄)| for all clauses c ∈ C(x̄). (Recall
that |C(	)| ∈ {1, 2} for any literal 	.) Also, for xy ∈ L, we add an edge (tx, sy)
with weight τ to connect to the gadget replacing (y, ȳ).

The following theorem shows that φ is satisfiable if and only if there is an
ordering to assemble G.

Theorem 1. 4-DEGREE PAGAP is NP-complete.

Proof. For the first part, assume there is a satisfying assignment of the underly-
ing formula. Consider the obtained graph G. We show that there is an ordering
of vertices in G in which every vertex can be built. Starting from the seed vertex
we construct the literals x or x̄ depending on whose value is set to TRUE in σ
following the loop L. After x or x̄ is built, we construct tx and we proceed to
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the next variable y in the loop by building sy. Since σ is a satisfying assignment,
each vertex corresponding to a clause is adjacent to a vertex which is built (each
clause has a variable which is set to TRUE) and the edge weights connecting them
are ≥ τ . At the final step we can build the literals 	 which are set to FALSE in
σ. We have two cases based on the cardinality of C(	). If |C(	)| = 1, the con-
tribution of 	’s neighbors is −2τ + τ + 2τ = τ and similarly if |C(	)| = 2 the
contribution is −2τ + τ + τ + τ = τ .

For the second part, consider an ordering in which we complete all the vertices
of the graph G. Look at the following assignment: set x to TRUE if x is built
before x̄ and set x to FALSE otherwise. We claim this is a satisfying assignment
to φ. We prove by contradiction. Assume there is a clause A = x ∨ y ∨ z which
is not satisfied, hence x = y = z = FALSE. Thus, x̄ ≺ x, ȳ ≺ y and z̄ ≺ z.
W.l.o.g., x ≺ y ≺ z in this ordering. The clause A is adjacent only to x, y, z and
thus x ≺ A. But, due to the construction x can only be built after C(x) is built
(since it must be the case that x̄ ≺ tx ≺ x), implying A ≺ x, which is clearly a
contradiction. 
�

3.2 An Alternative Approach

We can show a stronger version of the above theorem, via a reduction from
the directed Hamiltonian path problem in cubic graphs [14]. This new approach
only uses 3 distinct weights, as opposed to the 4 weights in the preceding con-
struction. In addition to that, every constructible instance has a stable order of
construction, i.e., at every step of the construction, each built vertex has a net
attraction at least τ . This is in contrast to the previous reduction using gadgets
shown in Fig. 2, where no stable order of construction exists since the sum of
the weights of edges incident on tx is less than τ .

Theorem 2. 4-DEGREE 2-WEIGHT PAGAP is NP-complete.

4 The Complexity of 3-DEGREE 2-WEIGHT AGAP (PAGAP)

In this section, we prove a dichotomy theorem that completely characterizes the
complexity of AGAP on degree 3 bounded graphs with two distinct weights wp

and wn. We assume w.l.o.g. that wp ≥ τ and wn < 0 since the case when both
weights are positive is trivially solvable by Proposition 1, and the case when
max{wp, wn} < τ has no solution. We give a simple system of linear constraints
on wp, wn and τ that determines whether the problem is NP-complete or solvable
in polynomial time (see Table 1).

Theorem 3. 3-DEGREE 2-WEIGHT (P)AGAP with weights wp and wn is NP-
complete if and only if wp + 2wn < τ and wp + wn ≥ τ ; otherwise it is solvable
in polynomial time.

We first improve on the NP-completeness result for 4-DEGREE PAGAP by showing
that 3-DEGREE 2-WEIGHT PAGAP is NP-complete. Our construction is related
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Table 1. Complexity of 3-DEGREE 2-WEIGHT AGAP with weights wp ≥ τ and wn < 0

wp + 2wn ≥ τ wp + wn ≥ τ Results

TRUE TRUE Polytime solvable (Lemma 2)
FALSE TRUE NP-complete (planar graphs, Lemma 1)
FALSE FALSE Polytime solvable (Lemma 3 and Lemma 4)

to the degree 4 case but due to the imposed restrictions, it requires careful
composition of more sophisticated gadgets. We use two gadgets, the direction
and choice gadgets, depicted in Figs. 3(a) and 3(b), which are put together
as shown in Fig. 3(c). The resulting gadget satisfies properties similar to the
properties of the gadget in the degree 4 case (Fig. 2). We then give polynomial
time algorithms for the remaining cases of 3-DEGREE 2-WEIGHT AGAP.

4.1 3-DEGREE 2-WEIGHT PAGAP is NP-Complete

To show NP-hardness of 3-DEGREE 2-WEIGHT PAGAP we follow closely the re-
duction of Section 3. Because of the restriction on the number of distinct edge
weights we use different gadgets as building blocks. Their careful composition,
however, preserves the desired properties of the above analysis. For ease of pre-
sentation we fix edge weights to be wp = 3 and wn = −1 at temperature τ = 2.
We note that the construction works in general for any 〈wn, wp, τ〉 satisfying
wp + wn ≥ τ and wp + 2wn < τ . In other words, building a single neighbor
connected with negative edge to a vertex does not by itself make the vertex not
constructible (infeasible), but building two such neighbors makes it infeasible.
We now describe the gadgets in detail.

Direction gadget. The properties of the direction gadget shown in Fig. 3(a) are
as follows:

– If sd is built, we can complete the gadget: sd ≺ a ≺ d ≺ b ≺ c ≺ a′ ≺ d′ ≺
b′ ≺ c′ ≺ {td, t

′
d}

– If td and t′d are built, we can complete the gadget: {td, t
′
d} ≺ a′ ≺ d′ ≺ c′ ≺

b′ ≺ a ≺ d ≺ c ≺ b ≺ sd

– If only td or t′d are built, but not both, we cannot build sd via the gadget
unless we make d′ or d infeasible. Observe that if, say, td is built the only
way to reach sd is via td ≺ c′ ≺ b′ ≺ a ≺ sd but this will make d′ infeasible
(d′ will have two built neighbors contributing −1 each).

Intuitively, we will use the direction gadget to connect a literal 	 to the clauses
C(	) for |C(	)| = 2. The gadget ensures that if 	 is built then we can build C(	),
and if both clauses are built then we can build 	.

Choice gadget. The properties of the choice gadget shown in Fig. 3(b) are as
follows:

– If sc is built, we can build either tc or t′c but not both via the gadget without
making i infeasible.
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Fig. 3. Gadgets for 3-DEGREE 2-WEIGHT PAGAP with wp = 3, wn = −1, and tempera-
ture τ = 2. Edges without annotation have weight 3.

– If only tc (resp. t′c) is built, we cannot build t′c (resp. tc) via the gadget
without making i infeasible.

– If tc, t
′
c and only one of e and g are built, we can complete the gadget, i.e.,

if we used the gadget to make a choice to build tc (or t′c) from sc we can
complete it once t′c (or tc) is built independently.

In the analysis in Section 3, it is argued that given a satisfying assignment of
the boolean formula used in the reduction, we can (virtually) walk the loop L
and build x or x̄ (but not both) depending on which literal is set to TRUE in the
assignment. The choice gadget is used to obtain this property.

Putting the gadgets together. We compose the direction and choice gadgets to
obtain a gadget (Fig. 3(c)) equivalent to the one showed in Fig. 2, decreasing the
maximum degree of the resulting graph to 3. Again, we use the gadget to replace
the (x, x̄) edges in the identifying graph. We connect the gadgets corresponding
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to x and y, xy ∈ L, with an edge (tx, sy) with weight 3. The following properties
hold:

– Starting from sx we can build x or x̄ but not both. This property ensures
that if there is a satisfying assignment, we can complete G: suppose we build
x, then we can build all the clauses C(x) in which x participates, build tx
and continue to sy of the next variable y in L.

– If x (resp. x̄) is built via the gadget, the only way x̄ (resp. x) can be built
is by building first the clauses in which it participates. This ensures that if
the graph is built, the corresponding φ formula is satisfiable. Again, we use
the following satisfying assignment: x is TRUE if and only if x ≺ x̄.

Using analogous analysis to the degree 4 case, we obtain the following lemma.

Lemma 1. 3-DEGREE 2-WEIGHT PAGAP such that wp+2wn < τ and wp+wn ≥ τ
is NP-complete.

4.2 Polynomial Time Algorithms for 3-DEGREE 2-WEIGHT AGAP

We now give polynomial time algorithms to solve 3-DEGREE 2-WEIGHT AGAP
when the weights wp and wn are such that either wp + 2wn ≥ τ (see Lemma 2)
or wp + wn < τ . The latter case is subdivided into two sub-cases depending on
the relation between 2wp + wn and τ (see Lemmas 3 and 4).

Lemma 2. 3-DEGREE 2-WEIGHT AGAP such that wp + 2wn ≥ τ can be solved in
O(|V | + |E|) time.

Proof. Note, wp+2wn ≥ τ implies negative edges cannot make a vertex infeasible
as long as it is reachable through positive edges from the seed vertex. We can
therefore use Proposition 1 to solve the problem on the graph induced by the
positive edges (negative edges neither help nor obstruct the construction). 
�

Lemma 3. 3-DEGREE 2-WEIGHT AGAP such that 2wp + wn < τ is solvable in
O(|V | + |E|) time.

Proof. The condition 2wp + wn < τ implies the graph cannot be built if there is
a negative edge. For contradiction, assume there is a negative edge (u, v) and the
graph can be built. W.l.o.g. assume that in a feasible ordering u is built before
v. Then, by the choice of weights, v cannot be built; a contradiction. 
�

We prove the remaining case (Lemma 4) in two steps. We first show a feasibility-
preserving transformation that removes any negative edge (u, v) such that either
u or v have a single positive edge incident on it. The resulting graph is such that
every vertex has more positive than negative edges. We then show that the
problem can be viewed as a special case of the Rainbow Spanning Tree Problem
(see Definition 4) where at most two edges have the same color.

Lemma 4. 3-DEGREE 2-WEIGHT AGAP such that wp +wn < τ and 2wp +wn ≥ τ
can be solved in polynomial time.
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Fig. 4. Graph transformations removing negative weight edges

Claim. An instance of 3-DEGREE 2-WEIGHT AGAP satisfying the conditions of
Lemma 4 can be reduced to an instance where each vertex has more positive
edges than negative edges incident on it.

Proof. W.l.o.g. assume that each vertex is adjacent to at least one positive edge,
otherwise this vertex cannot be built. Similarly to Lemma 3, since wp +wn < τ ,
we can argue that for a negative edge, at least one of its endpoints should be
adjacent to two positive edges. Now consider a negative edge (c, d) where d has
only one positive edge (d might have another negative edge). It follows that d
must be built before c in order for the graph to be constructible, and c is built
after its both neighbors are built. We can therefore remove such negative edges,
one by one, making a copy of c, c′, connecting each to only one (different) of c’s
neighbors as shown in Fig. 4(a). In the new graph, we can assume w.l.o.g. that
d ≺ {c, c′} since c and c′ are not used to build other vertices. Now, it is not hard
to see the if and only if correspondence between the two instances. 
�

We next consider instances where each vertex has more positive edges than
negative edges and reduce the problem to the following combinatorial problem.

Definition 4 (Rainbow Spanning Tree Problem). Given a graph G with
colors on its edges, is there a spanning tree of G that has no two edges with the
same color?

The Rainbow Spanning Tree Problem can be solved in polynomial time since it
can be formulated as the problem of finding the maximum independent set of
the intersection of two matroids [15].
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Claim. Given 3-DEGREE 2-WEIGHT AGAP on graph G where each vertex has more
positive than negative edges, we can compute a graph H such that G is con-
structible if and only if H has a rainbow spanning tree.

Proof. We obtain H from G by performing graph transformations to remove
all negative edges. For each removed edge we split its endpoints and introduce
two positive edges with the same unique color (see Fig. 4(b)). All other edges
are assigned unique colors. Ignoring colors, since wp ≥ τ , to build a vertex it is
enough to have an already built neighbor, i.e., to build all vertices we need a
spanning tree. The colors enforce that if we use an edge of a given color to build
a vertex, we cannot build another vertex using an edge of the same color, i.e.,
we need a rainbow spanning tree.

Formally, consider a negative edge (c, d) and the transformation described in
Fig. 4(b). Vertices c and d have degree 3 by the claim proposition. (Note that
c and d may share some of their neighbors, e.g., a = e.) Assume in a feasible
ordering of G, d ≺ c. From the choice of weights, it follows that {a, b} ≺ c.
Therefore, if G is constructible, we can construct a spanning tree in H which
includes (a, c) and (b, c′) but not (c, c′). Since the color of edge (c, c′) appears
at most twice, the obtained tree is a rainbow spanning tree of H . Conversely,
consider a rainbow spanning tree of H . If say edge (d, d′) is included, we can
build d before c in G. It must be the case that a and b are connected with a
path of distinct colors that does not include c or c′. Therefore we can defer the
building of c after a and b are built in G. The claim follows. 
�

This concludes the proof of Lemma 4. Combining Lemmas 1, 2, 3, and 4, we
obtain Theorem 3.

5 Hardness of Approximation of MAX AGAP

We now focus on MAX AGAP where the goal is to find the maximum number of
vertices that can be sequentially built of a given graph assembly system start-
ing from the specified seed vertex. Since AGAP is NP-complete, it is natural to
study polytime approximation algorithms for AGAP. We show that even in very
restricted settings, any non-trivial approximation of AGAP is hard. In particular,
we show that AGAP is hard to approximate within a factor of n1−ε for any ε > 0.
This hardness of approximation holds for degree 3 graphs with three distinct
edge weights as well as for degree 5 graphs with two distinct edge weights.

An approach to show hardness of approximation for degree 3 graphs is to use
the NP-hardness result of 3-DEGREE 2-WEIGHT PAGAP. We would like to boost
the hardness of the instance by attaching a large graph H to it and argue that
a significant fraction of H can be constructed if and only if the original instance
can be fully constructed. This, however, will not work since we can attach H
(almost) only to the vertices corresponding to variables (see Fig. 3(c)) without
increasing the overall degree of the graph. Moreover, we can easily construct all
variables making vertex i of each choice gadget (see Fig. 3(b)) infeasible, and
construct all of H regardless of whether we are given a hard instance or not to
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begin with. In fact, there is a 2-approximation algorithm for this case since we
can account for the vertices that are made infeasible by their built neighbors.

Lemma 5. There is a 2-approximation algorithm to 3-DEGREE 2-WEIGHT MAX
AGAP when wp + wn ≥ τ and wp + 2wn < τ .

To show hardness of approximation we allow 3 distinct weights instead of 2: τ ,
τ − 1 and −1 for any τ ≥ 2. We can now define gadgets, shown in Figs. 5(a) and
5(b), equivalent to the direction and choice gadgets (Figs. 3(a) and 3(b)) such
that choice and direction are enforced directly, and not by making some of the
vertices infeasible. We can show in this setting that the underlying formula in the
P3SAT instance is satisfiable if and only if we can build all vertices corresponding
to literals in the respective instance of PAGAP. Furthermore, we can build these
vertices if and only if the corresponding PAGAP can be built.

We now proceed to establish our hardness result. Fix a parameter ε > 0. We
consider the following construction which is a composition of two graphs G and
H . Consider a 3-DEGREE 3-WEIGHT PAGAP instance with the graph G = (V, E)
obtained from a P3SAT formula with n variables. We have |V | = O(n) since each
variable participates in constant number of clauses and its corresponding gadget
is of constant size. The graph H = (V ′, E′) consists of n2/ε chained copies of
the cooperation gadget shown in Fig. 5(c). In H , the vertex ti of the jth copy of
the cooperation gadget is connected to the vertex si of the (j + 1)th copy with
an edge of weight τ . To compose G and H we connect the ith variable (resp. its
negation) to s2i−1 (resp. s2i) of the first copy of the cooperation gadget as shown
in Fig. 5(d). Note that the resulting graph has degree 3 since literals have degree
2 (see Fig. 3(c)). However, the resulting graph is no longer planar.

The cooperation gadget has the property that if all si vertices are built, we
can build all ti vertices. However, if only m of the si’s are built, m < 2n, we can
build at most m − 1 of the ti’s. Therefore, if G is constructible we can build all
of H , otherwise we can build only O(n + n2) = O(n2) vertices of G and H .

The total number of vertices in V ∪ V ′ is N = Θ(n1+2/ε) since each of the
n2/ε copies of the cooperation gadget has O(n) vertices. It follows that an N1−ε-
approximation polytime algorithm for the optimization version of 3-DEGREE
3-WEIGHT AGAP can be used to decide whether or not the instance is constructible,
and therefore decide P3SAT. Hence we obtain the following theorem.

Theorem 4. 3-DEGREE 3-WEIGHT MAX AGAP is NP-hard to approximate within
a factor of O(n1−ε) for any ε > 0, where n denotes the number of vertices in G.

If we restrict the number of weights to two, we can show a similar result by
allowing the maximum degree to be 5. We replace each edge (x, y) with weight
1 (Figs. 5(a) and 5(c)) by a “triangle”, adding a vertex z and using weights
w(x, z) = w(z, y) = 2 and w(x, y) = −1. Note that the degree of the construction
is increased by at most 2, hence we have the following corollary.

Corollary 1. 5-DEGREE 2-WEIGHT MAX AGAP is NP-hard to approximate within
a factor of O(n1−ε) for any ε > 0, where n denotes the number of vertices in G.
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Fig. 5. Gadgets for degree 3 planar graphs with three possible edge weights for τ = 2

We note that the NP-hardness and hardness of approximation results hold
even when the algorithm is allowed to choose any seed vertex of its choice. We
also note that the results of this section hold even if we require that each instance
has a stable order of construction, as in Section 3.2.

6 Conclusion

In this paper we resolved the complexity of AGAP and PAGAP by showing that
3-DEGREE PAGAP and hence 3-DEGREE AGAP is NP-complete even with two edge
weights. We proved a dichotomy theorem completely describing the complexity
of 3-DEGREE 2-WEIGHT AGAP, providing a simple system of linear constraints on
the weights and the temperature of assembly to determine whether the prob-
lem is NP-complete or polytime solvable. The solution for the polytime case
provides the first non-trivial algorithm for AGAP. Finally, we proved that both
3-DEGREE 3-WEIGHT AGAP and 5-DEGREE 2-WEIGHT AGAP are hard to approxi-
mate within a factor of O(n1−ε). These negative results motivate the question
whether there exist better approximation algorithms for the lower degree cases
as well as for planar graphs. Approximating PAGAP is especially interesting since
it captures the essential geometry of 2D physical systems.
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