
Agreeing to Agree: Conflict Resolution for

Optimistically Replicated Data

Michael B. Greenwald1, Sanjeev Khanna2, Keshav Kunal2,
Benjamin C. Pierce2, and Alan Schmitt3

1 Bell Labs, Lucent Technologies
2 University of Pennsylvania

3 INRIA

Abstract. Current techniques for reconciling disconnected changes to
optimistically replicated data often use version vectors or related mech-
anisms to track causal histories. This allows the system to tell whether
the value at one replica dominates another or whether the two replicas
are in conflict. However, current algorithms do not provide entirely sat-
isfactory ways of repairing conflicts. The usual approach is to introduce
fresh events into the causal history, even in situations where the causally
independent values at the two replicas are actually equal. In some sce-
narios these events may later conflict with each other or with further
updates, slowing or even preventing convergence of the whole system.

To address this issue, we enrich the set of possible actions at a replica
to include a notion of explicit conflict resolution between existing events,
where the user at a replica declares that one set of events dominates
another, or that a set of events are equivalent. We precisely specify the
behavior of this refined replication framework from a user’s point of
view and show that, if communication is assumed to be “reciprocal”
(with pairs of replicas exchanging information about their current states),
then this specification can be implemented by an algorithm with the
property that the information stored at any replica and the sizes of the
messages sent between replicas are bounded by a polynomial function of
the number of replicas in the system.

1 Introduction

Some distributed systems maintain consistency by layering on top of a consistent
memory abstraction or ordered communication substrate. Others—particularly
systems with autonomous nodes that can operate while disconnected—must re-
lax consistency requirements to make progress, depending instead on a notion of
causal history of events. If a replica learns of different updates to the same ob-
ject, then the most causally recent update is considered “best” and is preferred
over the others. However, if it happens that the replicas held at two sites are
modified simultaneously, then neither update will appear in the other’s causal
history, and neither these sites nor any others that hear from them will be able
to prefer one update over the other until the conflict has been reconciled.

2

In standard approaches based on causal histories (e.g. [1, 2]), this reconcili-
ation is itself an event— a new update that causally supersedes all of the con-
flicting ones. Unfortunately, this reconciliation event can create new conflicts.
Until it propagates through the whole system, any update created on another
replica before it hears of the resolution will be causally unrelated to the recon-
ciliation event and will thus conflict with it. Indeed, as has been noted before [1,
3], in some systems, the very same conflict might be resolved, independently, by
inserting new reconciliation events at different sites, thus raising new conflicts
even though the reconciled values may be identical. Most existing systems have
found this potential behavior acceptable in practice—conflicts are infrequent
or communication frequent enough to ensure that reconciliation events usually
propagate throughout the system quickly. However, in some settings (described
in detail below), conflicts due to reconciliation events can delay convergence or
force users to manually reconcile the same conflict multiple times.

To improve the convergence behavior of such systems, we propose adding a
new kind of agreement event that labels a set of updates as equivalent, together
with a mechanism for declaring that one existing event dominates another. Our
goals are to reduce the number of user interventions needed to bring conflicting
updates into agreement and to speed global convergence after conflict resolution.

Beyond Causal Histories. Standard causal histories are an attractive way of
prioritizing events in a distributed system, partly because they capture a natural
relationship between updates and partly because their causal relationships can
be represented very efficiently. In particular, it is well known that causal histories
can be efficiently summarized using vector clocks [1]. Each replica Rα maintains
a monotonically increasing counter nα that is incremented at least once per
update event on Rα. Each Rα also maintains a vector (the vector clock), indexed
by replica identifiers β, that indicates the latest update of Rβ that Rα has heard
about (all previous updates of Rβ are also in the causal history of Rα). If each
update is associated with the local vector clock at the time of its creation, then
we can determine the causal relationship between two events: if every entry in
one vector clock c1 is less than or equal to the corresponding entry in another
vector clock c2, then the update v1, corresponding to c1, is in the causal history
of the update v2, corresponding to c2, and v2 may safely overwrite v1.

To record the resolution of a conflict using vector clocks, the local vector
clock must be changed to reflect the fact that all the conflicting updates are now
in the causal past. This can be achieved by first setting the local vector clock to
the pointwise maximum of all the vector clocks associated with the conflicting
updates and then incrementing the local counter [1].

Unfortunately, this technique can give rise to situations where the system
cannot stabilize without further manual intervention—or indeed, in pathological
cases, where it can never stabilize. In particular, if, at any point in time, two
distinct sites resolve a conflict, even in an identical way, the system will consider
the two identical resolutions to be in conflict. Consider the example in Figure 1.
From an initial state where all replicas are holding the same value (ε), replicas
Ra, Rb, and Rc all independently set their value to x at (local) time 1. Although

3

Replica Ra Replica Rb Replica Rc

Local Local Local
Event time value (vc) time value (vc) time value (vc)

0 ε (0,0,0) 0 ε (0,0,0) 0 ε (0,0,0)
Local updates 1 x (1,0,0) 1 x (0,1,0) 1 x (0,0,1)
Ra → Rc and Rb → Rc 1 x (1,0,0) 1 x (0,1,0) 2 x (1,1,2)
Ra → Rb 1 x (1,0,0) 2 x (1,2,0) 2 x (1,1,2)

Fig. 1. A case in which vector clocks never converge, although all replicas hold
the correct value.

all replicas “agree” in the sense that they are holding the same value, the system
will only stabilize if every replica communicates its state (perhaps indirectly) to
a single site, that site creates a new update event (with a vector clock that is
greater than the pointwise maximum of all 3), and this new event gets commu-
nicated back to all the other sites before anything else happens. In Figure 1,
the replicas do successfully transfer their state to Rc, which creates an event
that could stabilize the system. Unfortunately, Ra also sends its state to Rb.
In response to this badly timed message, Rb creates an event that resolves the
conflict between Ra and Rb but conflicts with the agreement event generated at
Rc. Neither Rc nor Rb’s state now dominates the other’s, and the system cannot
converge until the new conflict between Rc and Rb is repaired.

A natural idea for improving matters is to allow a reconciling site to intro-
duce an agreement event that somehow “merges” two causally unrelated updates
instead of dominating them. Then if Rc declares that the update events at repli-
cas Ra, Rb, and Rc are all equivalent, and later Rb declares that the events at
replicas Ra and Rb are equivalent, the two reconciliations will not conflict.

Agreement events raise issues, however, that cannot be modeled naturally
by causal histories. It may appear that agreements that may be helpful in the
example above might be implemented by simply having the reconciling site not

increment its local timestamp after taking the pointwise max of its vector clock
with that of the other conflicting replicas; then two reconciliations at different
hosts would not conflict. (In the example above, Rc would set its clock to (1, 1, 1)
and Rb would later set its to (1, 1, 0)—i.e., the reconciled state from Rc would
dominate the “partially reconciled” state from Rb.)

However, this scheme is still not satisfactory: if any new updates happen be-
fore the reconciliation event(s) propagate completely through the system, spu-
rious conflicts will still be created. Figure 2 shows what can happen. The three
replicas, Ra, Rb, and Rc, again begin by all taking on the value x. Later, Ra

sends a message to Rb, which reconciles the conflict between their (identical)
values by merging Ra’s vector clock with its own, yielding (1,1,0). Later, Rb

sends a message to Rc, which similarly recognizes that their conflicting values
are equal and updates its local clock to (1,1,1). If, at this point, Rc were to
send its state to Ra and Rb before anything else happened, all would be well.

4

Replica Ra Replica Rb Replica Rc

Event Local time value (vc) Lcl time value (vc) Lcl time value (vc)
Initial state 0 ε (0,0,0) 0 ε (0,0,0) 0 ε (0,0,0)
Local updates 1 x (1,0,0) 1 x (0,1,0) 1 x (0,0,1)
Ra → Rb 1 x (1,0,0) 1 x (1,1,0) 1 x (0,0,1)
Rb → Rc 1 x (1,0,0) 1 x (1,1,0) 1 x (1,1,1)
Ra updated 2 y (2,0,0) 1 x (1,1,0) 1 x (1,1,1)

Fig. 2. A case in which vector clocks “forget” a resolution event.

However, suppose instead that Ra locally updates its value to y. This update
clearly supersedes the first update of x on Ra; also, since the value of x on Rb

has been reconciled with the old x on Ra, the new update of y at Ra should also
supersede the x on Rb, and similarly on Rc. However, at this point the system is
totally stalled, although it is clear (to an omniscient observer) that all replicas
should converge to y. No sequence of messages will ever reconcile Ra with either
Rb or Rc. (Note that the value on Rc is not in the causal history of y, even if
both the sender and receiver update their local clocks after communication.)

In a similar vein, vector clocks and standard causal histories provide no
way of reconciling a conflict by simply declaring that one of the conflicting
events is better than the others. For example, suppose replicas Ra and Rb are
independently updated with conflicting values and each communicates its value
to some large set of other nodes before anybody notices the conflict. If the user
performing the reconciliation decides that Ra’s value is actually preferable to
Rb’s, they would like to be able to declare this to the system so that, with no
further intervention, every host that hears about both updates will choose Ra’s
value. Moreover, if, in the meantime, some host that heard about Ra’s update
has made yet a further update, this new value should also automatically be
preferred over Rb’s.

These shortcomings are not an artifact of a vector clock representation; the
system stalls because causal histories do not remember equivalences between
events. If Rc declares that the values at Ra, Rb and Rc are equivalent, and Ra

simultaneously decides that the value y is preferable to its current value x, then
we want the system to prefer one causally unrelated value to another. There is
no way to put the value at Rc into the causal history of Ra. (We will see later
that attempting to simply add equivalence edges can causes cycles in the causal
history graph. Those cycles, in turn, can give rise to paradoxical behavior.)

Such scenarios become more likely as the frequency of updates (and hence
conflicts and reconciliations) increases, relative to the speed with which infor-
mation propagates between nodes. Thus, in systems where conflicts are rare, or
where nodes are tightly coupled and communicate frequently, vector clock solu-
tions are likely to be satisfactory; on the other hand, in systems where conflicts
are more frequent and/or communication more intermittent, more sophisticated
solutions, such as the one we propose here, may perform significantly better.

5

(We explain in the next section how our proposal, which combines agreement
and dominance declarations, smoothly handles the examples in Figures 1 and 2.)

Harmony: A Motivating Application. Our interest in conflict resolution algo-
rithms originates in our work on Harmony [4, 5], a generic “data synchronizer,”
capable of reconciling data from heterogeneous, off-the-shelf applications that
were developed without synchronization in mind. For example, Harmony can
be used to synchronize collections of bookmarks from several different browsers
(Explorer, Safari, Mozilla, or OmniWeb), or to keep appointments in MacOS X
iCal or Gnome Evolution up-to-date with our appointments in Palm Datebook
or Unix ical formats. The current Harmony prototype is able to synchronize
only pairs of replicas, with pairwise reconciliation triggered by explicit user syn-
chronization attempts such as putting a PDA into a cradle (perhaps attached
to a disconnected laptop). This scheme extends fairly smoothly from pairs to
small collections of replicas by iterated pairwise synchronization, but becomes
awkward as the set of replicas grows. The work in this paper was inspired by
the goal of extending Harmony to handle large numbers of replicas.

Several features of Harmony conspire to make conflicts likely to appear rela-
tively frequently. First, because of its loose coupling with the applications whose
data it reconciles, Harmony is a state-based reconciliation system [6]. Unlike
operation-based systems, where the system keeps a log of all operations and
may be able to resolve conflicts by merging the operation logs on two replicas,
state-based systems cannot, in general, merge updates that modified the same
atomic values. Second, Harmony reconciles updates between systems such as
PDAs that may operate disconnected for long periods of time. Third, we have
observed that, even with small numbers of replicas, it often happens that iden-
tical updates are entered at different nodes—particularly when the same user
owns multiple devices.

Our Results. Since causal histories are not able to satisfactorily handle reconcil-
iation in systems such as Harmony, we develop in this work a new reconciliation
framework offering notions of both dominance and agreement, allowing users to
resolve conflicts by explicitly specifying the prior events they want to take into
account. In §2 we specify this framework precisely by defining legal sequences of
local updates, dominance and agreement events, and communications between
replicas and showing how to calculate, at each replica, which events will be
reported as “maximal” and which as “conflicting.”

Our main contribution, in §3, is an algorithm implementing our specification
under the assumption that communication is “reciprocal”—after one replica has
sent its current state to another, it will wait for a message from the other before
sending its own state to that replica again. This algorithm has the property that
the information stored at any replica and the sizes of the messages sent between
replicas are bounded, in the worst case, by a polynomial function (O(n4), to
be precise) of the number of replicas in the system. §4 discusses related work.
Omitted proofs can be found in an accompanying technical report, available on
the Harmony home page [5].

6

2 An Agreeable Reconciliation Framework

A reconciliation framework has three choices when comparing the same object
on two different replicas. It can decide that the two objects have equivalent

values, and do nothing. It can decide that one value is better than the other, and
modify one replica. Or, it can decide that the two objects are in conflict and
require external reconciliation. Our goal is to design a consistency maintenance
mechanism that can reduce the number of objects that the system decides are
in conflict, with less user intervention than conventional causal histories.

The key to achieving this is recognizing “agreement events” as first class
citizens. A reconciliation system based on causal history, implements the better-
than relation through causal order: u is better-than v if v is in the causal history
of u, they are equivalent only if they are identical, and in conflict if u and v

are causally unrelated. In our framework it is no longer the case that the simple
fact of a node knowing about an event implies that a new update event at that
node is better than that prior event — instead we offer a richer ‘better-than”
relation (defined formally at the end of this section). The user may declare that
two or more updates agree, or that an update dominates another update, or
leave two updates unrelated. The system remembers these declarations, so that,
if an update u is better-than another update v then u is also better-than all
updates equivalent to v, even if they are not in the (conventional) causal history
of u or v. Rather than basing our notion of better-than simply on a “knows
about” relation (i.e., causal order), we now require users to specify whether the
new update u “took v into account” (defined formally below) and, if so, whether
through agreement or domination. Agreement events introduce the possibility
that two distinct events can be considered equivalent.

This seemingly small shift raises a rather subtle new issue. By introducing
“equivalence” we allow the possibility of cycles in the graph of the took-into-
account relation. Consider a scenario where two conflicting values x and y were
both known about by two different replicas. One decided that y was better than
x; the other decided that x was better than y. When the replicas communicate
with each other, they discover a cyclical took-into-account relation. Such cycles
represent a new sort of conflict—a situation in which users at two or more repli-
cas have given the system conflicting guidance about how to repair a previous
conflict! How should we treat such cycles of taking-into-account? In general,
there may be multiple distinct values in the cycle, so we cannot pick a single
value from the cycle that the system should converge to. The question, then, is
not how the values in the cycle relate to each other, but how other values relate
to the cycle—i.e., how we can resolve this conflict and allow the replicas to con-
verge by finding or creating values that are not taken into account by others.
We address this issue with the notion of dominance defined later in this section.

Preliminaries. We assume a fixed set of n replicas, called Ra, Rb, etc. (The
development extends straightforwardly to a dynamically changing set of replicas.
The main challenge is discovering when information about replicas that have left
the system can be garbage collected; standard techniques used in vector clock

7

systems should apply.) The variables α, β, etc. range over indices of replicas. For
simplicity, we focus on the case where each replica holds a single, atomic value.

External actions (by the user or a program acting on the user’s behalf) that
change the value at some replica are represented as events, written vα

i , where α

is the replica where the event occurred and i is a local sequence number that
distinguishes events on replica α.

An event is a predecessor of all local events that occur after it—that is, vα
i is

a predecessor of all vα
j with j > i; similarly, vα

i is a successor of all events vα
j with

j < i. We use vα
i+ and vα

i− as variables ranging over successor and predecessor
events of vα

i . When the location or precise local sequence number of an event
are not important, we lighten notation by dropping super- and/or subscripts,
writing events as just v, vα, vα

+, vα
−

, etc.

Our specification uses a structure called a history graph (or just graph) to
represent the state of knowledge at a particular replica at a particular moment in
the whole system’s evolution. A history graph is a directed graph whose vertices
are events and whose edges represent “took into account” relations between
events. There are two kinds of edges: an edge v −→ w, pronounced “v takes w

into account through dominance,” represents the fact that event v was created
taking w into account and dominating it, while an edge v =⇒ w, pronounced
“v takes w into account through agreement,” represents the fact that v and w

were declared in agreement by the creator of v. (Note that we are not necessarily
requiring that v and w have the same value in order to be declared in agreement;
typically they will, but it may sometimes be useful to resolve a conflict between
different values by declaring that either one is acceptable and there is no need
for every replica to converge to the same one.) We use Gα to denote the history
graph for replica Rα. The set of events in Gα at any given moment is the set of
events in the standard causal history of Rα (in contrast, the set of edges in Gα

may be only a subset of the set of edges representing causal order).

The set of events and edges reachable in a graph G from an event v, including
v itself, is called the cone of v, written cone(v). This set represents the events v

transitively took into account when it was created. We will maintain the invariant
that edges originating at an event can be created only at its time of creation,
so that the set of events reachable from v will not change over time; moreover,
because entire history graphs are exchanged when replicas communicate (at the
level of the specification, though of course not in the implementation we describe
later), any graph G that contains v will also include cone(v); for this reason, we
do not bother annotating cone(v) with G.

Another important invariant property is equivalence. We first define Gα
≡

, the
graph obtained from Gα by symmetrizing its =⇒ edges, adding an edge v =⇒ u

for each existing edge u =⇒ v. Two events u and v are now said to be equivalent

in Gα if there is a path from u to v in Gα
≡

consisting only of =⇒ edges. Because
replicas exchange whole history graphs, if two events become equivalent at some
point in time in the history graph at some replica Rα, they will remain equivalent
at all replicas that ever hear (transitively) from Rα. We refer to the partitions
induced by this equivalence as equivalence classes, or just classes.

8

For a pair of classes E and E ′, we say E takes E ′ into account if there exist
events x ∈ E and y ∈ E′ with y ∈ cone(x). We noted above that there can
be cycles in the took-into-account relation: two distinct equivalence classes may
each contain an event that has an event from the other in its cone. For example,
suppose that the latest (conflicting) values in replicas Ra and Rb are va

i and vb
j ,

respectively, and that Ga and Gb both contain the complete system history. Ra

tries to reconcile the conflict by adopting the value of vb
j (by creating an event

va
i+1 with the same value as vb

j and declaring va
i+1 to be in an equivalence class

E with vb
j). Rb tries to reconcile the conflict by similarly adopting the value of

va
i , by putting vb

j+1 in an equivalence class E ′ with it. E takes E′ into account,

because va
i is in the cone of va

i+1; similarly, E′ takes E into account because vb
j

is in the cone of vb
j+1. We call such situations reconciliation conflicts, since they

arise when users at different replicas make different decisions about which of a
set of conflicting events should be preferred.

In general, a class can belong to multiple cycles—i.e., it can be involved si-
multaneously in multiple reconciliation conflicts. To arrive at a clear notion of
“better-than”, we will define a dominance relation. We consider strongly con-
nected components of the graph Gα

≡
(i.e., sets of events such that there is some

path from every event in the set to every other event in the set), which we re-
fer to simply as components. Every pair of classes in a component belongs to
some cycle denoting a reconciliation conflict, and so intra-component “took into
account” relations between events cannot be used to determine dominance.

Now, a class E is said to dominate a class E ′, written E > E′, if E and E′

belong to different components and there exist events x ∈ E and y ∈ E ′ with
y ∈ cone(x). Note that E > E ′ implies E′ 6> E because of the assumption that
the two are in different components.

We say that an event v
β
i ∈ Gα is latest if no successor event v

β
i+ belongs to

Gα. We are particularly interested in events belonging to classes that are not
dominated by other classes and, among these, in the ones that are latest: if the
entire system is going to converge to a single value (or set of equivalent values),
such events are the only possible candidates. Formally, we say that a class E is a
maximal class if it contains a latest event and there is no class E ′ with E′ > E.
An event v is a maximal event if it is a latest event in a maximal class.

When can a replica Rα conclude that there is no conflict between the values
in Gα? Based on our definition of dominance, it is easy to see that, if all maximal
events belong to the same (maximal) class E, we can be sure that the events
in E took every event in Gα into account and that no other events took them
into account, implying that there is no conflict between these events (at least
according to the present local state of knowledge) and that these events are
“better than” all other events. Rule 3 in the specification below guarantees that
Rα will then adopt an event from E.

Let us see how our model applies to the examples we discussed in §1. The
initial values at the replicas are represented by va, vb and vc respectively. For
the example in Figure 1, after receiving state updates from Ra and Rb, Rc joins
va, vb, and vc into an equivalence class by creating a new event vc

+ and adding

9

=⇒ edges from vc
+ to them. Independently, Rb, after receiving Ra’s state, makes

va, vb and vb
+ into an equivalence class. Fortunately, these new events vc

+ and
vb
+ do not conflict, and anyone who later hears of both can calculate that va,

vb, vc, vb
+, and vc

+ all belong to the same equivalence class, so that any new
event dominating any of them will also dominate all the others. Similarly, in
the scenario in Figure 2, Rb makes va, vb, and vb

+ equivalent and later Rc adds
vc to this equivalence class (via a new event vc

+ with =⇒ edges to vc, va, vb,
and vb

+). Independently, Ra adds a new event va
+ (with value y), dominating

va. Henceforth, regardless of the order of messages from Ra and Rc, any replica
that learns of both va

+ and vc
+ can see that va

+ dominates all the values from the
other replicas.

Continuing the example, it is possible that, for some time, some other replica
Rd may hear only from Ra and Rb(before Rb creates the event vb

+) but not Rc

and therefore believe that events va
+ and vb are in conflict. Once it hears from Rc

as well, the apparent conflict will disappear. But if, in the meantime, the user
at Rd decides to repair the apparent conflict by declaring that vb dominates va

+

(by creating an event vd dominating va
+ and then another event vd

+ in agreement
with both vb and vd), then a reconciliation conflict will be created, requiring one
more user intervention to eliminate.

We have now presented all the basic concepts on which our reconciliation
scheme is based. It remains to specify exactly what state is maintained at each
replica and how this state changes as various actions are performed. These ac-
tions are of two sorts: local actions by the user, and gossiping between replicas,
in which one replica periodically passes its state to another, which updates its
picture of the world and later sends the combined state along to yet other repli-
cas. We will not be precise in this paper about exactly how replicas determine
when and with whom to communicate—we simply treat communication as a
non-deterministic transmission of state from one replica to another. (We have
in mind a practical implementation based on a gossip architecture such as [7].)
However, to ensure that our implementation in §3 can work in bounded space,
we need to make one restriction on the pattern of communication: after a replica
Rα has sent its state to a particular neighbor Rβ, it should wait until it re-
ceives an update message from Rβ before sending another of its own. (Indeed, in
the accompanying technical report we prove that, with unrestricted asymmetric
communication, no representation that operates in bounded space can imple-
ment the specification correctly.) This reciprocality of communication bounds
the number of possible open events on each replica. To guarantee reciprocality,
each replica maintains a boolean flag CanSend(β) for each replica Rβ , initially
set to true. It is reset to false each time Rα sends a communication to Rβ and
reset to true each time Rα receives a communication from Rβ.(This definition
places a somewhat unrealistic constraint on the communication substrate: it as-
sumes that messages are not lost and are not reordered in transit. We believe
that this constraint can probably be relaxed, but we do not have a proof yet.)

Specification. The state of the entire system at any moment comprises the follow-
ing information: a history graph Gα for each replica Rα, a reciprocity predicate

10

CanSendα for each replica Rα, and a current event Currentα ∈ Gα for each
replica Rα. The initial state of the system has all history graphs Gα containing
a single vertex vinit and no edges, CanSendα(β) = true for all α and β, and
Currentα = vinit for all α. At any given moment, a user (or user-level program)
at replica Rα can query the current event at Rα, as well as the current set of
maximal events in Gα and, for each of these, the other events in its class.

Each step in the system’s evolution must obey one of the following rules:

1. A replica Rα may generate a new event vα
i , where i = 1 + max(j | vα

j ∈ Gα),
taking into account some subset W (containing Currentα) of the maximal
events in Gα. The current event Currentα is set to vα

i . A vertex vα
i and an

edge vα
i −→ w for each w ∈ W are added to the graph Gα.

2. A replica Rα may generate a new event vα
i , where i = 1 + max(j | vα

j ∈ Gα),
and declare it to be in agreement with some subset W of the maximal events
in Gα. A vertex vα

i , and an edge vα
i =⇒ w for each w ∈ W , are added to the

graph Gα. If Currentα 6∈ W and Currentα is a predecessor of vα
i , an edge

vα
i −→ Currentα is also added to the graph. The current event Currentα is

then set to vα
i .

The choice of W is constrained by one technical condition: Let E1 . . . Ep

be the maximal classes containing the subset of maximal events W . This
operation is allowed only if for each replica Rβ , the set of events from the
creating replica Rβ that will now be in the new merged class, call it E,
correspond to a contiguous range of indices—that is, for any i < j < k if
v

β
i ∈ E and v

β
k ∈ E then v

β
j ∈ E. The interpretation of this restriction is

that a user is not allowed to establish agreement between two distinct events
v

β
i and v

β
k created by a replica Rβ unless it can do so for every event that

was created by Rβ in between.
3. A replica Rα may send its current state to another replica Rβ, provided

that CanSendα(β) = true. The history graph Gβ is replaced by Gβ ∪ Gα.
A new maximal event x (if one exists) in the combined Gβ is better-than

Currentβ (and hence overwrites it) if Currentβ is not a a maximal event in
Gβ . The reciprocity predicates are updated with CanSendα(β) = false and
CanSendβ(α) = true.

3 A Bounded-Space Implementation

We now develop an efficient implementation based on a sparse representation
of history graphs, written Sα. The crucial property that we establish is that
the size of Sα depends only on the maximum number of distinct replicas that
ever communicate with Rα. For analyzing this representation, it is helpful to be
able to refer to the local state at any replica at particular points in time. We
introduce an imaginary global time counter t, which is incremented each time
any action is taken by any replica—i.e., each time the whole system evolves one
step by a replica taking one of the steps described in §2. The graph at replica
Rα at time t is written Gα(t).

11

There are two core concepts that facilitate our polynomial-space representa-
tion of all “relevant” information contained in a history graph. The first is the
notion of open and closed events, and the second is the notion of a sparse cone

of an event v. We start by decribing these concepts and some of their properties.

Open and Closed Events. The creator replica of an event v = vα
i is the replica

Rα at which the event was created. It is clear from the specification that only
a creator replica can add edges originating from v to its graph, and only at the
time v is created. It can later add an =⇒ edge into v (in addition to the −→
edge that is always added), when it creates v’s immediate successor. Another
replica that later hears about v can create =⇒ or −→ edges into v as long as v

is a maximal event in its local graph.

No replica R can afford to forget about an event or any edges from or into
it, as long as it is possible for some replica to create edges into it, lest R be the
only witness to a relevant equivalence edge. Reciprocal communication enables
us to track such “critical” events with bounded space.

An event v is closed if, at every replica Rα, if v ∈ Gα then v+ ∈ Gα for some
successor v+ of v; an event that is not closed is open. If v is closed, then any
replica that hears about v will simultaneously hear about a successor of v. It
follows from this that a closed event can never be a latest event at any replica
(hence also not a maximal one), and that, once an event is closed, it stays closed
forever. No edges can be created to or from a closed event at any replica at any
time in the future.

An omniscient observer can see when an event becomes closed. But how can
a replica know that an event is closed using only locally available information?

We maintain a data structure Oα at every replica Rα that can be used to
certify that events are closed. The creator replica of an event v marks it closed
when it knows that all other replicas who ever heard of v, have also heard of a
successor to v. The other replicas mark the event closed when they hear that
it has been marked closed by the event’s creator replica. We say that an event
that is marked closed by replica Rα is closed at Rα. An event that is not closed
at a given replica is considered open at that replica.

An event can be simultaneously considered open at certain replicas and closed
at others. The data structure Oα ensures that, at any time t, for each non-latest
event vα

i considered open at a replica Rα, we can identify a pair of replicas in the
system, say (Rβ , Rγ), such that (i) Rγ first learnt about vα

i from Rβ and (ii) Rα

is certain that Rβ is aware of a successor of v but it is uncertain if this is also the
case for Rγ . In this case, Rα can not yet consider vα

i closed as Rγ may possibly
create an edge to the event vα

i . We refer to such a pair as a witness to event vα
i

being open at time t. The reciprocal communication property allows us to ensure
that each pair of replicas can serve as a witness to at most two open events from
any replica. We use this fact to argue that at most O(n3) events are considered
open at any replica. The data structure Oα maintains O(n) information per open
event and hence has size O(n4). Theorem 3.2 shows that the space complexity
of Sα (which includes Oα) is also bounded by O(n4).

12

Sparse Cone. The sparse cone of an element vα
l , written sparse-cone(vα

l), can
be derived from its cone in the following manner. For each β 6= α, let j be the
largest index, if any exists, such that v

β
j ∈ cone(vα

l). If such a j does exist, then

add the vertex v
β
j and a directed edge (vα

l , v
β
j) to sparse-cone(vα

l).
Note that both cone(v) and sparse-cone(v) are determined at the time of v’s

creation and are time invariant. Also, even though cone(v) can be arbitrarily
large, sparse-cone(v) is O(n) in size and implicitly contains all the necessary
information from cone(v), in the sense that, for any element w, we can determine
whether or not w ∈ cone(v) by examining sparse-cone(v).

Sparse Representation. We now describe a polynomial-space representation that
summarizes the information contained in Gα(t) at any time t. In the accompany-
ing technical report we show how to maintain this representation incrementally
as the system evolves, calculating the compact representation at each step from
the compact representation at the previous step, and prove that the represen-
tation is correct in the sense that it will report the same maximal events (and
equivalence classes) as the specification in §2.

We start with the observation that the graph Gα(t) may be viewed as simply
a union of the cones of all the elements known to replica Rα at time t. We
will represent Gα(t) by a pair of sparse graphs, denoted Hα(t) and Hα

≡
(t). The

sparse graph Hα(t) is defined to be simply the union of the sparse cones of latest
events known at Rα at time t. It thus takes O(n2) space. The sparse graph Hα

≡
(t),

summarizes the information contained in Gα
≡

(t) as follows. Let v w denote
the existence of a path from an event v to event w in a graph Gα

≡
. For each

open event v
β
i at Rα(t), Hα

≡
(t) records, for every other replica Rγ , the earliest

event v
γ
j from Rγ for which v

γ
j v

β
i in Gα

≡
(t). (Even though the information

contained in Gα
≡

(t) can be derived from Gα(t), we need to explicitly maintain
the graph Hα

≡
(t) since Hα(t) does not contain all the information in Gα(t).)

Formally, for every pair of events v
β
i and v

γ
j in Gα

≡
(t) such that (i) v

γ
j v

β
i in

Gα
≡

(t), (ii) v
β
i is considered open at Rα(t), and (iii) there is no j′ < j such that

v
γ
j′ v

β
i in Gα

≡
(t), we include in Hα

≡
(t) the events v

β
i and v

γ
j and a directed

edge (vγ
j , v

β
i). Note that an edge (u, v) in Hα

≡
merely indicates the existence of a

path u v ∈ Gα
≡

but not whether its edges are −→ or =⇒ or a mixture of the
two.

3.1 Definition: The sparse representation at a replica Rα at time t is a 4-tuple
Sα(t) = 〈Oα(t), Hα(t), Hα

≡
(t), Cα(t)〉, where Oα(t) is a data structure containing

the set of events from each replica that are considered open at Rα as well as
the tables to maintain these open events (defined in the accompanying techni-
cal report), Hα(t) is the sparse graph derived from Gα(t), Hα

≡
(t) is the sparse

graph derived from Gα
≡

(t), and Cα(t) is a collection of sets, one for each event v

considered open at Rα, such that the set corresponding to v contains all events
in the equivalence class of v.

Whenever replica Rα communicates to another replica Rβ , it sends the tuple
Sα. The next theorem bounds the size of this communication.

13

3.2 Theorem: At any time t, Sα(t) takes O(n4) space, where n is the number
of replicas.

We observed earlier that the number of open events at any replica can be
bounded by O(n3) and the data structure Oα(t) used to maintain them takes
O(n4) space. The graph Hα(t) takes O(n2) space as observed above. The graph
Hα

≡
(t) needs O(1) space for each open event for a total of O(n3) space. Finally,

we can show that the equivalence class of each open event can be described
compactly using O(n) space. This gives us a bound of O(n4) space for Cα(t).

In order to establish that a replica working with the sparse representation
will have the same user-visible behavior as if it were working with the complete
history graphs, it suffices to show the following.

3.3 Theorem: A class E is maximal in Gα(t) iff E is maximal in Sα(t).

The proof of this theorem in the accompanying technical report crucially
relies on the properties of open and closed events and sparse cones. The main
idea of the proof is to establish two key properties. First, for any pair of classes
E, E′ in Gα(t) such that each contains a latest element, we can determine, using
the graph Hα

≡
(t), whether or not they belong to the same component in Gα

≡
(t).

Second, if a class E containing a latest element is dominated by another class
E′ in Gα(t), we show that the graph Hα(t) contains a “witness” to this fact.
Since a maximal class always contains a latest element, these two properties
together ensure that the set of maximal classes is the same in both Gα(t) and
Sα(t). Finally, we note that, since a latest event is always open, Cα(t) contains
all elements in each maximal class.

4 Related Work

Both theoretical underpinnings and efficient implementation strategies for ver-
sion vectors [1] and vector clocks [8, 9] have received a great deal of attention
in the literature and have been used in many systems (e.g. Coda [10–12], Fi-
cus [13], and Bengal [14]); numerous extensions and refinements have also been
studied—see [15] for a recent survey. We conjecture that some of these ideas
can be applied to improve the efficiency of our sparse representation. However,
we are not aware of any work in this context that explicitly addresses the main
concern of our work—an explicit treatment of declarations of agreement (and
dominance) between existing events.

A number of systems have used replica equality (e.g., identity of file contents)
as an implicit indication of agreement. The user-level filesystem synchronization
tool Unison [16], for example, considers two replicas of a file to be in agreement
whenever their current contents are equal at the point of synchronization. This
gives users an easy way to repair conflicts (decide on a reconciled value for the
file, manually copy it to both replicas, and re-synchronize), as well as automat-
ically yielding sensible default behavior when Unison is run between previously
unsynchronized (but currently equal) filesystems. A similar strategy is used in
Panasync [17].

14

Matrix clocks [18, 19] generalize vector clocks by explicitly representing clock
information about other processes’s views of the system’s execution. We leave
for future work the question of whether agreement events such as the ones we
are proposing could be generalized along similar lines.

A rather different approach to conflict detection is embodied, for example,
in the hash histories of Kang et al. [3] and the version histories used in the Rec-
oncile file synchronizer [20] and the Clique peer-to-peer filesystem [21]. Rather
than deducing causal ordering from reduced representations such as clock vec-
tors, these systems represent the causal history of the system directly—storing
and transmitting (hashes of) complete histories of updates. An advantage of
such schemes is that their cost is proportional to the number of updates to a file
rather than the number of replicas in the system, which may be advantageous
in some situations. This suggests that it may be worth considering the possibil-
ity of implementing something akin to our naive specification from §2 directly,
bypassing the sparse representation.

Reconciliation protocols for optimistically replicated data can be divided into
two general categories [22]: state transfer and operation transfer protocols. We
have concentrated on state-based protocols in this work. However, a number
of systems (e.g., Bayou [23], IceCube [24], and Ceri’s work [25]) reconcile the
operation histories of replicas rather than their states. It is not clear whether
agreement events in the sense we have proposed them could meaningfully be
accommodated in this setting.

References

1. Parker, Jr., D.S., Popek, G.J., Rudisin, G., Stoughton, A., Walker, B.J., Walton, E.,
Chow, J.M., Edwards, D., Kiser, S., Kline, C.: Detection of mutual inconsistency
in distributed systems. IEEE Trans. Software Eng. (USA) SE-9(3) (1983) 240–247

2. Malkhi, D., Terry, D.B.: Concise version vectors in WinFS. In Fraigniaud, P.,
ed.: Proceedings of the 19th International Conference on Distributed Computing,
DISC 2005. Volume 3724 of Lecture Notes in Computer Science., Springer-Verlag
(2005) 339–353

3. Kang, B.B., Wilensky, R., Kubiatowicz, J.: The hash history approach for reconcil-
ing mutual inconsistency. In: 23rd IEEE International Conference on Distributed
Computing Systems (ICDCS’03). (2003)

4. Foster, J.N., Greenwald, M.B., Kirkegaard, C., Pierce, B.C., Schmitt, A.: Schema-
directed data synchronization. Technical Report MS-CIS-05-02, University of
Pennsylvania (2005) Supersedes MS-CIS-03-42.

5. Pierce, B.C., et al.: Harmony: A synchronization framework for heterogeneous
tree-structured data (2006) http://www.seas.upenn.edu/~harmony/.

6. Foster, J.N., Greenwald, M.B., Kirkegaard, C., Pierce, B.C., Schmitt, A.: Exploit-
ing schemas in data synchronization. Journal of Computer and System Sciences
(2006) To appear. Extended abstract in Database Programming Languages (DBPL)
2005.

7. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H.,
Swinehart, D., Terry, D.: Epidemic algorithms for replicated database maintenance.
In: Proceedings of PODC’87. (1987)

15

8. Fidge, C.: Logical time in distributed computing systems. Computer 24(8) (1991)
28–33

9. Mattern, F.: Virtual time and global states of distributed systems. In et. al.,
M.C., ed.: Parallel and Distributed Algorithms: proceedings of the International
Workshop on Parallel & Distributed Algorithms. Elsevier Science Publishers B.
V. (1989) 215–226

10. Kumar, P.: Coping with conflicts in an optimistically replicated file system. In:
1990 Workshop on the Management of Replicated Data, Houston, TX (1990) 60–64

11. Satyanarayanan, M., Kistler, J.J., Kumar, P., Okasaki, M.E., Siegel, E.H., Steere,
D.C.: Coda: A highly available file system for a distributed workstation environ-
ment. IEEE Transactions on Computers 39(4) (1990) 447–459

12. Kumar, P., Satyanarayanan, M.: Flexible and safe resolution of file conflicts. In:
Proceedings of the annual USENIX 1995 Winter Technical Conference. (1995) 95–
106 New Orleans, LA.

13. Guy, R.G., Reiher, P.L., Ratner, D., Gunter, M., Ma, W., Popek, G.J.: Rumor:
Mobile data access through optimistic peer-to-peer replication. In: Proceedings of
the ER Workshop on Mobile Data Access. (1998) 254–265

14. Ekenstam, T., Matheny, C., Reiher, P.L., Popek, G.J.: The Bengal database repli-
cation system. Distributed and Parallel Databases 9(3) (2001) 187–210

15. Baldoni, R., Raynal, M.: A practical tour of vector clock systems. IEEE Distributed
Systems Online 3(2) (2002) http://dsonline.computer.org/0202/features/ bal.htm.

16. Pierce, B.C., Vouillon, J.: What’s in Unison? A formal specification and reference
implementation of a file synchronizer. Technical Report MS-CIS-03-36, Dept. of
Computer and Information Science, University of Pennsylvania (2004)

17. Almeida, P.S., Baquero, C., Fonte, V.: Panasync: dependency tracking among file
copies. In: EW 9: Proceedings of the 9th workshop on ACM SIGOPS European
workshop, ACM Press (2000) 7–12

18. Sarin, S.K., Lynch, N.A.: Discarding obsolete information in a replicated database
system. IEEE Transactions onSoftware Engineering 13(1) (1987) 39–47

19. Wuu, G.T.J., Bernstein, A.J.: Efficient solutions to the replicated log and dictio-
nary problems. In: Principles of Distributed Computing. (1984) 233–242

20. Howard, J.H.: Reconcile user’s guide. Technical Report TR99-14, Mitsubishi Elec-
tronics Research Lab (1999)

21. Richard, B., Nioclais, D.M., Chalon, D.: Clique: a transparent, peer-to-peer col-
laborative file sharing system. In: International Conference on Mobile Data Man-
agement (MDM), Melbourne, Australia. (2003)

22. Saito, Y., Shapiro, M.: Replication: Optimistic approaches. Technical Report
HPL-2002-33, HP Laboratories Palo Alto (2002)

23. Terry, D.B., Theimer, M.M., Petersen, K., Demers, A.J., Spreitzer, M.J., Hauser,
C.H.: Managing update conflicts in Bayou, a weakly connected replicated stor-
age system. In: Proceedings of the 15th ACM Symposium on Operating Systems
Principles (SOSP-15), Copper Mountain Resort, Colorado. (1995) 172–183

24. Kermarrec, A.M., Rowstron, A., Shapiro, M., Druschel, P.: The IceCube approach
to the reconciliation of diverging replicas. In: ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing (PODC), Newport, Rhode Island. (2001)
210–218

25. Ceri, S., Houtsma, M.A.W., Keller, A.M., Samarati, P.: Independent updates and
incremental agreement in replicated databases. Distributed and Parallel Databases
3(3) (1995) 225–246

