
ar
X

iv
:2

20
5.

00
98

4v
1

 [
cs

.L
G

]
 2

 M
ay

 2
02

2

A Sharp Memory-Regret Trade-Off for

Multi-Pass Streaming Bandits

Arpit Agarwal∗ Sanjeev Khanna† Prathamesh Patil‡

May 3, 2022

Abstract

The stochastic K-armed bandit problem has been studied extensively due to its applications
in various domains ranging from online advertising to clinical trials. In practice however, the
number of arms can be very large resulting in large memory requirements for simultaneously
processing them. In this paper we consider a streaming setting where the arms are presented
in a stream and the algorithm uses limited memory to process these arms. Here, the goal is
not only to minimize regret, but also to do so in minimal memory. Previous algorithms for
this problem operate in one of the two settings: they either use Ω(log logT) passes over the
stream [4, 9, 12], or just a single pass [10].

In this paper we study the trade-off between memory and regret when B passes over the
stream are allowed, for any B ≥ 1, and establish tight regret upper and lower bounds for
any B-pass algorithm. Our results uncover a surprising sharp transition phenomenon: O(1)

memory is sufficient to achieve Θ̃
(
T

1
2
+

1

2B+2
−2

)
regret in B passes, and increasing the memory

to any quantity that is o(K) has almost no impact on further reducing this regret, unless we
use Ω(K) memory. Our main technical contribution is our lower bound which requires the use
of information-theoretic techniques as well as ideas from round elimination to show that the
residual problem remains challenging over subsequent passes.

1 Introduction

The stochastic multi-armed bandit problem is a widely studied problem with applications in many
domains such as online advertising, recommendation systems, clinical trials, financial portfolio
design etc. In this problem, there are K arms; in trial t ∈ [T] the algorithm pulls an arm at
and receives a reward drawn from the reward distribution of at with mean µat . The goal of the
algorithm is to minimize the cumulative regret over T trials where the regret for trial t is defined
as the gap between the maximum reward maxi∈[K] µi and µat .

In many practical applications such as online advertising and recommendation systems, the
number of arms can be very large and the learner might not be able to store all the arms in
memory. In these applications it can be more practical to process arms in a sequential manner
with small memory that is sub-linear in the number of arms. Motivated by a long line of work
on streaming algorithms in theoretical computer science [1], we consider a setting where the arms
are presented in a (possibly adversarially chosen) stream and in each trial the algorithm decides
whether to read the next arm from the stream into memory. The algorithm can only store the

∗Columbia University. E-mail: arpit.agarwal@columbia.edu
†University of Pennsylvania. E-mail: sanjeev@cis.upenn.edu
‡University of Pennsylvania. E-mail: pprath@seas.upenn.edu

1

http://arxiv.org/abs/2205.00984v1

indices and statistics of M arms out of the K arms and can only play an arm if it is present in the
memory. The goal in this setting is to minimize the regret given a bounded amount of memory.

Previously, [4,9,12] developed algorithms for regret minimization in this limited-memory stream-
ing bandits setting, but their algorithms require a relatively large number of passes over the stream,
with the former requiring O(log log T) passes, and the latter two requiring O(log T) passes. More-
over, it is not understood whether the trade-off between memory and regret obtained by these
algorithms is tight as a corresponding multi-pass lower bound is not known. At the other ex-
treme, [10] considered a 1-pass streaming setting and showed that any algorithm using M words
(for M < K) of memory needs to incur Ω(T 2/3/M7/3) expected regret. Also, there is a simple 1-
pass algorithm that uses M = O(1) memory and achieves O(K1/2T 2/3) regret. These results of [10]
imply that the 1-pass setting exhibits a sharp trade-off between memory and regret as explained
below.

The 1-pass regret as a function of memory M has a sharp transition: with M = O(1) one can
achieve O(T 2/3) regret, and increasing M beyond O(1) has little impact on further reducing this
regret, unless we increase M to K in which case one can achieve O(

√
T) regret.1

In this paper we study a streaming setting for multi-armed bandits where we are allowed B
passes over the stream, for any B ≥ 1. We seek to provide upper and lower bounds on the expected
regret under a limited memory budget and B passes. We also seek to understand the trade-off
between memory and regret as a function of the number of passes B. Does increasing memory
beyond O(1) help in this B-pass setting or is there again a sharp transition in regret similar to the
1-pass setting?

Our main result is to prove a lower bound on the regret of any B-pass algorithm that uses
limited amount of memory. In particular, we show that any B-pass algorithm that uses o(K/B2)

words of memory necessarily incurs Ω
(
4−BT

1
2
+ 1

2B+2
−2

)
regret in expectation. Note that for B = 1

our result implies a tighter lower bound of Ω
(
T 2/3

)
as compared to the Ω

(
T 2/3/M7/3

)
bound

in [10], for any 1-pass algorithm that uses M < K/24 words of memory.

Our lower bound exploits the main tension in the streaming setting: the algorithm has limited
information about whether there are better arms further along in the stream, and hence, it is
difficult to decide whether to keep exploring the current arms in memory or to read more arms into
memory by throwing away some of the current arms from memory. We construct a distribution
over hard instances such that, if in the first pass the algorithm performs sufficient exploration
over (potentially ‘bad’) arms then it already incurs a large regret in expectation. If it performs
insufficient exploration in the first pass then it will throw away many ‘good’ arms due to a limited
memory budget and will be unable to isolate the underlying instance at the end of the first pass.
One of the main technical difficulty is to show that the resulting residual distribution over instances
is challenging in a way that leads to large regret in the remaining B − 1 passes. We overcome this
difficulty by using information-theoretic techniques to show that insufficient exploration leads to
low mutual information which further leads to large entropy in the residual distribution. We then
inductively argue that any high entropy distribution over instances will lead to large regret in the
remaining B − 1 passes.

We complement our lower bound with a simple B-pass algorithm that uses O(1) memory and

achieves an expected regret upper bound of Õ
(
T

1
2
+ 1

2B+2
−2
√
KB

)
. This implies that O(log log T)

passes and O(1) memory are sufficient to achieve an almost optimal regret of Õ(
√
KT), and

1Note that when M = K one can simply read all the arms in memory at once and use any stochastic multi-armed
bandit algorithm such as the UCB algorithm to achieve a regret of O(

√

TK).

2

matches the recent O(log log T) pass regret upper bound of [12]. When B = 1, we also recover the
O(T 2/3

√
K) upper bound of [10]. In short, our algorithm nicely interpolates the space between the

1-pass Õ(T 2/3
√
K) regret and the (log log T)-pass Õ(

√
KT) regret upper bounds as function of the

number of passes B.

Our algorithm is based on two key operations: (i) estimating the reward of the best arm, (ii)
identifying sub-optimal arms based on this estimate. In each pass the algorithm sets a maximum
budget for the number of pulls allowed for each arm, and this budget keeps increasing over successive
passes. The algorithm reads an arm into memory and pulls this arm until it is identified as a sub-
optimal arm or the maximum budget is exceeded. The estimate of the maximum reward is then
updated and the next arm is read into memory. Since the budget keeps increasing over passes, the
estimate for the maximum reward becomes more refined, and sub-optimal arms are identified more
easily.

Our lower and upper bound together imply the following (perhaps surprising) sharp threshold
phenomenon in our B-pass setting.

The B-pass regret as a function of memory M has a sharp transition: with M = O(1) one can

achieve Θ̃
(
T

1
2
+ 1

2B+2
−2

)
regret, and increasing M to any quantity that is o(K/B2) has almost no

impact on further reducing this regret.

Related Work. The stochastic multi-armed bandit problem has been extensively studied in
many fields including operations research, statistics and machine learning. We refer the reader
to excellent surveys in [3, 13], and only mention work that is directly relevant to our streaming
setting. [9] studied a limited memory setting for multi-armed bandits and showed that one can
achieve (almost) instance-wise optimal regret in O(log T) passes and O(1) memory. [4] studied a
similar setting and showed that with O(log T) passes and M memory one can achieve a regret

upper bound of Õ(KM + K3/2

M

√
T). However, these works only considered a O(log T)-pass setting

and did not study the trade-off between memory and regret for any arbitrary number of passes
1 ≤ B < log T . A recent work [12] achieves a regret upper bound of Õ(

√
KT) in O(log log T)

passes. However, their work does not address the question of the regret achievable (both upper
and lower bounds) for any arbitrary number of passes 1 ≤ B < log log T . As discusses earlier, [10]
considered a 1-pass streaming setting but their results do not apply for B > 1 passes, which is the
main focus of our paper. There is also some work on best arm identification with limited memory
in the streaming setting. [2] show that one can identify the best arm with 1 pass over the stream
and O(1) memory using O(K/∆2) sample complexity where ∆ is the minimum gap between the
best arm and any other arm. [8] further obtain instance-wise optimal sample complexity for this
problem using log 1/∆ passes and O(1) memory.

The stochastic multi-armed bandits problem has also been studied under the setting of limited
adaptivity [6, 11]. Under this setting, an algorithm operates in rounds and in each round it plays
arms according to a fixed distribution that can only depend on the outcomes from the previous
rounds. Even though the tradeoff between rounds and regret in this setting is similar to the tradeoff
between passes and regret given limited memory in our setting, the key difference between the two
settings is that this setting necessarily requires at least 1 bit of information per arm for a total
of Ω(K) memory, but cannot be adaptive within a batch, whereas in our setting, we can be fully
adaptive within a pass but are given strictly less than K memory. Due to this difference the
challenges in these two settings are quite different, which is reflected in the fundamentally different
techniques used in the respective lower bounds.

Very recently, independently of our work, [14] studied the problem of online learning with
expert advice in a streaming setting and established a trade-off between regret and memory in

3

this setting. However, there are several fundamental differences between the multi-armed bandits
problem studied here and the experts problem studied in [14]– (1) in the experts problem one gets
to see the loss of every expert at every trial, whereas in our problem one only gets to see the reward
of the arm that is played, (2) in [14] the losses on experts are generated adversarially whereas in
our work the rewards of arms are generated stochastically, (3) in [14] the stream consists of the
prediction of experts for each trial, whereas in our work the stream consists of the arms. As a
result, the two settings require very different techniques for proving lower and upper bounds, and
neither result has any implications on the other.

Organization. In Section 2 we discuss the problem setting and set up relevant notation. We
discuss our lower bound on regret in Section 3 which is the main result of our paper. We then
provide an upper bound on regret in Section 4, and finally conclude in Section 5.

2 Problem Setting

We study a multi-armed bandit problem, where the instance consists of a finite set K of (K = |K|)
arms and a time horizon T which is known ahead of time. When any arm a ∈ K is played, an
i.i.d. reward is drawn from its corresponding reward distribution defined over [0, 1] with mean µa
of which the algorithm has no prior knowledge.2 The objective in this setting is to minimize the
cumulative regret, which is defined as RT :=

∑T
t=1(maxj∈K µj −µat) where at is the arm played in

trial t ∈ [T].

We assume a limited memory setting where the arms K are presented to the algorithm as an
arbitrarily (or adversarially) ordered read-only stream , and the algorithm is restricted to store the
identities and the corresponding statistics of at most M < K arms simultaneously while being
allowed at most B ≥ 1 passes over the stream. The input parameters T , K, B and M are assumed
to be stored for free (O(1) space). Crucially, the algorithm can only play an arm if it is in its
memory. Therefore, in each trial t ∈ [T], the algorithm must decide to either play an arm currently
present in its memory, which generates a reward (potentially incurring regret) and consumes a trial,
or read the next arm from the stream into memory, which neither incurs regret nor consumes a
trial. If the algorithm chooses to do the latter and the memory is full, then it must first discard
some arm to accommodate the new arm, in which case both the statistics as well as the identity
of the discarded arm are forgotten. Furthermore, the discarded arm cannot be read into memory
(and hence played) until it is encountered again in a future pass over the stream.

Remark 2.1. In the above setting the set of arms in the stream remains the same even though
their order can change adversarially. One can also consider a modified setting where the algorithm
is allowed to delete arms from the stream permanently so that they do not appear in future passes.
For example, it might want to delete these arms if it identifies that these arms are suboptimal and
do not need to be processed further. We note that both our lower bound and upper bound results
apply to this modified setting.

Notation. In the rest of this paper, we use upper case letters to refer to instance dependent
constants, such as the length of the time horizon T , number of arms K, number of passes B, and
the memory size M . We use B, D, ψ and φ to refer to distributions, and E to refer to events.
We use other upper case calligraphic letters to refer to sets, and other lower case English or Greek
letters to refer to miscellaneous constants. Lastly, we use log base 2, and ln for natural logarithms.

We denote random variables in sans serif font, e.g., X. For a random variable X, supp(X)

2We assume that the support of the reward distributions is [0, 1] for ease of analysis; our algorithmic results can
be easily extended to sub-Gaussian distributions over arbitrary support.

4

denotes the support of X and dist(X) denotes its distribution. We denote the Shannon Entropy
of a random variable A by H(A) and the mutual information of two random variables A and B by
I(A ;B) = H(A) − H(A | B) = H(B) − H(B | A). A summary of useful information theory facts is
given in Appendix A.

3 A Regret Lower Bound for Limited Memory Multi-Pass Algo-

rithms

Our main result, which is an information-theoretic lower bound on the cumulative regret that can
be achieved by any B-pass algorithm with limited memory, is presented in the following theorem.

Theorem 1. Given a time horizon T , a stream of K arms, and passes 1 ≤ B < log log T over this
stream, there exists a distribution over K-armed bandit instances such that any B-pass algorithm

that uses at mostK ·(8B(B+1) log e)−1 memory suffers Ω
(
4−BT 2B/(2B+1−1)

)
regret in expectation.

This lower bound paints a rather pessimistic picture for regret minimization in a limited memory
streaming setting. Given any constant number of passes, we need Ω(K) memory to achieve O(

√
T)

regret that is already achievable by a single pass algorithm with memory K. Furthermore, for any
given memoryM up to o(K/ log2 log T), a superconstant Ω(log log T) number of passes are required
to achieve this optimal regret. In Section 4, we will show another surprising result on the threshold
nature of memory: for a fixed number of passes B, the regret achieved by a constant memory
algorithm is asymptotically no different from that achieved by any o(K/B2) memory algorithm in
the worst case. In other words, for any fixed value of B, the best achievable regret does not go
down as we increase memory unless we are ready to allow Θ(K/B2) memory.

To the best of our knowledge, this is the first regret lower bound for any B > 1 number of
passes. Moreover, for B = 1, we achieve a lower bound of Ω(T 2/3) for any M < K/(16 log e) which
improves upon the Ω(T 2/3/M7/4) lower bound of [10] under the same setting of B = 1. We now
begin proving our lower bound.

3.1 Proof of Theorem 1

At a high level, our lower bound exploits the fact that any limited memory algorithm must operate
conservatively due to the presence of arms for which it has absolutely no information until they are
actually encountered in the stream. Since only a limited number of arms can be explored at any
given time, any limited memory algorithm faces the following dilemma. (1) Spend enough time
playing the arms it has in memory and gain some meaningful information about them, but then
potentially run the risk of acquiring large regret in the event there is some high value arm yet to be
seen, or (2) Try to quickly move ahead in the stream, discarding arms in memory after a few samples,
but then potentially risk throwing away good arms due to lack of sufficient information. Since the
decision to throw away arms is irrevocable, and the statistics and identities of the discarded arms
are forgotten, the algorithm would then have one fewer pass to rectify its mistake in the event that
no obviously high value arms are found ahead in the stream.

In order to prove our lower bound, without loss of generality, we will assume that the stream
order does not change across passes3. We will restrict our attention to deterministic algorithms in
the proof. This is because a lower bound for deterministic algorithms on a suitable distribution over
instances also implies a lower bound for randomized algorithms using Yao’s minimax principle [15].
Formally, if there is any randomized algorithm with low expected regret, then there exists a choice

3The regret guarantees of our algorithm (Section 4) hold even when the stream order changes adversarially.

5

of random bits such that this algorithm has low expected regret given this choice of bits. Therefore,
by conditioning on these random bits, we have a deterministic algorithm that has low expected
regret which will contradict the lower bound.

Our lower bound is based on the general idea of ‘round elimination’ used for proving communi-
cation complexity lower bounds where one inductively argues that the residual instance at the end
of the each round will remain ‘hard’ over subsequent rounds. Our B-pass lower bound constructs
‘hard’ instances over K arms by composing together B + 1 layers of ‘hard’ instances over subsets
of arms. We partition the stream of K arms into contiguous subsets of size K/(B+1) and the j-th
layer of hard instances is defined over the j-th K/(B + 1)-sized subset. At a high level, we argue
that after performing j passes an algorithm will either incur ‘large regret’ or will only be able to
‘peel-off’ the last j layers. In other words, if the algorithm has not incurred ‘high regret’ at the
end of j passes, then it still needs to solve a hard problem over at least B + 1− j layers.

Within each layer j ∈ [B + 1], we generate a ‘hard’ instance by sampling a special arm i∗j from
a near-uniform distribution over the arms in that layer, whose mean reward is nearly-equally-likely
to be either low, namely µi∗j = 1/2, or high, namely µi∗j = 1/2 + ∆j where ∆j is a parameter that

we will specify shortly. All other arms in the layer have mean reward 1/2. This potential “high”
reward of 1/2+∆j increases across layers, with ∆1 being the smallest, and ∆B+1 being the largest.
This intuitively forces any algorithm to rush through all of the initial B layers, because the regret
would be massive if i∗B+1 realizes to have a high reward, the odds of which are nearly half. However,
in doing so the algorithm will learn very little about the special arms in first B layers, and will
have to solve a hard problem over these layers in the remaining B − 1 rounds.

In order to formalize the above construction, we define a distribution over ‘hard’ instances for
a single layer that is parameterized by the set of arms A in the layer, the mean reward parameter
∆ for the best arm in that layer, and a nearly-uniform joint distribution ψ over A × {0, 1} for
sampling the best arm and its reward.

Distribution D∆,ψ
A : Given a set of arms A, a joint distribution ψ over support A× {0, 1}, and

parameter ∆ ≤ 1/4

• Sample (i∗, y) ∼ ψ such that i∗ ∈ A and y ∈ {0, 1}. For all i ∈ A, let

µi =

{
1
2 + y∆ , if i = i∗

1
2 otherwise

• Return the arms A with Bernoulli reward distributions with means {µi}i∈A.

Note that the special arm i∗ in layer is also a best arm within the layer. We will now define
what is means for the distribution ψ of the special arm i∗ to be γ-nearly uniform.

Definition 1 (γ-nearly uniform ψ). Given a set of arms A, a joint distribution ψ over support
A×{0, 1}, and γ > 0, we say that ψ is γ-nearly uniform if the random variables (I,Y) ∼ ψ are such
that H(I) ≥ logA− γ and H(Y|I) ≥ log 2− γ.

This following key lemma quantifies how little any algorithm would actually learn about the
special arm in a layer if this arm is γ-nearly uniformly distributed and the algorithm rushes through
this layer, i.e. collects very few samples.

6

Lemma 3.1. Given a time-horizon T , a set of arms A of size A = |A|, with mean rewards generated

according to a distribution D∆,ψ
A where ψ is γ-nearly uniform for some γ ≥ 0. Let (I,Y) ∼ ψ and let

alg be any deterministic algorithm that adaptively pulls arms in A. Let σ ∈ [T] be the randomly
chosen stopping time of the algorithm and Sσ = (jt, rt)

σ
t=1 be execution history of alg with jt

being the arm pulled and rt being its observed reward in trial t, respectively. For a given input
parameter β < 1, letM⊂ A be any set of size βA chosen to be retained in memory by alg after
observing the execution history Sσ. If E[σ] ≤ ǫ2

6∆2 for some ǫ > 0, then the event

E =
(
I /∈ M and H(I | Sσ, I /∈ M) ≥ log((1 − β)A)− γ + ǫ

1− log(1 + β)− γ − ǫ
and H(Y | Sσ, I, I /∈M) ≥ log 2− γ + ǫ

1− log(1 + β)− γ − ǫ
)
,

occurs with probability at least 1− log(1 + β)− γ − 3ǫ over the samples seen by the algorithm.

A formal proof of this lemma is given in Section 3.2. One can interpret this lemma as follows–
given a set of instances where the best arm and its reward are sampled from a γ-nearly uniform
distribution, then no algorithm can hope to trap the best arm in a small subset (its memory) after
a period of insufficient exploration with any considerable probability. Moreover, in the event that
the best arm is discarded, nothing meaningful is learned either as the best arm is nearly-equally
likely to be any of the discarded arms, and its reward is nearly-equally likely to be either low or
high. Thus, the entropy of the identity of the best arm as well as its reward remains large in the
posterior distribution over the discarded arms induced by the samples observed by the algorithm.
This observation will be important to show that in the event i∗B+1 realizes to have a low reward,
the algorithm still faces a hard distribution consisting of B layers while having depleted one of
its passes. We will now “stitch” together these (B + 1) layer-wise hard distributions into a hard
distribution over all K arms.

Distribution D{ψj}b+1
j=1

K,B : Given a set of arms K of size K = |K|, an integer B ∈ N+, and a set of

(b + 1) ≤ (B + 1) joint distributions {ψj}b+1
j=1 where each ψj is supported over Aj × {0, 1} with

{Aj}b+1
j=1 being a contiguous and sequential partition of K into sets of equal size K/(b + 1).

• For j ∈ [b+ 1], define

∆j =
T
− 2B−2j−1

2B+1
−1

4
.

• For j ∈ [b+ 1], sample mean reward parameters {µi}i∈Aj according to D∆j ,ψj
Aj .

• Define

D{ψj}b+1
j=1

K,B := D∆1,ψ1

A1
⊗D∆2,ψ2

A2
⊗ · · · ⊗ D∆b+1,ψb+1

Ab+1

• Return the arms K with the reward distribution of arm i ∈ K being Bernoulli B(µi).

In the above distribution, one should think of B as an input parameter that corresponds to the
number of passes allowed to the algorithm at the start, whereas b as the number of passes that
are remaining at an intermediate step in the algorithm. We need to define our distribution for any

7

b ≤ B as we need to show that residual distributions remain ‘hard’ at every intermediate step in
the algorithm. Hence, if there are b passes remaining, there will be a ‘hard’ (b+1)-layered residual
problem still to be solved by the algorithm.

Armed with this hard distribution, we are now ready to prove the lower bound as follows. Let
there be b passes remaining at an intermediate step in the algorithm, and let the distribution of

rewards be according to D{ψj}b+1
j=1

K,B such that the special arm in each of the b + 1 layers is nearly
uniformly distributed. The algorithm is presented with each layer one by one in the stream. We
divide the execution of the algorithm into b+ 1 epochs where the j-th epoch begins when the first
arm in layer j is read into memory and ends right before the first arm from layer j +1 is read into
memory.

Let α = 2B/(2B+1−1), and let the available memory be βK/(b+1) for an appropriately chosen
β ∈ (0, 1]. Since the number of arms in each layer is K/(b + 1), the algorithm needs to discard at
least (1− β) fraction of the arms from each layer. Now suppose for any of the first j ∈ [b] epochs,
the algorithm actually collects at least ǫ2/∆2

j (for some small ǫ) samples in that epoch, then we

are already done, as the algorithm will suffer Ω(ǫ2∆b+1/∆
2
j) = Ω(Tα) regret if the reward of i∗b+1

realizes to its high value, the odds of which are nearly half. On the other hand, if the algorithm does
not explore enough in every epoch, then for sufficiently small β, ǫ, the event described in Lemma 3.1
will occur for all of the initial b epochs with constant probability. As a result, the posterior reward
distributions over the (1 − β) fraction of the rejected arms from every layer will provably remain
hard (as per our definition of a hard instance for an epoch). Therefore, if the reward of i∗b+1 realizes
to its low value, the odds of which are nearly half, the algorithm now faces a hard distribution with
b layers over b− 1 passes, at which point we will appeal to induction to show that the regret of this
algorithm in this case must also be large. This idea is formalized in the following lemma.

Lemma 3.2. Let K,T,B, b ∈ N+ be any set of parameters such that K ≤ T , and 1 ≤ b ≤
B < log log T . Let {Aj}b+1

j=1 be a contiguous partition of arms K such that for each j ∈ [b + 1],

|Aj| = A = K/(b+1). Furthermore, let {ψj}b+1
j=1 be any set of distributions such that each ψj is γ-

nearly uniform (see Definition 1) for 0 ≤ γ ≤ 1/(32b). Given a stream of arms K with mean rewards

sampled according to D{ψj}b+1
j=1

K,B , the expected regret RT of any b-pass deterministic algorithm that

uses at most M = K(8b(b+ 1) log e)−1 words of memory is bounded as

E[RT] ≥ Ω

(
4−bT

2B

2B+1
−1

)
.

A formal proof of this lemma is provided in Section 3.3. The proof of our main result in
Theorem 1 now follows easily from the above lemma by setting b = B. Note that even though the
condition B < log log T is not required in the proof of the above lemma, our lower bound becomes
vacuous once B ≥ log log T as it becomes smaller than

√
T .

3.2 Proof of Lemma 3.1

Let L = ǫ2

6∆2 , Js be the random variable for arm js pulled in trial s, and Rs be the random variable
for the reward rs observed in trial s, for s ∈ [σ]. For ease of calculation, we will expand the
execution history beyond its stopping time σ and let Js = 0 and Rs = 1

2 for s ∈ {σ + 1, · · · , T}.
Finally for any trial t ∈ [T], let St := {(Js,Rs)}s∈[t] be the sequence of random variable defining the
execution history of the algorithm up until trial t, and let St be the realization of this sequence up
until trial t.

8

We will begin by showing that in the event of insufficient exploration (i.e. when the algorithm
stops quickly), little is learned about the identity of the best arm. In other words, the mutual
information between the random variables I and ST is small. Using the chain rule for mutual
information, we have

I(I ;ST) =
T∑

t=1

I(I ; Jt|St−1) + I(I ;Rt|St−1, Jt)

=

T∑

t=1

0 + I(I ;Rt|St−1, Jt) (Jt is deterministic given St−1)

=
T∑

t=1

∑

j∈A

∑

St−1

Pr(St−1 = St−1, Jt = j) · I(I ;Rt|St−1 = St−1, Jt = j). (1)

Using Fact A.2, we have

I(I ;Rt|St−1 = St−1, Jt = j)

= E
(i∗,y)∼ψ

[D(dist(Rt | St−1 = St−1, Jt = j) || dist(Rt | I = i∗,St−1 = St−1, Jt = j))]

We will now prove that the average KL-divergence between the reward distributions for a single
pull of an arm under different realizations of instances sampled from our hard distribution D∆,ψ

A is
small. Therefore, a single pull of any arm can only provide limited information about the random
variables of interest, and therefore, the total information that can be gathered from a small number
of pulls is also small.

Claim 3.3. For any arms i∗, j ∈ A, trial t ∈ [T], and any realization St−1 of the execution history
up until trial t, we have that

D(dist(Rt | St−1 = St−1, Jt = j) || dist(Rt | I = i∗,St−1 = St−1, Jt = j)) ≤ 6∆2 .

Proof. Let p = Pr(I = j | St−1 = St−1, Jt = j), and let q = Pr(Y = 1 | I = j,St−1 = St−1, Jt = j).

In the case where i∗ = j, it is easy to observe that dist(Rt | St−1 = St−1, Jt = j) = B(12 + pq∆).
Moreover, we also have that dist(Rt | I = i∗,St−1 = St−1, Jt = j) = B(12 + q∆). We then have that

D(dist(Rt | St−1 = St−1, Jt = j) || dist(Rt | I = i∗,St−1 = St−1, Jt = j))

= D

(
B
(
1

2
+ pq∆

)
|| B

(
1

2
+ q∆

))

≤ (12 + pq∆− 1
2 − q∆)2

(12 + q∆)(1− 1
2 − q∆)

≤ q2(1− p)2∆2

1
4 − q2∆2

≤ 16q2(1− p)2∆2

4− q2 ≤ 6∆2 ,

where the first inequality above follows from Fact A.3, and the final inequality follows due to
∆ ≤ 1/4.

9

In the case where i∗ 6= j, we have that dist(Rt | St−1 = St−1, Jt = j) = B(12 + pq∆). However,
dist(Rt | I = i∗,St−1 = St−1, Jt = j) = B(12). Using the same argument as above

D(dist(Rt | St−1 = St−1, Jt = j) || dist(Rt | I = i∗,St−1 = St−1, Jt = j))

= D

(
B
(
1

2
+ pq∆

)
|| B

(
1

2

))

≤ (12 + pq∆− 1
2)

2

(12)(1− 1
2)

≤ 4∆2 .

Using Eq. (1) and Claim 3.3 we have that

I(I ;ST) ≤
T∑

t=1

∑

j∈A

∑

St−1

Pr(St−1 = St−1, Jt = j) · 6∆2

=

T∑

t=1

∑

j∈A
Pr(Jt = j) · 6∆2

=
T∑

t=1

Pr(Jt 6= 0) · 6∆2

= E[σ] · 6∆2

≤ L · 6∆2 = ǫ2 .

This implies that that the conditional entropy of I given ST is at least

H(I | ST) = H(I)− I(I ;ST) ≥ H(I)− ǫ2

We shall use an analogous argument to bound the mutual information between Y and ST

conditioned on I. Using the chain rule for mutual information, we have

I(Y ;ST | I) =
T∑

t=1

I(Y ; Jt|St−1, I) + I(Y ;Rt|St−1, Jt, I)

=

T∑

t=1

0 + I(Y ;Rt|St−1, Jt, I) (Jt is deterministic given St−1)

=
T∑

t=1

∑

i∈A

∑

j∈A

∑

St−1

Pr(St−1 = St−1, Jt = j, I = i) · I(Y ;Rt|St−1 = St−1, Jt = j, I = i) (2)

We now calculate an upper bound on I(Y ;Rt|St−1 = St−1, Jt = j, I = i). Using Fact A.2, we
have

I(Y ;Rt|St−1 = St−1, Jt = j, I = i)

= E
y∼ψ|I=i

[D(dist(Rt | St−1 = St−1, Jt = j, I = i) || dist(Rt | Y = y,St−1 = St−1, Jt = j, I = i,Y = y))]

We now have an analogous claim, bounding the KL-divergence between the reward profiles of
a single pull of an arm.

10

Claim 3.4. For any arms i, j ∈ A, y ∈ {0, 1}, trial t ∈ [T], and any realization St−1 of the execution
history up until trial t, we have that

D(dist(Rt | St−1 = St−1, Jt = j, I = i) || dist(Rt | Y = y,St−1 = St−1, Jt = j, I = i,Y = y)) ≤ 6∆2 .

Proof. We begin with the simple case, when i 6= j. In this case, it is easy to observe that for any
realization of Y, both the reward distributions will be B(1/2), due to which the KL Divergence will
be 0. In the case that i = j, let q = Pr(Y = 1 | St−1 = St−1, Jt = j, I = i).

We will first prove this bound in the case that y = 1. It easy to observe that dist(Rt | St−1 =
St−1, Jt = j, I = i) = B(1/2 + q∆). Moreover, we also have that dist(Rt | St−1 = St−1, Jt = j, I =
i,Y = y) = B(1/2 + ∆). We then have that

D(dist(Rt | St−1 = St−1, Jt = j, I = i) || dist(Rt | Y = 1,St−1 = St−1, Jt = j, I = i,Y = y))

= D(B(1/2 + q∆) || B(1/2 + ∆))

≤ (12 + q∆− 1
2 −∆)2

(12 +∆)(12 −∆)

≤ (1− q)2∆2

1
4 −∆2

≤ 16(1 − q)2∆2

3
≤ 6∆2 ,

where the first inequality above follows from Fact A.3, and the final inequality follows due to
∆ < 1/4.

In the case that y = 0, we again have dist(Rt | St−1 = St−1, Jt = j, I = i) = B(1/2 + q∆).
However, dist(Rt | St−1 = St−1, Jt = j, I = i,Y = y) = B(1/2). Using the same argument as above

D(dist(Rt | St−1 = St−1, Jt = j, I = i) || dist(Rt | Y = 1,St−1 = St−1, Jt = j, I = i,Y = y))

= D(B(1/2 + q∆) || B(1/2))

≤ (12 + q∆− 1
2)

2

(12)(1− 1
2)

≤ 4∆2 .

Using Eq. (2) and Claim 3.4 we have that

I(Y ;ST |I) ≤
T∑

t=1

∑

i∈A

∑

j∈A

∑

St−1

Pr(St−1 = St−1, Jt = j, I = i) · 6∆2

=
T∑

t=1

∑

j∈A
Pr(Jt = j) · 6∆2

=

T∑

t=1

Pr(Jt 6= 0) · 6∆2

= E[σ] · 6∆2

≤ L · 6∆2 = ǫ2 .

11

As before, we use this upper bound on the mutual information between Y and ST given I to
lower bound the conditional entropy of Y given ST and I as

H(Y | ST , I) = H(Y | I)− I(Y ;ST | I) ≥ H(Y | I)− ǫ2 .

These bounds demonstrate that in expectation, the entropies of the posterior distributions of I
and Y|I given the samples drawn by the algorithm will remain large if the algorithm does not draw
sufficiently many samples. We shall further show that this must necessarily be the case, not just
in expectation, but also with high probability.

Consider any realization ST for ST . We say that the realized outcome profile ST is ǫ-uninformative
iff both, H(I | ST = ST) ≥ H(I) − ǫ, and H(Y | I,ST = ST) ≥ H(Y | I) − ǫ. Roughly speaking,
whenever the outcome profile ST is ǫ-uninformative, the algorithm is quite “uncertain” about both,
the identity of i∗, as well as its reward µi∗ (controlled through the variable y) and hence needs to
estimate both among a large pool of possibilities in a later pass. To show that a realized outcome
profile ST will be ǫ-uninformative with high probability, let CI := H(I) − H(I | ST). By Markov’s
inequality, we have that

Pr
ST

(H(I)−H(I | ST = ST) ≥ CI/ǫ) ≤
EST [H(I)−H(I | ST = ST)]

CI/ǫ

=
(H(I)−H(I | ST))

CI/ǫ
= ǫ

(by the choice of CI = H(I)−H(I | ST))

Following an identical calculation with CY := H(Y | I)−H(Y | I,ST), we have

Pr
ST

(H(Y | I)−H(Y | I,ST = ST) ≥ CY /ǫ) ≤ ǫ

Since both, CI , CY ≤ ǫ2, we have with probability at least 1− 2ǫ over realizations ST of ST ,

H(I)−H(I | ST = ST) <
CI
ǫ
≤ ǫ =⇒ H(I | ST = ST) ≥ logA− γ − ǫ , (3)

as well as

H(Y | I)−H(Y | I,ST = ST) <
CY
ǫ
≤ ǫ =⇒ H(Y | I,ST = ST) ≥ log 2− γ − ǫ . (4)

Henceforth, we shall use Sui to refer to an ǫ-uninformative realization of ST .

Now fix any ǫ-uninformative realization Sui. Let M ⊂ A be the set of arms of size |M| = βA
chosen to be retained by the algorithm given its execution history Sui. and let R = A \M denote
the remaining set of rejected arms. Using Lemma A.4 we can argue that

Pr(I ∈ M | ST = Sui) ≤ log (1 + β)+γI+ǫ =⇒ Pr(I ∈ R | ST = Sui) > 1−log (1 + β)−γI−ǫ . (5)

We will finally prove that in the event that the sequence of rewards observed by the algorithm was
uninformative, and the algorithm actually did end up discarding the best arm from its memory,
then the entropy of the identity of the best arm remains large amongst the arms the algorithm
chose to reject at its stopping time.

Claim 3.5. For any ǫ-uninformative realization Sui, we have

H(I | ST = Sui, I /∈ M) ≥ log((1− β)A) − γ + ǫ

1− log(1 + β)− γ − ǫ .

12

Proof. Suppose, for the sake of contradiction, that the above inequality is not true. Let X be an
indicator random variable which is 1 when I /∈ M, and 0 otherwise. Furthermore, let p = Pr(X =
1|ST = Sui) = Pr(I /∈ M | ST = Sui). Then we have that

H(I | ST = Sui)
(a)

≤ H(I,X | ST = Sui)

(b)
= H(X | ST = Sui) +H(I | X,ST = Sui)

= p

(
H(I | ST = Sui,X = 1) + log

1

p

)
+ (1− p)

(
H(I | ST = Sui,X = 0) + log

1

1− p

)

(c)
< p

(
log((1− β)A) − γ + ǫ

1− log(1 + β)− γ − ǫ + log
1

p

)
+ (1− p)

(
log(βA) + log

1

1− p

)

= logA− p(γ + ǫ)

1− log(1 + α)− γ − ǫ + p log
1− β
p

+ (1− p) log β

1− p
(d)

≤ logA− p(γ + ǫ)

1− log(1 + α)− γ − ǫ + log

(
p · (1− β)

p
+ (1− p) · β

1− p

)

< logA− γ − ǫ,

where (a) follows due to the fact that the joint entropy in (I,X) is at least the entropy in I, (b) follows
due to the chain rule for entropy, (c) follows by our assumption (for the sake of contradiction), (d)
follows by Jensen’s inequality, and the final inequality follows from bounding p through Equation 5.
This contradicts the bound achieved in Equation 3.

We further argue a similar claim about the uncertainty in estimating the reward of the best
arm in the event that the sequence of rewards observed by the algorithm is uninformative, and the
algorithm did end up discarding the best arm from its memory.

Claim 3.6. For any ǫ-uninformative realization Sui, we have that

H(Y | I,ST = Sui, I /∈ M) ≥ log 2− γ + ǫ

1− log(1 + β)− γ − ǫ .

Proof. Suppose, for the sake of contradiction, that the above inequality is not true. Let X be a
random variable that takes value 1 when I /∈ M, and 0 otherwise, and let p = Pr(X = 1 | ST =
Sui) = Pr(I /∈M | ST = Sui). We have that

H(Y | I,ST = Sui) ≤ H(Y,X | I,ST = Sui)

= H(Y | I,ST = Sui,X) +H(X | I,ST = Sui)

(a)
= H(Y | I,ST = Sui,X)

= pH(Y | I,ST = Sui,X = 1) + (1− p)H(Y | I,ST = Sui,X = 0)

where (a) follows by observing that upon conditioning on the identity of the best arm I, as well as
the observed outcome profile ST , the value of the random variable X (i.e. whether the best arm
was retained or discarded) is fixed, since the algorithm is deterministic. Therefore, H(X | I,ST =
Sui) = 0. We now have

H(Y | I,ST = Sui) ≤ pH(Y | I,ST = Sui,X = 1) + (1− p)H(Y | I,ST = Sui,X = 0)

< p

(
log 2− γ + ǫ

1− log(1 + β)− γ − ǫ

)
+ (1− p) log 2

13

< log 2− γ − ǫ ,

where the final inequality follows from bounding p through Equation 5, which contradicts the bound
achieved in Equation 4.

We finally show that this outcome is not a rare event, but rather quite likely

Pr(I /∈ M) ≥ 1−Pr(ST is informative)−Pr(I ∈ M | ST is uninformative) ≥ 1− log(1+β)−γ−3ǫ .

This completes the proof of Lemma 3.1.

3.3 Proof of Lemma 3.2

We will prove this lemma using induction on the number of passes b. Recall that the j-th epoch
begins when the first arm of the j-th layer is read into memory and ends right before the first
arm of the j + 1-th layer is read into memory. Also, recall that the total memory budget of the
algorithm is βK/(b + 1) and the number of arms in each layer is K/(b+ 1).

We consider a modified setting where the algorithm is allowed additional power, i.e. it is allowed
to store all arms from layer j in memory during the execution of epoch j. However, at the end
of epoch j the algorithm needs to throw at least 1 − β fraction of these layer j arms and is only
allowed to retain in memory at most a β fraction of the arms from that epoch in addition to the
arms stored from previous epochs.4 Under this modified setting the algorithm can even use up to
βK memory but is constrained to storing no more than a β fraction of arms from any single epoch.
This cannot hurt the regret as we are only allowing more memory, which can always be ignored.
Formally, any algorithm that uses at most βK/(B + 1) memory (where β = (8b log e)−1) in the
original setting can be used in this modified setting as it is allowed to use strictly more memory for
each epoch in the modified setting. Also, note that the algorithm incurs the same regret in both
settings. Hence, an optimal algorithm in this modified setting cannot incur more regret than an
optimal algorithm in the original setting. Let α = 2B/(2B+1 − 1).

Base Case (b = 1): Let ǫ = 1/288, L = ǫ2/(6∆2
1), and σ be the (random) length (number of

trials) of the first epoch.

Case 1. [E[σ] ≥ L], with the expectation taken over the observations made by the algorithm.

In this case, we claim that the algorithm will suffer an expected regret Ω(L∆2). To see this,
observe that H(Y2) ≥ H(Y2|I2) ≥ log 2−γ, which follows from Fact A.1. Therefore, by Lemma A.5,
we have that the random variable Y2 is distributed as a Bernoulli B(p) with parameter p such that
|p− 1

2 | ≤
√

5 ln(4)γ/16 =
√

(5 ln 4)/2/16, which follows from the fact that γ < 1/32. Therefore we
have that the best arm i∗2 will realize to have a large reward µi∗2 = 1/2 + ∆2 with probability at

least 1/2−
√

(5 ln 4)/2/16, giving us that the expected regret of the algorithm

E[RT (alg)] ≥
(
1

2
−
√

(5 ln 4)/2

16

)
L ·∆2

=

(
1

2
−
√

(5 ln 4)/2

16

)
ǫ2

6
· ∆2

∆2
1

= Ω

(
T

2B+1
−2

2B+1
−1 · T− 2B−2

2B+1
−1

)
= Ω(Tα)

4Without loss of generality, we can assume the algorithm retains exactly a β fraction of the arms as it can always
choose to ignore the extra arms.

14

Case 2. [E[σ] < L]

Let Sσ be the outcomes observed by the algorithm over the arms sampled in epoch 1. Then by
Lemma 3.1, we have that after observing the outcomes Sσ, the best arm i∗1 will be discarded by
the algorithm (i.e. I1 /∈ M whereM is the set of arms from epoch 1 that are retained in memory
by the algorithm), and the entropy of the posterior distribution

H(Y1|Sσ, I1, I1 /∈ M) ≥ log 2− γ + ǫ

1− (log (1 + β) + γ + ǫ)

= log 2− γ + ǫ

1−
(
log
(
1 + 1

8 log e

)
+ γ + ǫ

)

≥ log 2− γ + ǫ

1−
(

log e
8 log e + γ + ǫ

)

= log 2− 10

242

with probability at least 1 − (log (1 + β)− γ − 3ǫ) ≥ 5
6 . Furthermore, since we have that E(σ) <

L = ǫ2/(6∆2
1), by Markov’s inequality, the actual number of trials σ spent in epoch 1 will be at

most 1/∆2
1 = o(T) with probability at least 1 − ǫ2/6 ≥ 1 − 10−6. There are least T − 1/∆2

1 =
T − o(T) = Ω(T) trials left in epoch 2 with a very high constant probability. In this case, the
algorithm will suffer large regret when the best arm i∗1 in epoch 1 realizes to have a large reward
µi∗1 = 1/2 + ∆1, i.e. Y1 realizes to have value 1, and the best arm i∗2 in epoch 2 realizes to have a
low reward of µi∗2 = 1/2, i.e. Y2 realizes to have value 0.

Observe that in the posterior distribution of the rewards of arms in epoch 1, the entropy in the
reward of the best arm in the first epoch H(Y1|Sσ, I1 /∈ M) ≥ H(Y1|Sσ, I1, I1 /∈ M) ≥ log 2−10/242,
and therefore, by Lemma A.5, the posterior distribution of Y1 is Bernoulli with parameter p ≥
1/2 −

√
(5 · ln 4 · 10)/(242 · 16) = 1/2 − 5

√
ln 4/44 (a constant bounded away from 0) which is the

probability with which the best arm in the first epoch actually had a large reward. Similarly, we
have that in the prior distribution of the rewards of arms in epoch 2, the reward of the best arm in
the second epoch H(Y2) ≥ H(Y2|I2) ≥ log 2−γ, and therefore, we have that the distribution of Y2 is
Bernoulli with parameter p ≤ 1/2+

√
(5 · ln 4)/(32 · 16) = 1/2+

√
(5 ln 4)/2/16. Therefore, the best

arm in the second epoch realizes to have low reward with probability at least 1/2−
√

(5 ln 4)/2/16
(a constant bounded away from 0). Therefore, we have that the expected regret of the algorithm
in this case

E[RT (alg)] ≥
5

6
·
(
1

2
− 5
√
ln 4

44

)
·
(
1

2
−
√
(5 ln 4)/2

16

)
(1− 10−6) · (T − o(T)) ·∆1

≥ Ω

(
(T − o(T)) · T− 2B−1

2B+1
−1

)
= Ω(Tα)

Therefore, the expected regret is Ω(Tα), which proves the base case.

Induction Step: Assuming the lemma is true for any number of passes up to b− 1, will show
that it also holds for b passes. Suppose for the sake of contradiction that the claim is not true for b,
i.e. there exists a b-pass algorithm alg with memory at most K(8b(b+ 1) log e)−1 whose expected

regret over rewards drawn from the distribution D{ψj}b+1
j=1

K,B is o
(
Tα4−b

)
.

The general outline will again be to show that if the algorithm ends any epoch after performing
sufficient exploration, then it will incur large regret in the case that arm i∗b+1 realizes to a large

15

mean reward, contradicting the assumption that alg has small regret. On the other hand, if the
algorithm ends all epochs with insufficient exploration, then the algorithm will not just discard all
best arms, but also the instance induced over the discarded arms will remain hard. Supposing the
algorithm achieves low expected regret over this instance in b − 1 passes, it would contradict our
induction hypothesis.

Consider any epoch j ∈ [b]. Let γ+ = 1/(32b), ǫ = 2γ+/(9b), and Lj := ǫ2/(6∆2
j). For any

epoch j ∈ [b + 1], let tj be the trial when epoch j begins, let Tj := {tj , tj + 1, · · · , tj+1 − 1} be
the trials that belong to epoch j, and let σj = |Tj| denote the number of trials in epoch j. Lastly,

let Sσj = ∪jr=1{(it, rt)}t∈Tr be the sequence of observations defining the execution history of the
algorithm until the end of epoch j with it being the arm pulled and rt being the reward realized in
trial t, respectively.

Case 1.
[
E(σj) ≥ ǫ2/(6∆2

j) for some j ∈ [b]
]
, where the expectation is over realizations of the

rewards until epoch j.

In this case, observe that the expected regret of the algorithm is Ω(Lj · ∆b+1) in the event
where the best arm in the final epoch (that has not been seen yet) realizes to have a large reward,
i.e. µi∗b+1

= 1
2 + ∆b+1. By definition of the input instance and Fact A.1, we have that H(Yb+1) ≥

H(Yb+1|Ib+1) ≥ log 2−γ. Therefore, by Lemma A.5, we have that Yb+1 is distributed as a Bernoulli
B(p) with parameter p such that |p − 1/2| ≤

√
(5γ ln 4)/16. Since γ ≤ 1/(32b), and b ≥ 2, we

have
√

5γ ln 4/16 ≤
√

(10b−1 ln 4)/32 < 1/4 − 1/6 − 1/(200b3) for b ≥ 2. Therefore, we have that
µi∗b+1

= 1/2 + ∆b+1 with probability at least 1/2 − (1/4 − 1/6− 1/(200b3)).

Therefore, the expected regret in the event that E[σj] > Lj for some j ∈ [b]

E[RT (alg)] ≥ Ω(Lj∆b+1) = Ω

(
T

2B+1
−2j

2B+1
−1 · T− 2B−2b

2B+1
−1 · ǫ2

)
= Ω

(
T

2B+2b−2j

2B+1
−1 · ǫ2

)
= Ω(Tαb−4) ,

which contradicts the assumption that the expected regret of the algorithm is o
(
Tα4−b

)
.

Case 2.
[
E(σj) < ǫ2/(6∆2

j) for all j ∈ [b]
]

In this case, we will leverage Lemma 3.1 to show that the algorithm will not be able to collect
sufficient information about i∗j and it will suffer large regret in the remaining number of passes.
Using Lemma 3.1 we will show that the conditional distribution for Ij after epoch j will have
high entropy. Let Tj ⊆ [T] be the trials that belong to epoch j. Let Sσj = {(it, rt)}t∈Tj be the
execution history of epoch j with it being the arm pulled and rt being the reward realized in trial t,
respectively. Given Sσj , letMj ⊂ Aj be the set of |Mj | = βA = K/(8b(b+ 1) log e) arms retained
by the algorithm in memory, and let Rj = Aj \ Mj be the set of |Rj | = (1 − β)A = R arms
that were rejected after epoch j. Let γ− = 1/(32(b − 1)) = bγ+/(b − 1). We first observe that by
Lemma 3.1, the entropy of the posterior

H(Ij |Sσj , Ij ∈ Rj) = H(Ij |Sσj , Ij 6∈ Mj) ≥ logR− γ + ǫ

1− (log (1 + β) + γ + ǫ)

≥ logR− γ + ǫ

1−
(
log
(
1 + 1

8b log e

)
+ γ + ǫ

)

≥ logR+

(
1 + 2

9b

)
γ+

1− (log e
8b log e + γ+ + 2γ+

9b)

= logR−
(
1 + 2

9b

)

1− (1
8b +

1
32b +

1
144b2)︸ ︷︷ ︸

x

γ+.

16

We claim that x ≤ b/(b − 1), which would imply that the entropy of the posterior H(Ij |Sσj , Ij ∈
Ej) ≥ log |Ej | − γ−. We have

x =

(
1 + 2

9b

)

1− (1
8b +

1
32b +

1
144b2

)

<
1 + 2

9b

1− (5 + 2
9)(

1
32b)

=
288b+ 64

288b− 47

<
b

b− 1
,

where the final inequality follows by observing 288b+64
288b−47 − b

b−1 = −(177b+64)
(b−1)(288b−47) < 0. The proof of the

fact that H(Yj|Sσj , Ij , Ij ∈ Rj) ≥ log 2− γ− follows by the exact same calculation.

At this point, we further argue that this supposed low regret algorithm alg cannot spend too
many trials on the first b epochs prior to processing the (b+1)th epoch with a large probability. Since
we have that E(

∑
j∈[b] σj) <

∑
j∈[b]Lj = ǫ2

∑
j∈[b](6∆

2
j)

−1, by Markov’s inequality, it must be that

Pr(
∑

j∈[b] σj ≥
∑

j∈[b]∆
−2
j) ≤ ǫ2/6 < (10b)−4. We define the event E0 := (

∑
j∈[b] σj <

∑
j∈[b]∆

−2
j)

where the actual number of trials spent by the algorithm in the first b epochs is small, and the
above calculation gives us that Pr(¬E0) < (10b)−4. Now for every j ∈ [b], let us define the event

Ej :=
(
Ij ∈ Rj and H(Ij | Sσj , Ij ∈ Rj) ≥ logR− γ− and H(Yj | Sσj , Ij , Ij ∈ Rj) ≥ log 2− γ−

)
.

Using Lemma 3.1, we have that

Pr(¬Ej) ≤ log

(
1 +

1

8b log e

)
+ γ + 3ǫ

≤ log e

8b log e
+ γ +

6γ

9b

=
1

8b
+

1

32b
+

1

96b
=

1

6b
.

where the final inequality follows by observing b ≥ 2.

Let us also define the event Eb+1 := {µi∗b+1
= 1/2}. By definition of the input instance and

Fact A.1, we have that H(Yb+1) ≥ H(Yb+1|Ib+1) ≥ log 2−γ. Therefore, by Lemma A.5, we have that
Yb+1 is distributed as a Bernoulli B(p) with parameter p such that |p−1/2| ≤

√
(5γ ln 4)/16. Since

γ ≤ 1/(32b), and b ≥ 2, we have
√

5γ ln 4/16 ≤
√
5 ln 4/32 < 1/4− 1/6− 1/(200b3). Therefore, we

have that Pr(¬Eb+1) ≤ 1/2 + (1/4 − 1/6 − 1/(200b3)). Therefore, by a union bound over all these
(b+ 2) events, we have

Pr(E0 ∩j∈[b+1] Ej) ≥ 1− 1

(10b)4
− b

6b
−
(
1

2
+

1

4
− 1

6
− 1

200b3

)
≥ 1

4

Lastly, we argue that under event E , the algorithm must necessarily spend o(T) trials in the
last epoch b + 1. This is because under event E , µ∗b+1 = 1/2, and furthermore, in the poste-

rior distribution of the reward of the best arm µi∗b of the bth epoch in the rejected set Rb is
at least H(Yb|Sσb , Ib /∈ Mb) ≥ H(Yb|Sσb , Ib, Ib /∈ Mb) ≥ log 2 − γ−, where γ− ≤ 1/(32(b − 1)).

17

Therefore, by Lemma A.5, the posterior distribution of Yb is Bernoulli with parameter p ≥
1/2 −

√
(5 · ln 4 · γ−)/16 = 1/2 −

√
(5 ln 4)/2/16 > 1/2 − 1/8, which is the probability with which

the rejected best arm in the bth epoch actually had a large reward. Therefore, if the algorithm
spends Ω(T) trials in the (b+ 1)th epoch, then the expected regret of the algorithm

E[RT (alg)] ≥ Pr(E)E[RT (alg)|E] ≥
1

4
· 3
8
· Ω(T) ·∆b

= Ω

(
T · T− 2B−2b−1

2B+1
−1

)

= Ω

(
T

2B+2b−1
−1

2B+1
−1

)
= Ω(Tα) ,

contradicting our assumption about the expected regret achieved by the algorithm. Therefore,
under event E , we have that the total number of trials spent by the algorithm in the first pass is

necessarily
∑

j∈[b+1] σj = o(T) +
∑

j∈[b]∆
−2
j = o(T) +

∑
j∈[b] T

1− 2j−1

2B+1
−1 = o(T). Therefore, the

number of trials T− left is necessarily T− = T − o(T), and only b− 1 passes left.

Now we shall use our assumption about the expected regret achievable by our algorithm to
prove that in order to achieve low expected regret overall, it must necessarily achieve low expected
regret in the remaining passes too. Let E[RT−(alg)] denote the cumulative regret of the algorithm
over the remaining b− 1 passes. Therefore, we have

E[RT (alg)] ≥ E[RT−(alg) | E] · Pr(E) =
1

4
· E[RT−(alg) | E] .

Therefore, E[RT−(alg) | E] ≤ 4E[RT (alg)] = o
(
4 · Tα · 4−b

)
= o

(
Tα · 4−(b−1)

)
. We shall use this

fact to set up a contradiction to our induction hypothesis, which at a high level says that any
(b−1)-pass algorithm with small memory must incur large regret. We begin by setting up the hard
distribution.

In our new instance, we begin by discarding the arms Ab+1 as under event E , the reward of the
best arm (and hence all arms) in this epoch (b+ 1) has realized to a low value. Our new instance
consists of all the rejected arms Rj for j ∈ [b], the first b epochs. We refer to these set of arms as
K′ = ∪j∈[b]Rj, whose size is exactly |K′| = K =

∑
j∈[b](1− β)K/(b + 1) = (1− β)bK/(b + 1).

Next, we claim that the posterior distributions over Ij ,Yj in Rj for j ∈ [b] to give us a hard
distribution over arms K′ for the (b− 1) pass algorithm. For j ∈ [b], let φj be the joint distribution

dist((Ij ,Yj) | Ij ∈ Rj), and let D{φj}bj=1

K′,B . Its easy to verify that D{φj}bj=1

K′,B satisfies the requirements
for a hard distribution for a (b − 1) pass algorithm, as the partitions {Rj} of K′ are all of equal
size |K′|/b, and for random variables (Ij ,Yj) ∼ φj for any j ∈ [b] satisfy the high entropy condition
H(Ij) ≥ log |Rj | − γ−, and H(Yj |Ij) ≥ log 2− γ−, where γ− ≤ (32(b − 1))−1 (as indicated by event
E). Furthermore, the memory budget for a (b− 1) pass algorithm for this instance is

K ′

8b(b− 1) log e
=

(1− β)bK
b+ 1

· 1

8b(b− 1) log e
>

(
1− 1

b

)
bK

b+ 1
· 1

8b(b− 1) log e
=

K

8b(b+ 1) log e
,

which is in fact larger than the memory used by alg. We shall show that we can use the behavior
of alg in the subsequent b− 1 passes under event E to construct a (b− 1)-pass algorithm with low
memory that achieves o(Tα ·4−(b−1)) expected regret on the above hard instance, which contradicts
our induction hypothesis.

Let alg− denote the algorithm alg for the remaining b− 1 passes when event E occurs. Under
the assumption that the regret RT−(alg) is small, we will construct a (b−1)-pass algorithm algb−1

18

with small memory that achieves small regret over time horizon T− = T − o(T) on the instance

D{φj}bj=1

K′,B . algb−1 is constructed as follows: if alg− pulls an arm in ∪j∈[b] supp(φj), algb−1 also
pulls the corresponding arm in K′ and returns the realized reward of the arm to alg−; otherwise,
algb−1 simply pulls an arm with distribution B(1/2) and returns the result to alg−.

It is trivially true that E[RT−(algb−1)] ≤ E[RT−(alg−) | E]. This is because, given event E , any
other arm than the arm in ∪j∈[b]supp(φj) is distributed as B(1/2). Hence, algb−1 is a (b− 1)-pass

algorithm with memory at most K ′(8b(b − 1) log e)−1 that achieves regret o(Tα · 4−(b−1)) over a
time horizon T − o(T), which is a contradiction! This completes the proof of our lower bound.

In the following section, we present our algorithmic results for this problem. Specifically, we

design an algorithm that achieves a regret of Õ

(
T

2B

2B+1
−1
√
KB

)
in B passes given even just

constant arm memory. Furthermore, our algorithm is able to achieve this regret, not just in
expectation, but also with any polynomially high probability. This regret guarantee nearly matches
the above lower bound, proving our above lower bound is nearly tight.

4 Limited Memory Multi-Pass Algorithms for Streaming Bandits

In this section, we present our worst-case and instance-dependent regret upper bounds for limited
memory multi-pass streaming bandits. The following theorem characterizes our algorithmic results.

Theorem 2 (B-Pass Upper Bound). Given a time horizon T , a stream of K arms, and number
of passes 1 ≤ B < log log T , there exists a B-pass algorithm that uses O(1) words of memory, and
with probability 1− 1/poly(T), achieves cumulative regret

RT ≤ O
(
T

2B

2B+1
−1

√
KB log T

)
.

Furthermore, supposing the arms K had mean rewards {µ∗j}j∈K, then given number of passes 1 ≤
B < log T , there exists a B-pass algorithm that uses O(1) words of memory, and with probability
1− 1/poly(T), achieves a cumulative regret

RT ≤ O

∑

j∈S

T 1/(B+1) log T +B log
(
(∆∗

j)
2T/ log T

)

∆∗
j

 ,

where S ⊂ K is the set of strictly sub-optimal arms in K, and for any sub-optimal arm j ∈ S,
∆∗
j := max{i∈K} µ

∗
i − µ∗j is the regret due to playing arm j.

Note that no assumptions are made about the stream order, and that these regret guarantees
hold even when the order of arms is allowed to change (potentially adversarially) across rounds.

In the constant pass regime, the worst-case regret achievable matches our lower bound up to
just a

√
K log T factor, implying our results are essentially tight for this regime. Our result further

implies one can achieve a worst-case regret of O(
√
KT log T · log log T) in just log log T passes over

the stream, which matches the optimal regret achievable by even an unbounded memory algorithm
up to a

√
log T log log T factor. With regards to instance-dependent regret, the picture is slightly

different where we need log T passes (though still sublinear) over the stream to achieve regret
O(
∑

j∈S(∆
∗
j)

−1 log2 T), which matches the instance-optimal regret achievable by an unbounded
memory algorithm up to a log T factor.

Moreover, observe that our upper bound has no dependence on the available memory; the
aforementioned regret guarantees can be achieved with even just constant memory. This upper

19

bound together with the lower bound from Section 3 effectively demonstrates a sharp threshold for

B-pass regret as a function of memory M : with M = O(1) one can achieve Θ̃
(
T

1
2
+ 1

2B+2
−2

)
regret,

and increasing M to any quantity that is o(K/B2) has almost no impact on further reducing this
regret. We now present our algorithm and its analysis.

4.1 Algorithm

Our proposed algorithm builds upon the classical Sequential-Elimination algorithm, where one
maintains an “active set” of arms which are played in a round-robin manner until sufficient evidence
is gathered indicating the sub-optimality of some arm, at which point it is permanently discarded
from the active set.

In our limited memory setting, it is not possible to have all arms in the active set as the number
of statistics we can save at any given time is bounded by M . Therefore, our active set is of size
roughly equal to our memory, and we play the least played arm imin ∈ M in our active set until we
gather sufficient evidence to discard a sub-optimal arm, after which the next arm from the stream
is read into our active set. This requires storing 2 statistics per arm i ∈ M in memory – the
cumulative reward observed ri, as well as the number of times the arm was played ni. For ease of
exposition, we shall assume that both of these can be stored in a single word of memory.

In addition to these arms in our active set, we reserve an additional word of memory to store
the arm ĩ (and its statistics ℓ̃) we have estimated to be the best. This arm ĩ serves two important
purposes. Firstly, it is exploited until the end of the time horizon after we have exhausted our
budget on the number of passes. Secondly, its stored statistic ℓ̃ which is a lower bound on its
estimated mean reward, is used to quickly identify and discard sub-optimal arms from memory.
This is necessary in this limited memory streaming setting as unlike the full memory setting, it
is not possible to permanently discard bad arms. Even after establishing the sub-optimality of
bad arms, their identity is forgotten when they are discarded from memory, and will be repeatedly
encountered in subsequent passes at which point it eliminating them without incurring too much
regret becomes crucial.

However, as established in our lower bound construction, the limited memory setting has an
inherent risk associated: there can be some high value arm somewhere ahead in the stream that
has not been read into memory yet, due to which overplaying the arms currently in memory can
lead to large regret. As a result, we need to maintain a careful balance between playing arms in
memory and exploring further into the stream. To address this problem, we borrow an idea from
the limited-adaptivity framework for multi-armed bandits [6, 11], where we additionally impose a
cap on the maximum number of times any arm can be played in a single pass, effectively limiting
the length of exploration to (roughly) N b in any single pass b ∈ [B]. If all arms in the active set
have been played equal to the cap for that pass without any arm being discarded, then an arbitrary
arm is ejected to make room for the next arm in the stream. This cap grows across passes, and in

pass b is roughly T
2B+1(1−1/2b)

2B+1
−1 if the objective is to minimize worst-case regret (w = 1), and T

b
B+1

if the objective is to minimize instance-dependent regret (w = 0). Intuitively, one can think of this
as approximating the mean rewards of arms with an increasingly finer precision across passes. If a
crude estimate of the reward suffices to discard a suboptimal arm, then it does so. Otherwise, this
specific choice of the cap ensures that this arm has not been explored enough to incur significant
regret. The following is a formal description of this algorithm.

It is clear that Algorithm 1 uses memory at most M , and performs B passes over the stream
given any input parameters M,B. Furthermore, observe that while we allow for larger memory,
our algorithm just needs M = 2 words of memory. We shall now analyze the regret guarantees of

20

Algorithm 1 Memory Bounded Successive Elimination

Input. Memory M ; number of passes B; time horizon T ;

variable w =

{
1, if minimizing worst-case regret

0, if minimizing instance-dependent regret

Let arms in memoryM← ∅, N0 ← 1.
Set aside a single word of memory: set (estimated) best arm ĩ← ∅, lower confidence bound ℓ̃← 0

for pass b = 1, . . . , B do
Set the maximum number of pulls across all arms in pass b,

N b ←

T

2B

2B+1
−1

√
N b−1, if w = 1 (minimize worst-case regret)

T
1

B+1N b−1, if w = 0 (minimize instance-dependent regret)

For all arms i ∈ M, set nbi ← 0, and rbi ← 0
while pass is not finished do

while |M| < M − 1 do
M←M∪ {i}, where i is the next arm in the stream that is not already in memory.
Set number of pulls nbi ← 0, cumulative reward rbi ← 0

end while
Let imin ← argmini∈M nbi be the least played arm in memory (ties broken arbitrarily)
if
(
nbimin

≥ N b/(KB) and w = 1
)
or
(
nbimin

≥ N b and w = 0
)
then

Discard an arbitrary arm i ∈M from memory;M←M\ {i}
else

Play arm imin once, and observe reward r
Update rbimin

← rbimin
+ r, and nbimin

← nbimin
+ 1

end if

Update ℓ̃← maxi∈M rbi/n
b
i −

√
(5 log T)/nbi ; and ĩ← argmaxi∈M rbi/n

b
i −

√
(5 log T)/nbi

if there exists an arm j ∈ M such that rbj/n
b
j +

√
(5 log T)/nbj < ℓ̃ then

Discard arm j from memory;M←M\ {j}
end if

end while
end for
Play the estimated best arm ĩ until the end of the time horizon

Algorithm 1, which are restated here for convenience.

4.2 Analysis for Worst-Case Regret (w = 1)

As mentioned earlier, our algorithm cleverly balances playing the arms currently in memory, thereby
gathering valuable information about them, and quickly exploring ahead into the stream to find
potential high value arms by setting a cap (≈ N b) on the maximum number of times any arm i
can be played in any pass b. This cap is raised across passes in a systematic way, with the choice
of growth rate guaranteeing that the total regret incurred due to playing suboptimal arms will be
small.

At a high level, our proof shows that if across all passes b ∈ [B], the observed mean rewards rbj/n
b
j

for all arms j ∈ K are not too far from their true mean rewards µ∗j , then the estimated best arm ĩ at
the end of any pass b is a good proxy for the true best arm i∗ for that pass. Specifically, the mean

21

reward of ĩ closer to the mean reward of i∗ than the precision (≈
√

1/N b) with which we estimate
the means in that pass. This can be used to eliminate any bad arms that are distinguishable from
the best arm in pass b (based on the precision set for that pass), but only starting the following
pass b+1. Due the delayed nature of this information, i.e. the estimated best arm becomes “good
enough” for elimination purposes in a pass b only after the true best arm, (or a good proxy for it)
are encountered in the stream in that pass b. Therefore, suboptimal arms that transitioned from
being indistinguishable in pass b − 1 to distinguishable in pass b, and appeared early on in the
stream can potentially be overplayed because the estimated best arm has not been updated yet.
This would incur more regret than is desirable, but only up to a multiplicative T 2B/(2B+1−1) factor
(matching our B-pass lower bound) due to our choice (N b) of the cap on the number of times an
arm can be played in any pass. This gives our final guarantee on the upper bound on the regret of
our algorithm.

We shall now formally prove this bound on the worst-case regret achieved by our algorithm. We
begin with the following simple lemma, which bounds the deviation in the observed mean rewards
of any arm from its true mean reward. Specifically, this lemma says that whenever an arm is stored
in memory, its true mean reward will lie within a confidence ball of radius O(

√
log T/n) if it has

been played n times since being read into memory. Furthermore, this property would hold for all
arms across all rounds with a polynomially large probability.

Lemma 4.1. Let K be the set of arms in the stream, where arm i ∈ K has mean reward µ∗i , and
let B be the total number of passes. Whenever arm an i ∈ K is present in memory in pass b ∈ [B]
of the stream, we define the event

Ei,b :=
∣∣∣∣µ

∗
i −

rbi
nbi

∣∣∣∣ <
√
c log T

nbi
,

where rbi represents the observed cumulative reward of arm i in the bth pass, nbi represents the
number of times arm i was played in the bth pass, and c ≥ 5 is any constant. Then we have that
the event E := ∩i∈K,b∈[B]Ei,b occurs with probability at least 1− 2/T c−4.

Proof. Consider any fixed arm i ∈ K. We shall assume that the rewards for this arm are sampled
from the corresponding reward distribution, and written on a tape (of length at most T). Whenever
the algorithm chooses to play this arm i in some round, it simply reads the realized reward from
the next cell on the tape. By definition, as long as an arm is in memory, the algorithm maintains
a running average of the observed rewards of that arm, resetting the running average every time it
starts a new pass or loads the arm into memory, treating the last cell on the tape as a new starting
point for counting rewards for this arm. For a fixed starting point on the tape after which it started
keeping count of the rewards for the arm, the probability that |µ∗i −ri/ni| ≥

√
c log T/ni for a fixed

value of ni is at most 2/T c by Hoeffding’s inequality. Therefore, the probability that this event
occurs for some starting point on the tape and some value of ni, by a union bound, is at most
2/T c−2. Observe that this event is exactly ¬Ei,b for some fixed pass b, as the running average is
reset (either when the arm was in memory at the start of the pass, or was first loaded into memory
at some point during that pass) at most once during that pass. Therefore, for any fixed arm i ∈ K,
the probability that event ¬Ei,b occurs for some pass b ∈ [B], by a union bound over the passes,
is at most 2B/T c−2. Finally, taking a union bound over all arms, the probability that event ¬Ei,b
occurs for some pass arm i ∈ K, and some pass b ∈ [B] is at most 2KB/T c−2. This gives us our
claimed bound, since K,B ≤ T .

22

For simplicity, we assume c = 5 in Algorithm 1 and in the subsequent proof, which gives us that
the above defined “good event” of interest occurs with probability at least 1−2/T . Henceforth, we
shall assume that this event occurs, following which our regret guarantees hold with probability 1.

Proof. (of Theorem 2 (worst-case upper bound)) Let E := ∩i∈K,b∈[B]Ei,b be the good event of interest
defined in Lemma 4.1. Then we shall prove that conditioned on event E , the cumulative regret RT
of Algorithm 1 set for worst-case regret minimization (w = 1) is

RT ≤ O
(
T

2B

2B+1
−1

√
KB log T

)
,

with probability 1. Prior to formally proving this, observe that this also automatically implies a

E[RT] ≤ O
(
T

2B

2B+1
−1
√
KB log T

)
result for the expected regret of our algorithm as

E[RT] = Pr(E)E[RT | E] + (1− Pr(E))E[RT | ¬E]

≤
(
1− 1

poly(T)

)
E(RT |E) +

1

poly(T)
· T

≤ O
(
T

2B

2B+1
−1

√
KB log T

)

Let µ∗max := maxi∈K µ∗i be the largest expected reward of any arm in the stream, and let
S := {j ∈ K : µ∗j < µ∗max} be the set of all suboptimal arms, with ∆j := µ∗max−µ∗j being the regret
due to playing any suboptimal arm j ∈ S. Furthermore, let i∗ ∈ K \ S be any arbitrary optimal
arm, which we shall henceforth refer to as the best arm.

For any pass b ∈ [B] and any arm j ∈ K, let mb
j be the maximum number of times arm j was

played in pass b. Furthermore, let Rbj = mb
j∆j be the regret incurred by the algorithm by playing

arm j in the bth pass, and subsequently, let Rb =
∑

j∈S R
b
j be the total regret incurred in the bth

pass. Finally, let Rĩ be the regret incurred by playing the estimated best arm ĩ at the end of the
Bth pass until the end of the time horizon. Therefore, we have that

RT =
∑

b∈[B]

Rb +Rĩ =
∑

j∈S
R1
j +

B∑

b=2

∑

j∈S
Rbj +Rĩ ≤

T
2B

2B+1
−1

B
+

B∑

b=2

∑

j∈S
Rbj +Rĩ,

where the final inequality follows by observing that the maximum number of times any arm is

played in the first pass is at most T
2B

2B+1
−1/(KB).

We shall now present the key implication of event E , which basically guarantees that the best
arm i∗ will necessarily be played the maximum allowable number of times in every pass, i.e. i∗

cannot be prematurely discarded from memory after it has been read in the stream. This gives us
certain desirable guarantees about the true mean reward of the estimated best arm saved in ĩ, as
well as the maximum number of times mb

j any suboptimal arm j ∈ S can be played in any pass
b ≥ 2, which will be crucial in bounding the cumulative regret of the algorithm.

Claim 4.2. Given that event E occurs, arm i∗ will necessarily be played N b/(KB) times in every
pass b ∈ [B]. Consequently, for any pass b ≥ 2, we have

ℓ̃ ≥ µ∗max − 2
√

(5KB log T)/N b−1,

at all times in pass b.

23

Proof. This follows by observing that ℓ̃ can never exceed µ∗max at any point during the execution
of the algorithm. This is because for any arm j ∈ K, event E guarantees that its observed mean

reward rbj/n
b
j < µ∗j+

√
(5 log T)/nbj in every pass b ∈ [B], which guarantees rbj/n

b
j−
√

(5 log T)/nbj <

µ∗j ≤ µ∗max. Furthermore, for the best arm i∗, we have that rbi∗/n
b
i∗ > µ∗max −

√
(5 log T)/nbi∗ in

every pass b ∈ [B], which guarantees rbi∗/n
b
i∗ +

√
(5 log T)/nbi∗ > µ∗max. Therefore, the only way

the best arm can be discarded from memory in any pass is if the memory was full with all arms in
memory having been played N b/(KB) times without being eliminated.

To see why this implies a lower bound on the value of ℓ̃ in any pass b ≥ 2, observe that the best
arm i∗ was played mb−1

i∗ = N b−1/(KB) times in the previous pass, implying that the observed mean

reward of the best arm i∗ at the end of pass b− 1 was rb−1
i∗ /mb−1

i∗ ≥ µ∗max −
√

(5KB log T)/N b−1.

Therefore, the value of ℓ̃ at the end of pass b− 1 is at least µ∗max− 2
√

(5KB log T)/N b−1, with the
claim following from the fact that ℓ̃ is a strictly increasing value.

We are now ready to bound the cumulative regret Rbj due to playing any suboptimal arm j ∈ S
in any pass b ≥ 2. Let mb

j be the final time arm j was played in round b. Since suboptimal arm j
was played that one last time, it must be the case that

rbj/(m
b
j − 1) +

√
(5 log T)/(mb

j − 1) ≥ ℓ̃, (6)

where ℓ̃ was the value of the largest lower confidence bound at that moment. Furthermore, by
definition of event E and Claim 4.2, it must be that

rbj/(m
b
j − 1) < µ∗j +

√
(5 log T)/(mb

j − 1), and ℓ̃ ≥ µ∗max − 2
√

(5KB log T)/N b−1. (7)

Substituting these bounds into Equation 6, we get

∆j < 2
√

(5 log T)/(mb
j − 1) + 2

√
(5KB log T)/N b−1,

and therefore, the cumulative regret due to playing arm j ∈ S in pass b ≥ 2 is at most

Rbj = mb
j∆j

< 2mb
j

√
(5 log T)/(mb

j − 1) + 2mb
j

√
(5KB log T)/N b−1

< 2
√

6mb
j log T + 2mb

j

√
(5KB log T)/N b−1,

Therefore, the total regret in pass b ≥ 2 is given by

Rb =
∑

j∈S
E(Rbj |E)

≤ 2
∑

j∈S

√
6mb

j log T +
∑

j∈S
2mb

j

√
5KB log T

N b−1

≤ 2
∑

j∈S

√
6mb

j log T +
2N b

B

√
5KB log T

N b−1

≤ 2
∑

j∈S

√
6mb

j log T + 2T
2B

2B+1
−1

√
5K log T

B
,

24

where the penultimate inequality follows due to the fact that in any pass b ∈ [B],
∑

j∈S m
b
j ≤

|S|N b/(KB) ≤ N b/B, and the final inequality follows due to the fact thatN b = T 2B/(2B+1−1)
√
N b−1.

Therefore, the cumulative regret in the first B passes is

B∑

b=2

Rb ≤ 2

B∑

b=2

∑

j∈S

√
6mb

j log T +

B∑

b=2

2T
2B

2B+1
−1

√
5K log T

B

≤ 4
√

6 log T

B∑

b=2

∑

j∈S

√
mb
j + 2T

2B

2B+1
−1

√
5KB log T .

Due to the nature of the total number of pulls N b in any pass b ∈ [B], we have
∑B

b=2

∑
j∈S m

b
j ≤

2NB/B. Applying Jensen’s inequality to the concave function f(x) =
√
x, we have

1

|S|B

B∑

b=2

∑

j∈S

√
mb
j ≤

√√√√ 1

|S|B

B∑

b=2

∑

j∈S
mb
j ≤

1

B

√
2NB

|S| ,

giving us
B∑

b=2

∑

j∈S

√
mb
j ≤

√
2|S|NB ≤

√
2KNB .

Now observe that NB = T
1− 1

2B+1
−1 , giving us our final bound on the cumulative regret of the

algorithm in the first B passes as

B∑

b=2

Rb ≤ O
(
T

2B

2B+1
−1

√
KB log T

)
.

We shall finally bound the cumulative regret Rĩ due to playing the estimated best arm ĩ until
the end of the time horizon. Since this estimated best arm ĩ was responsible for setting the final
value of ℓ̃ at the end of the Bth pass, it must be the case that µ∗

ĩ
> ℓ̃ > µ∗max−2

√
(5KB log T)/NB ,

with the final inequality following due to Claim 4.2, which guarantees that

∆ĩ < 2
√

(5KB log T)/NB .

Furthermore, arm ĩ can be played at most T times after pass B until the end of the time horizon,
giving us that the regret due to playing arm j

Rĩ < T∆ĩ < 2T
√

(5KB log T)/NB = T
2B

2B+1
−1

√
5KB log T ,

where the final inequality follows by observingNB = T
1− 1

2B+1
−1 , and therefore, T√

NB
= T

1
2
+ 1

2(2B+1
−1) =

T
2B

2B+1
−1 . Combining these bounds on R1,

∑B
b=2R

b, and Rĩ, we get our claimed bound on the cu-
mulative regret achieved by our algorithm. This concludes the proof of Theorem 2 for worst-case
regret.

We shall now analyze the regret of Algorithm 1 when it is set to minimizing instance-dependent
regret (w = 0).

25

4.3 Analysis for Instance-Dependent Regret (w = 0)

The analysis of the instance-dependent regret of Algorithm 1 is conceptually identical to the pre-
vious analysis. It is based on this same intuition that the estimated best arm is a good enough
proxy to eliminate distinguishable bad arms from memory, but there is this delay in information
due to the best arm (or a proxy for the best arm) can be encountered very late in the stream
in some pass, causing some bad arms that just transitioned from being indistinguishable in the
previous pass to being distinguishable in the current pass, to be potentially overplayed but only up
to a multiplicative T 1/(B+1) factor. The additional additional B factor comes from the fact that
the identities and statistics of discarded arms is forgotten, due to which the suboptimality of even
distinguishable arms has to be repeatedly established in every subsequent pass. Even though the
suboptimality of any distinguishable arm can be established in a future pass while incurring the
optimal regret in that pass, this process has to be repeated in every pass until B. We now formally
prove the claimed instance-dependent regret guarantee.

Proof. (of Theorem 2 (instance-dependent upper bound)) Let E := ∩i∈K,b∈[B]Ei,b be the good event
of interest defined in Lemma 4.1. We shall prove that conditioned on event E , the cumulative regret
of Algorithm 1 set for instance-dependent regret minimization (w = 0) is

RT ≤ O

∑

j∈S

T 1/(B+1) log T +B log
(
(∆∗

j)
2T/ log T

)

∆∗
j

 ,

with probability 1. We note that since event E occurs with a polynomially large probability as
proved in Lemma 4.1, this also implies the same bound on the expected regret of the aforementioned
algorithm.

Let µ∗max := maxi∈K µ∗i be the largest expected reward of any arm in the stream, and let
S := {j ∈ K : µ∗j < µ∗max} be the set of all suboptimal arms, with ∆j := µ∗max−µ∗j being the regret
due to playing a suboptimal arm j ∈ S. Furthermore, let i∗ ∈ K \ S be any arbitrary optimal arm,
which we shall henceforth refer to as the best arm.

For any pass b ∈ [B] and any arm j ∈ K, let mb
j be the maximum number of times arm j was

played in pass b. Furthermore, let Rbj = mb
j∆j be the regret incurred by the algorithm by playing

arm j in the bth pass, and subsequently, let Rj =
∑

b∈[B]R
b
j be the total regret due to playing a

suboptimal arm j ∈ S. Finally, let Rĩ be the regret incurred by playing the estimated best arm ĩ
at the end of the Bth pass until the end of the time horizon. Therefore, we have that

RT =
∑

j∈S
Rj +Rĩ =

∑

j∈S

∑

b∈[B]

Rbj +Rĩ.

As before, we shall use a crucial implication of event E to bound the instance-dependent regret
of our algorithm. The following claim is the analog of Claim 4.2 in this setting, with a minor
difference due to the fact that an arm is played a maximum of N b times in epoch b when minimizing
instance-dependent regret (w = 0) as compared to N b/(KB) when minimizing worst-case regret
(w = 1).

Claim 4.3. Given that event E occurs, arm i∗ will necessarily be played N b/(KB) times in every
pass b ∈ [B]. Consequently, for any pass b ≥ 2, we have

ℓ̃ ≥ µ∗max − 2
√

(5 log T)/N b−1,

at all times in pass b.

26

The proof of this claim follows identically to that of Claim 4.2. For any suboptimal arm
j ∈ S, we define the distinguishing pass bj to be the smallest value of b ∈ [B] such that ∆∗

j >

4
√

(5 log T)/T b/(B+1). Intuitively, this represents the pass in which the precision to which we
estimate the gap parameters exceeds the value of ∆∗

j , due to which it becomes possible to efficiently
infer the sub-optimality of arm j. We now claim that in any pass b > bj, arm j will be played
mb
j ≤ 80 log T/(∆∗

j)
2 times in that pass. To see this, observe that in any pass b > bj we have that

ℓ̃ ≥ µ∗max − 2
√

(5 log T)/N b−1

≥ µ∗max − 2
√

(5 log T)/N bj

> µ∗max −∆∗
j/2

= (µ∗max + µ∗j)/2.

Now in pass any pass b > bj , event E further guarantees that after any nbj pulls of arm j, we will
have

rbj/n
b
j +

√
(5 log T)/nbj < µ∗j + 2

√
(5 log T)/nbj

(a)
< µ∗j +∆∗

j/2

= (µ∗max + µ∗j)/2,

where equation (a) follows by supposing arm j was actually played 80 log T/(∆∗
j)

2 times in that

pass. This would guarantee that arm j will be discarded from memory after 80 log T/(∆∗
j)

2 pulls.

Therefore, we have that the number of times arm j is played in pass b ∈ [B] is bounded as mb
j ≤ N b

for b ≤ bj and mb
j ≤ 80 log T/(∆∗

j)
2 for b > bj, giving us the total regret due to playing arm j as

Rj =
∑

b∈[B]

Rbj

=
∑

b∈[B]

mb
j∆

∗
j

≤
∑

b≤bj
N b∆∗

j +
∑

b>bj

80 log T

(∆∗
j)

2
∆∗
j

≤ ∆∗
j

bj∑

b=1

T b/(B+1) + (B − bj − 1)
80 log T

∆∗
j

≤ ∆∗
j

(
T 1/(B+1)(T bj/(B+1) − 1)

T 1/(B+1) − 1

)
+ (B − bj − 1)

80 log T

∆∗
j

= ∆∗
j

((
1 +

1

T 1/(B+1) − 1

)(
T bj/(B+1) − 1

))
+ (B − bj − 1)

80 log T

∆∗
j

Observe that bj is the smallest value of b ∈ [B] such that ∆∗
j > 4

√
(5 log T)/T b/(B+1), implying

∆∗
j ≤ 4

√
(5 log T)/T (bj−1)/(B+1), giving us

T bj/(B+1) ≤ 80

(∆∗
j)

2
T 1/(B+1) log T, and bj >

(B + 1)

log T
log

(
80 log T

(∆∗
j)

2

)
.

27

Therefore, substituting these values into the above equation, and using the fact that (B +1) ≤
log T , we get

Rj ≤ O

T 1/(B+1) log T +B log

(
(∆∗

j)
2T/ log T

)

∆∗
j

 ,

and therefore,

∑

j∈S
Rj ≤ O

∑

j∈S

T 1/(B+1) log T +B log
(
(∆∗

j)
2T/ log T

)

∆∗
j

To bound Rĩ, observe that for arm ĩ, it must have been the case that ∆∗
ĩ
< 4

√
(5 log T)/NB

due to Claim 4.3. Therefore, the regret due to playing any arm ĩ until the end of the time horizon
can be bounded by

Rĩ ≤ T∆∗
ĩ
≤ T

∆∗
ĩ

(∆∗
ĩ
)2 ≤ 80T 1/(B+1) log T

∆∗
ĩ

,

where the final inequality follows from the fact that NB = T
B
B+1 . Combining these two bounds

gives us our claimed upper bound on the cumulative regret as

RT ≤ O

∑

j∈S

T 1/(B+1) log T +B log
(
(∆∗

j)
2T/ log T

)

∆∗
j

This completes the proof of our upper bound result.

5 Discussion and Conclusion

We studied the stochastic K-armed bandits problem in a limited memory, multi-pass streaming
setting, where we study the interplay between the available memory M , the number of passes B,
and the regret RT over a time horizon T . We showed that any B-pass algorithm with memory

o(K/B2) must necessarily incur Ω
(
4−BT

1
2
+ 1

2B+2
−2

)
regret in expectation. Moreover, we showed

that it is possible to achieve Õ(T
1
2
+ 1

2B+2
−2
√
KB) regret with any polynomially large probability

given B passes and just O(1) memory. These results uncover a surprising phenomenon: increasing
the memory beyond O(1) memory to any quantity that is o(K/B2) has almost no effect on reducing
the expected worst-case regret.

Our work highlights some interesting directions for future work. First, while our results are
essentially tight for constant-pass algorithms, there is a gap of 1/2B between our upper and lower
bound on the regret when B is a superconstant. Second, it might also be worth exploring the regret
landscape in the memory range of Ω(K/B2) to K−1, for superconstant B. Finally, what is the best
instance-dependent regret one can achieve in this limited-memory multi-pass streaming setting?
Our work establishes an instance-dependent regret upper bound of Õ((T 1/(B+1) +B)

∑
i∈S 1/∆∗

i),
but leaves open the question of a matching lower bound.

Acknowledgements

This work was supported in part by NSF awards CCF-1763514, CCF-1934876, and CCF-2008305.

28

References

[1] Alon, N., Matias, Y., and Szegedy, M. The space complexity of approximating the
frequency moments. J. Comput. Syst. Sci. 58, 1 (1999), 137–147.

[2] Assadi, S., and Wang, C. Exploration with limited memory: streaming algorithms for coin
tossing, noisy comparisons, and multi-armed bandits. In Proccedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26,
2020 (2020), K. Makarychev, Y. Makarychev, M. Tulsiani, G. Kamath, and J. Chuzhoy, Eds.,
ACM, pp. 1237–1250.

[3] Bubeck, S., Wang, T., and Viswanathan, N. Multiple identifications in multi-armed
bandits. In ICML (2013).

[4] Chaudhuri, A. R., and Kalyanakrishnan, S. Regret minimisation in multi-armed bandits
using bounded arm memory. In The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020 (2020), AAAI Press, pp. 10085–10092.

[5] Cover, T. M., and Thomas, J. A. Elements of information theory (2. ed.). Wiley, 2006.

[6] Gao, Z., Han, Y., Ren, Z., and Zhou, Z. Batched multi-armed bandits problem. Advances
in Neural Information Processing Systems 32 (2019).

[7] Gibbs, A. L., and Su, F. E. On choosing and bounding probability metrics. International
statistical review 70, 3 (2002), 419–435.

[8] Jin, T., Huang, K., Tang, J., and Xiao, X. Optimal streaming algorithms for multi-armed
bandits. In International Conference on Machine Learning (2021), PMLR, pp. 5045–5054.

[9] Liau, D., Song, Z., Price, E., and Yang, G. Stochastic multi-armed bandits in constant
space. In International Conference on Artificial Intelligence and Statistics, AISTATS 2018,
9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain (2018), A. J. Storkey and
F. Pérez-Cruz, Eds., vol. 84 of Proceedings of Machine Learning Research, PMLR, pp. 386–394.

[10] Maiti, A., Patil, V., and Khan, A. Streaming algorithms for stochastic multi-armed
bandits. In NeurIPS (2021).

[11] Perchet, V., Rigollet, P., Chassang, S., Snowberg, E., and Edu, S. Batched Bandit
Problems. In COLT (2015).

[12] Rathod, S. On reducing the order of arm-passes bandit streaming algorithms under memory
bottleneck, 2021.

[13] Slivkins, A. Introduction to multi-armed bandits. Found. Trends Mach. Learn. 12, 1-2
(2019), 1–286.

[14] Srinivas, V., Woodruff, D. P., Xu, Z., and Zhou, S. Memory bounds for the experts
problem. arXiv preprint arXiv:2204.09837 (2022).

[15] Yao, A. C.-C. Probabilistic computations: Toward a unified measure of complexity. In 18th
Annual Symposium on Foundations of Computer Science (sfcs 1977) (1977), IEEE Computer
Society, pp. 222–227.

29

A Information-Theoretic Preliminaries

In this section, we record some basic facts about entropy and mutual information that are used in
in this paper. The proofs can be found in [5], Chapter 2. We also prove two crucial lemmas in this
section, the first which highlights the difficulty of narrowing down the realization of a high entropy
random variable to a small set of possibilities, and the second which bounds the parameter of a
high entropy Bernoulli random variable.

Fact A.1. Let A, B, and C be three (possibly correlated) random variables.

1. 0 ≤ H(A) ≤ log |A|, and H(A) = log |A| iff A is uniformly distributed over its support.

2. I(A ;B | C) ≥ 0. The equality holds iff A and B are independent conditioned on C.

3. Conditioning can only drop the entropy: H(A | B,C) ≤ H(A | B). The equality holds iff
A ⊥ C | B.

4. Chain rule of mutual information: I(A,B ;C) = I(A ;C) + I(B ;C | A).

For two distributions φ and ψ over the same probability space, the Kullback-Leibler divergence

between φ and ψ is defined as D(φ || ψ) := EA∼φ
[
log

Prφ(A)
Prψ(A)

]
. For our proofs, we need the following

relation between mutual information and KL-divergence.

Fact A.2. For random variables A,B,C,

I(A ;B | C) = E
(b,c)∼dist(B,C)

[
D(dist(A | C = c) || dist(A | B = b,C = c))

]
.

The following fact can be proven by bounding the KL-divergence by χ2-distance (see, e.g., [7],
Theorem 5).

Fact A.3. For any two parameters 0 < p, q < 1,

D(B(p) || B(q)) ≤ (p− q)2
q · (1− q)

The following lemma outlines the difficulty in narrowing down the realization of a high-entropy
random variable to a small number of possibilities.

Lemma A.4. Let A be a random variable supported over a set of size A with entropy H(A) ≥
logA− γ for some γ ≥ 0. Then for any set S of size |S| = βA for any β < 1, we have

Pr(A ∈ S) ≤ log (1 + β) + γ .

Proof. Suppose for the sake of contradiction, there exists a set S of size |S| = βA for some β < 1
such that Pr(A ∈ S) =∑i∈S Pr(A = i) = γ′ > log(1 + β) + γ. Let pi = Pr(A = i). Then we have
that:

H(A) =
∑

i∈A
pi log

1

pi

=
∑

i∈S
pi log

1

pi
+
∑

i/∈S
pi log

1

pi

30

= γ′
∑

i∈S

pi
γ′

log
1

pi
+ (1− γ′)

∑

i/∈S

pi
(1− γ′) log

1

pi

(a)

≤ γ′ log

(
∑

i∈S

pi
γ′
· 1
pi

)
+ (1− γ′) log

(
∑

i/∈S

pi
(1− γ′) ·

1

pi

)

= γ′ log
βA

γ′
+ (1− γ′) log (1− β)A

(1− γ′)

= logA− γ′−γ′ log γ′

2β
+ (1− γ′) log 1− β

1− γ′︸ ︷︷ ︸
f(γ′)

,

where equation (a) follows by the Jensen’s inequality, as the two summations are expectations over
the concave log function over the set S and the set supp(A) \ S, respectively. One can verify that
the function f(γ′) is concave, and is maximized at γ′ = 2β/(1 + β) achieving a value of log(1 + β).
Therefore, we have that −γ′ + f(γ′) ≤ −γ′ + maxγ′ f(γ

′) < −γ by choice of γ′ > log(1 + β) + γ,
giving us

H(A) < logA− γ,
contradicting our initial assumption about the entropy of A.

Lastly, following lemma bounds the parameter of a high entropy Bernoulli random variable.

Lemma A.5. Given a Bernoulli random variable Y ∼ B(p) with entropy H(Y) ≥ 1 − γ for any
γ ≤ 1/4, then we have that ∣∣∣∣p−

1

2

∣∣∣∣ ≤
√

5γ ln 4

16

Proof. Suppose for the sake of contradiction, there exists a parameter p := 1/2 + ∆ such that

∆ >
√

5γ ln 4
16 , and for Y ∼ B(p), the entropy H(Y) ≥ 1− γ. Then we have

H(Y) ≤ (4p(1− p))1/ ln 4

= (4(1/2 −∆)(1/2 + ∆))1/ ln 4

= (1− 4∆2)1/ ln 4

≤ exp
(
−4∆2/ ln 4

)

< exp(−5γ/4)

< 1− 5γ

4
+

25γ2

32
< 1− γ,

where the final inequality follows by the fact that γ ≤ 1/4, and thus 25γ2/32 < γ/4. This
contradicts the assumption that H(Y) ≥ 1− γ.

31

	1 Introduction
	2 Problem Setting
	3 A Regret Lower Bound for Limited Memory Multi-Pass Algorithms
	3.1 Proof of Theorem 1
	3.2 Proof of Lemma 3.1
	3.3 Proof of Lemma 3.2

	4 Limited Memory Multi-Pass Algorithms for Streaming Bandits
	4.1 Algorithm
	4.2 Analysis for Worst-Case Regret (w=1)
	4.3 Analysis for Instance-Dependent Regret (w=0)

	5 Discussion and Conclusion
	A Information-Theoretic Preliminaries

