
Noname manuscript No.
(will be inserted by the editor)

A Greedy Approximation Algorithm for Minimum-Gap Scheduling

Marek Chrobak · Uriel Feige · Mohammad Taghi
Hajiaghayi · Sanjeev Khanna · Fei Li · Seffi Naor

Abstract We consider scheduling of unit-length jobs with release times and deadlines, where the ob-
jective is to minimize the number of gaps in the schedule. Polynomial-time algorithms for this problem
are known, yet they are rather inefficient, with the best algorithm running in time O(n4) and requiring
O(n3) memory. We present a greedy algorithm that approximates the optimum solution within a factor
of 2 and show that our analysis is tight. Our algorithm runs in time O(n2 log n) and needs only O(n)
memory. In fact, the running time is O(n(g∗ + 1) log n), where g∗ is the minimum number of gaps.

1 Introduction

Research on approximation algorithms up to date has focussed mostly on optimization problems that are
NP-hard. From the purely practical point of view, however, there is little difference between exponential
and high-degree polynomial running times. Memory requirements could also be a critical factor, because
high-degree polynomial algorithms typically involve computing entries in a high-dimensional table via
dynamic programming. An algorithm requiring O(n4) or more memory would be impractical even for
relatively modest values of n because when the main memory fills up, disk paging will considerably slow
down the (already slow) execution. With this in mind, for such problems it is natural to ask whether
there are faster algorithms that use little memory and produce near-optimal solutions. This direction of
research is not entirely new. For example, in recent years, approximate streaming algorithms have been
extensively studied for problems that are polynomially solvable, but where massive amounts of data need
to be processed in nearly linear time.

In this paper we focus on the problem of minimum-gap job scheduling, where the objective is to
schedule a collection of unit-length jobs with given release times and deadlines, in such a way that the
number of gaps (idle intervals) in the schedule is minimized. This scheduling paradigm was originally
proposed, in a somewhat more general form, by Irani and Pruhs [7]. The first polynomial-time algorithm
for this problem, with running time O(n7), was given by Baptiste [3]. This was subsequently improved
by Baptiste et al. [4], who gave an algorithm with running time O(n4) and space complexity O(n3). All
these algorithms are based on dynamic programming.

Marek Chrobak
Department of Computer Science, University of California, Riverside, CA 92521, USA.

Uriel Feige
Department of Computer Science and Applied Mathematics, the Weizmann Institute, Rehovot 76100, Israel.

Mohammad Taghi Hajiaghayi
Computer Science Department, University of Maryland, College Park, MD 20742, USA. The author is also with AT&T
Labs–Research.

Sanjeev Khanna
Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104, USA.

Fei Li
Department of Computer Science, George Mason University, Fairfax, VA 22030 USA.

Seffi Naor
Computer Science Department, Technion, Haifa 32000, Israel.

Our results. The main contribution of this paper is an efficient algorithm for minimum-gap scheduling
of unit-length jobs that computes a near-optimal solution. The algorithm runs in time O(n2 log n), uses
only O(n) space, and it approximates the optimum within a factor of 2. More precisely, if the optimal
schedule has g∗ gaps, our algorithm will find a schedule with at most 2g∗ − 1 gaps (assuming g∗ ≥ 1).
The running time can in fact be expressed as O(n(g∗ + 1) log n); thus, since g∗ ≤ n, the algorithm is
considerably faster if the optimum is small. (To be fair, so is the algorithm in [3], whose running time
can be reduced to O(n3(g∗ + 1)).) The algorithm itself is a simple greedy algorithm: it adds gaps one
by one, at each step adding the longest gap for which there exists a feasible schedule. The analysis of
the approximation ratio and an efficient implementation, however, require good insights into the gap
structure of feasible schedules.

Related work. Prior to the paper by Baptiste [3], Chretienne [5] studied various versions of scheduling
where only schedules without gaps are allowed. The algorithm in [3] can be extended to handle jobs of
arbitrary length, assuming that preemptions are allowed, although then the time complexity increases to
O(n5). Working in another direction, Demaine et al. [6] showed that for p processors the gap minimization
problem can be solved in time O(n7p5) if jobs have unit lengths.

The generalization of minimum-gap scheduling introduced by Irani and Pruhs [7], that we alluded
to earlier, is concerned with computing minimum-energy schedules in the power-down model. In their
model, the processor uses energy at constant rate when processing jobs and it can be turned off during
the idle periods with some additive energy penalty representing an overhead for turning the power back
on. If this penalty is at most 1 then the problem is equivalent to minimizing the number of gaps. The
algorithms from [3] can be extended to this power-down model without increasing their running times.
Note that our approximation ratio is even better if we express it in terms of the energy function: since
both the optimum and the algorithm pay n for job processing, the ratio can be bounded by 1+g∗/(n+g∗).
Thus the ratio is at most 1.5, and it is only 1 + o(1) if g∗ = o(n).

In an even more general energy-consumption model, the processor may also have the speed-scaling
capability, in addition to the power-down mechanism. The complexity of this problem had been open
for quite some time, until, just recently, Albers and Antoniadis [2] showed it to be NP-hard. The reader
is referred to that paper, as well as the surveys in [1,7], for more information on the models involving
speed-scaling.

2 Preliminaries

Basic definitions and properties. We assume that the time axis is partitioned into unit-length time slots
numbered 0, 1, By J we will denote the instance, consisting of a set of unit-length jobs numbered
1, 2, ..., n, each job j with a given release time rj and deadline dj , both integers. Without loss of generality,
rj ≤ dj for each j. By rmin = minj rj and dmax = maxj dj we denote the earliest release time and the
latest deadline, respectively.

Throughout the paper, by a (feasible) schedule S of J we mean a function that assigns jobs to time
slots such that each job j is assigned to a slot t ∈ [rj , dj] and different jobs are assigned to different slots.
If j is assigned by S to a slot t then we say that j is scheduled in S at time t. If S schedules a job at time
t then we say that slot t is busy ; otherwise we call it idle. The support of a schedule S, denoted Supp(S),
is the set of all busy slots in S. An inclusion-maximal interval consisting of busy slots is called a block.
A block starting at rmin or ending at dmax is called exterior and all other blocks are called interior. Any
inclusion-maximal interval of idle slots between rmin and dmax is called a gap.

Note that, with the above definitions, if there are idle slots between rmin and the first job then they
also form a gap and there is no left exterior block, and a similar property holds for the idle slots right
before dmax. To avoid this, we will assume that jobs 1 and n are tight jobs with r1 = d1 = rmin and
rn = dn = dmax, so these jobs must be scheduled at rmin and dmax, respectively, and each schedule must
have both exterior blocks. We can modify any instance to have this property by adding two such jobs to
it (one right before the minimum release time and the other right after the maximum deadline), without
changing the number of gaps in the optimum solution.

We call an instance J feasible if it has a schedule. We are only interested in feasible instances, so in
the paper we will be assuming that J is feasible. Checking feasibility is very simple. One way to do that
is to run the greedy earliest-deadline-first algorithm (EDF): process the time slots from left to right and
at each step schedule the earliest-deadline job that has already been released but not yet scheduled. It is

2

easy to see that J is feasible if and only if no job misses its deadline in EDF. Another way is to use the
theory of bipartite matchings: a schedule can be thought of as a matching between jobs and time slots.
We can then use Hall’s theorem to characterize feasible instances. In fact, in this application of Hall’s
theorem it is sufficient to consider only time intervals instead of arbitrary sets of time slots. This implies
that J is feasible if and only if for any time interval [t, u] we have

|Load(t, u)| ≤ u− t+ 1, (1)

where Load(t, u) = {j : t ≤ rj ≤ dj ≤ u} is the set of jobs that must be scheduled in [t, u].

Without loss of generality, we can assume that all release times are distinct and that all deadlines
are distinct. Indeed, if ri = rj and di ≤ dj for two jobs i, j, since these jobs cannot both be scheduled at
time ri, we may as well increase by 1 the release time of j. A similar argument applies to deadlines. This
modification can be obtained in time O(n log n) and it does not affect the optimum number of gaps of
J .

Scheduling with forbidden slots. It will be convenient to consider a more general version of the above
problem, where some slots in [rmin, dmax] are designated as forbidden, namely no job is allowed to be
scheduled in them. We will typically use letters X, Y or Z to denote the set of forbidden slots. A schedule
of J that does not schedule any jobs in a set Z of forbidden slots is said to obey Z. A set Z of forbidden
slots will be called viable if there is a schedule that obeys Z.

Formally, we can think of a schedule with forbidden slots as a pair (S, Y), where Y is a set of forbidden
slots and S is a schedule that obeys Y . In the rest of the paper, however, we will avoid this formalism
as the set Y of forbidden slots associated with S will be always understood from context.

All definitions and properties above extend naturally to scheduling with forbidden slots. Now, for
any schedule S we have three types of slots: busy, idle and forbidden. The definition of gaps does not
change. The support is now defined as the set of slots that are either busy or forbidden, and a block
is a maximal interval consisting of slots in the support. The support uniquely determines our objective
function (the number of gaps), and thus we will be mainly interested in the support of the schedules we
consider, rather than in the exact mapping from jobs to slots.

Inequality (1) generalizes naturally to scheduling with forbidden slots, as follows: a forbidden set Z
is viable if and only if

|Load(t, u)| ≤ |[t, u]− Z|, (2)

holds for all t ≤ u, where [t, u] − Z is the set of non-forbidden slots between t and u (inclusive). This
characterization is, however, too general for the purpose of our analysis, so in the next section we establish
additional properties of viable forbidden regions.

3 Transfer Paths

Let Q be a feasible schedule. Consider a sequence t = (t0, t1, ..., tk) of different time slots such that
t0, ..., tk−1 are busy and tk is idle in Q. Let ja be the job scheduled by Q in slot ta, for a = 0, ..., k − 1.
We will say that t is a transfer path for Q (or simply a transfer path if Q is understood from context) if
ta+1 ∈ [rja , dja] for all a = 0, ..., k−1. Given such a transfer path t, the shift operation along t moves each
ja from slot ta to slot ta+1. From the definition, this shift operation produces another feasible schedule.
For technical reasons we allow k = 0 in the definition of transfer paths, in which case t0 itself is idle,
t = (t0), and no jobs will be moved by the shift.

Note that if Z = {t0} is a forbidden set that consists of only one slot t0, then the shift operation will
convert Q into a new schedule that obeys Z. To generalize this idea to arbitrary forbidden sets, we prove
the lemma below.

Lemma 1 Let Q be a feasible schedule. Then a set Z of forbidden slots is viable if and only if there are
|Z| disjoint transfer paths for Q starting in Z.

3

Proof (⇐) This implication is simple: For each x ∈ Z perform the shift operation along the path starting
in x, as defined before the lemma. The resulting schedule Q′ is feasible and it does not schedule any jobs
in Z, so Z is viable.

(⇒) Let S be an arbitrary schedule that obeys Z. Consider a bipartite graph G whose vertex set
consists of jobs and time slots, with job j connected to slot t if t ∈ [rj , dj]. Then both Q and S can be
thought of as perfect matchings in G, in the sense that all jobs are matched to some slots. In S, all jobs
will be matched to non-forbidden slots. By the theory of bipartite matchings, there is a set of disjoint
alternating paths in G (paths that alternate between the edges of Q and S) connecting slots that are not
matched in S to those that are not matched in Q. Slots that are not matched in both schedules form
trivial paths, that consist of just one vertex.

Consider a slot x that is not matched in S. In other words, x is either idle or forbidden in schedule
S. The alternating path in G starting at x, expressed as a list of vertices, has the form: x = t0 − j0 −
t1 − j1 − ...− jk−1 − tk, where, for each a = 0, ..., k− 1, ja is the job scheduled at ta in Q and at ta+1 in
S, and tk is idle in Q. Therefore this path defines uniquely a transfer path t = (t0, t1, ..., tk) starting at
t0 = x. Note that if x is idle in Q then this path is trivial – it ends at x. This way we obtain |Z| disjoint
transfer paths for all slots x ∈ Z, as claimed.

Any set P of transfer paths that satisfies Lemma 1 will be called a Z-transfer multi-path for Q. We
will omit the attributes Z and/or Q if they are understood from context. By performing the shifts along
the paths in P we can convert Q into a new schedule S that obeys Z. For brevity, we will write

S = Shift(Q,P).

Next, we would like to strengthen the → implication in Lemma 1 by showing that Q has a Z-transfer
multi-path with a regular structure, where each path proceeds in one direction (either left or right) and
where different paths do not “cross” (in the sense formalized below). As it turns out, a general claim like
this is not true – sometimes these paths may be unique but not possess all these properties. However,
we show that in such a case the original schedule can be replaced by a schedule with the same support
and with transfer paths satisfying the desired properties.

To formalize the above intuition we need a few more definitions. If t = (t0, ..., tk) is a transfer path
then any pair of slots (ta, ta+1) in t is called a hop of t. The length of hop (ta, ta+1) is |ta − ta+1|. The

hop length of t is the sum of the lengths of its hops, that is
∑k−1
a=0 |ta − ta+1|.

A hop (ta, ta+1) of t is leftward if ta > ta+1 and rightward otherwise. We say that t is leftward
(resp.rightward) if all its hops are leftward (resp. rightward). A path that is either leftward or rightward
will be called straight. Trivial transfer paths are considered both leftward and rightward.

For two non-trivial disjoint transfer paths t = (t0, ..., tk) and u = (u0, ..., ul), we say that t and u
cross if there are indices a, b for which one of the following four-conditions holds:

ta < ub+1 < ta+1 < ub, or

ub < ta+1 < ub+1 < ta, or

ta+1 < ub < ta < ub+1, or

ub+1 < ta < ub < ta+1.

If such a, b exist, we will also refer to the pair of hops (ta, ta+1) and (ub, ub+1) as a crossing. One can
think of the first two cases as “inward” crossings, with the two hops directed towards each other, and
the last two cases as “outward” crossings, with the two hops directed away from each other.

Suppose that paths t and u are disjoint, non-trivial, and straight. It is easy to verify that if t and u
also satisfy either t0 < ul < tk < u0 or ul < t0 < u0 < tk, then these paths must cross. Interestingly, this
claim is not true if we drop the assumption that t and u are straight.

Lemma 2 As before, let Q be a feasible schedule and let Z be a viable forbidden set. Then there is a
schedule Q′ such that

(i) Supp(Q′) = Supp(Q), and
(ii) Q′ has a Z-transfer multi-path P in which all paths are straight and do not cross.

4

t4t3 t2t0

d a b c

d c a b

t1

Fig. 1 Converting a path into a straight path in the proof of Lemma 2. Path t = (t0, t1, t2, t3, t4) and its modified version
(t0, t3, t4) are marked with arrows. Jobs a, b, c are cyclically shifted.

Proof Let R be a Z-transfer multi-path for Q. Lemma 1 states that R exists. The idea of the proof is
to define a number of operations that alter Q and the paths in R, and to argue that by applying these
operations repeatedly we eventually must obtain a schedule Q′ and a set of transfer paths P that satisfy
the above conditions. Define the total hop length of R to be the sum of hop lengths of all paths in R.

Suppose thatR has a path t = (t0, ..., tk) that is not straight. Without loss of generality, t0 < t1. Let a
be the index such that t0 < t1 < ... < ta and ta+1 < ta. We have two cases. If ta+1 > t0, let b be the index
for which tb < ta+1 < tb+1. In this case we replace t by the transfer path (t0, ..., tb, ta+1, ta+2, ..., tk). The
other case is when ta+1 < t0. In this case we do two modifications. First, in Q we shift (t0, ..., ta−1), that
is for each c = 0, ..., a−1 we reschedule the job from tc in tc+1. Then we reschedule the job from ta in t0.
This does not change the support of the schedule. Next, we replace t in R by the path (t0, ta+1, ..., tk).
(See Figure 1.) Note that in both cases the new path starts at t0, ends at tk, and satisfies the definition
of transfer paths. Further, this modification reduces the total hop length of R.

t0 t3 t2t1 u0u1u2u3

a g b f e c

a g b f e c

Fig. 2 Removing path crossings in the proof of Lemma 2. Path t = (t0, t1, t2, t3) and its modified version (t0, u2, u3)
are marked with solid arrows; path u = (u0, u1, u2, u3) and its modified version (u0, u1, t1, t2, t3) are marked with dashed
arrows. The crossing that is being removed is between hops (t0, t1) and (u1, u2).

Consider now two paths in R that cross, t = (t0, ..., tk) and u = (u0, ..., ul). Without loss of generality,
we can assume that the hops that cross are (ta, ta+1) and (ub, ub+1), where ta < ta+1. We have two cases,
depending on the type of crossing. If ta < ub+1 < ta+1 < ub (that is, an inward crossing), then we replace
t and u in R by paths (t0, ..., ta, ub+1, ..., ul) and (u0, ..., ub, ta+1, ..., tk). (See Figure 2 for illustration.) It
is easy to check that these two paths are indeed correct transfer paths starting at t0 and u0 and ending
at ul and tk, respectively. The second case is that of an outward crossing, when ub+1 < ta < ub < ta+1.
In this case we also need to modify the schedule by swapping the jobs in slots ta and ub. Then we replace
t and u in R by (t0, ..., ta, ub+1, ..., ul) and (u0, ..., ub, ta+1, ..., tk). This modification reduces the total
hop length of R.

Each of the operations above reduces the total hop length of R; thus, after a sufficient number of
repetitions we must obtain a set R of transfer paths to which none of the above operations will apply.
Also, these operations do not change the support of the schedule. Let Q′ be the schedule Q after the

5

steps above and let P be the final set R of the transfer paths. Then Q′ and P satisfy the properties in
the lemma, completing the proof.

.

Fig. 3 An illustration of the structure of transfer paths that satisfy Lemma 2. Busy slots are lightly shaded and forbidden
slots are dark shaded.

Note that even if P satisfies Lemma 2, it is still possible that opposite-oriented paths traverse over
the same slots. If this happens, however, then one of the paths must be completely “covered” by a hop
of the other path, as summarized in the corollary below. (See also Figure 3.)

Corollary 1 Assume that P is a Z-transfer multi-path for Q that satisfies Lemma 2, and let t =
(t0, ..., tk) and u = (u0, ..., ul) be two paths in P, where t is leftward and u is rightward. If there are any
indices a, b such that ta+1 < ub < ta then ta+1 < u0 < ul < ta, that is the whole path u is between ta+1

and ta. An analogous statement holds if t is rightward and u is leftward.

We would like to make here an observation that, although not used in our analysis later, may be of
its own interest. If two paths t,u ∈ P satisfy the condition in Corollary 1 then we will say that t eclipses
u. If t eclipses u and u is straight then the total hop length of t must be greater than the total hop
length of u. This implies that this eclipse relation is a partial order on P, as long as P satisfies Lemma 2.

4 The Greedy Algorithm

Our greedy algorithm LVG (for Longest-Viable-Gap) is very simple: at each step it creates a maximum-
length gap that can be feasibly added to the schedule. (Recall that we assume the instance J to be
feasible.) More formally, we describe this algorithm using the terminology of forbidden slots.

Algorithm LVG: Initialize Z0 = ∅. The algorithm works in stages. In stage s = 1, 2, ..., we do this: If Zs−1
is an inclusion-maximal forbidden set that is viable for J then schedule J in the set [rmin, dmax]−Zs−1
of time slots and output the computed schedule SLVG. (The forbidden regions then become the gaps of
SLVG.) Otherwise, find the longest interval Xs ⊆ [rmin, dmax] − Zs−1 for which Zs−1 ∪ Xs is viable and
add Xs to Zs−1, that is Zs←Zs−1 ∪Xs.

Note that after each stage the set Zs of forbidden slots is a disjoint union of the forbidden intervals
added at stages 1, 2, ..., s. In fact, by the algorithm, any two consecutive forbidden intervals in Zs must
be separated by at least one busy time slot.

4.1 Approximation Ratio Analysis

We now show that the number of gaps in schedule SLVG is within a factor of two from the optimum. More
specifically, we will show that the number of gaps is at most 2g∗ − 1, where g∗ is the minimum number
of gaps in any schedule of J . (We assume that g∗ ≥ 1, since for g∗ = 0 it is easy to see that SLVG will not
contain any gaps.)

6

Proof outline. The outline of the proof is as follows. We start with an optimal schedule Q0, namely
the one with g∗ gaps, and we will gradually modify it by introducing forbidden regions computed by
Algorithm LVG. The resulting schedule, as it evolves, will be called the reference schedule and denoted
Qs. The construction of Qs will ensure that it obeys Zs, that the blocks of Qs−1 will be contained in
blocks of Qs, and that each block of Qs contains some block of Qs−1. As a result, each gap in the reference
schedule shrinks over time and will eventually disappear.

The idea of the analysis is to charge forbidden regions Xs either to the blocks or to the gaps of Q0.
We will show that there are two types of forbidden regions, called oriented and disoriented, that each
interior block of Q0 can intersect at most one disoriented region (while exterior blocks cannot intersect
any), and that introducing each oriented region causes at least one gap in the reference schedule to
disappear. Further, each disoriented region intersects at least one block of Q0. Therefore the total number
of forbidden regions is bounded by the number of interior blocks plus the number of gaps in Q0, which
add up to 2g∗ − 1.

Construction of reference schedules. The first thing we need to do is to specify how we compute the
reference schedule for each stage s of the algorithm. Let m be the number of stages of Algorithm LVG
and Z = Zm. For the rest of the proof we fix a Z-transfer multi-path P for Q0 that satisfies Lemma 2,
that is all paths in P are straight and they do not cross.

For any s, define Ps to be the set of those paths in P that start in the slots of Zs. Thus P1 ⊂
P2 ⊂ ... ⊂ Pm = P. Note that Ps is a Zs-transfer multi-path for Q0, so shifting along the paths in Ps
would give us a schedule that obeys Zs. However, this construction would not give us reference schedules
with the desired properties, because it can create busy slots in the middle of some gaps of the reference
schedule, instead of “growing” the existing blocks.

To formalize the desired relation between consecutive reference schedules, we introduce another defi-
nition. Consider two schedules Q, Q′, where Q obeys a forbidden set Y and Q′ obeys a forbidden set Y ′

such that Y ⊆ Y ′. We will say that Q′ is an augmentation of Q if

(a1) Supp(Q) ⊆ Supp(Q′), and
(a2) each block of Q′ contains a block of Q.

Recall that, by definition, forbidden slots are included in the support. Immediately from (a1), (a2) we
obtain that if Q′ is an augmentation of Q then the number of gaps in Q′ does not exceed the number of
gaps in Q.

Our objective is now to convert each Ps into another Zs-transfer multi-path P̂s such that if we take
Qs = Shift(Q0, P̂s) then each Qs will satisfy Lemma 2 and will be an augmentation of Qs−1. For each

path t = (t0, ..., tk) ∈ Ps, P̂s will contain a truncation of t, defined as a path t̂ = (t0, ..., ta, τ), for some
index a and slot τ ∈ (ta, ta+1].

We now describe the truncation process, an iterative procedure that constructs such reference sched-
ules. The construction runs parallel to the algorithm. Fix some arbitrary stage s, suppose that we already
have computed P̂s−1 and Qs−1, and now we show how to construct P̂s and Qs. We first introduce some
concepts and properties:

– We will maintain a set R of transfer paths, R ⊆ Ps. R is initialized to Ps−1 and at the end of the
stage we will have R = Ps. The cardinality of R is monotonically non-decreasing, but not the set R
itself; that is, some paths may get removed from R and replaced by other paths. Naturally, being a
subset of Ps, R is a Y -transfer multi-path for Q0, where Y is the set of starting slots of the paths in
R. Y is considered the current forbidden set; it will be initially equal to Zs−1 and at the end of the
stage it will become Zs. Since Y is implicitly defined by R, we will not specify how it is updated.

– An any iteration, for each path t ∈ R we maintain its unique truncation t̂. Let R̂ =
{
t̂ : t ∈ R

}
.

Similar to R, at each step R̂ is a Y -transfer multi-path for Q0, for Y defined above. Initially R̂ = P̂s−1
and when the stage ends we will set P̂s = R̂.

– W is a schedule initialized to Qs−1. We will maintain the invariant that W obeys Y and W =

Shift(Q0, R̂). At the end of the stage we will set Qs = W .

We now describe one step of the truncation process. If R = Ps, we take Qs = W , P̂s = R̂, and we are
done. Otherwise, choose arbitrarily a path t = (t0, ..., tk) ∈ Ps −R. Without loss of generality, assume
that t is rightward. We now have two cases.

7

(t1) If there is an idle slot τ in W with t0 < τ ≤ tk, then choose τ to be such a slot that is nearest
to t0. Let a be the largest index for which ta < τ . Then do this: add t to R, set t̂ = (t0, ..., ta, τ),
and modify W by performing the shift along t̂, that is move the job from ta to τ and from each tc,
c = a− 1, ..., 0 to tc+1. In this case τ will become a busy slot in W .

(t2) If no such idle slot exists, it means that there is some path u ∈ R whose current truncation
û = (u1, ..., ub, τ

′) ends at τ ′ = tk. In this case, we do this: modify W by undoing the shift along û
(that is, by shifting backwards: the job from each uc, c = 1, ..., b, is moved to uc−1 and the job from
τ ′ is moved to ub), remove u from R, add t to R, and modify W by performing the shift along t.

Note that any path t may enter and leave R several times, and each time t is truncated the endpoint
τ of t̂ gets farther and farther from t0. It is possible that the process will terminate with t̂ 6= t. However,
if at some step case (t2) applied to t, then this truncation step is vacuous, in the sense that after the
step we have t̂ = t, and from now on t will never be removed from R. These observations imply that the
above truncation process always ends.

Lemma 3 Fix some stage s ≥ 1. Then

(i) Qs is an augmentation of Qs−1.
(ii) |Supp(Qs)− Supp(Qs−1)| = |Xs|.
(iii) Furthermore, denoting by ξ0 the number of idle slots of Qs−1 in Xs, we can write |Xs| = ξ−+ξ0+ξ+,

such that Supp(Qs)− Supp(Qs−1) consists of the ξ0 idle slots in Xs (which become forbidden in Qs),
the ξ− nearest idle slots of Qs−1 to the left of Xs, and the ξ+ nearest idle slots of Qs−1 to the right
of Xs (which become busy in Qs).

Proof In the truncation process, at the beginning of stage s we have W = Qs−1. During the process, we
never change a status of a slot from busy or forbidden to idle. Specifically, in steps (t1), for non-trivial
paths the first slot t0 of t̂ was busy and will become forbidden (that is, added to Y) and the last slot
τ was idle and will become busy. For trivial paths, t0 = tk was idle and will become forbidden. In steps
(t2), if t is non-trivial then t0 was busy and will become forbidden, while tk was and stays busy. If t
is trivial, the status of t0 = tk will change from busy to forbidden. In regard to path u, observe that
u must be a non-trivial path, since otherwise û could not end at tk. So undoing the shift along û will
cause u0 to change from forbidden to busy. This shows that a busy or forbidden slot never becomes idle,
so Supp(Qs−1) ⊆ Supp(Qs).

New busy slots are only added in steps (t1), in which case τ is either in Xs, or is a nearest idle slot
to Xs, in the sense that all slots between τ and Xs are in the support of W . This implies that Qs is an
augmentation of Qs−1.

To justify (ii), it is sufficient to show the invariant that |R−Ps−1| = |Supp(W)− Supp(Qs−1)|. This
is easy to justify: the invariant holds at the beginning (both sides are 0), in each step (t1) both sides
increase by 1, and in each step (t2) both sides remain unchanged.

Finally, part (iii) follows from (i), (ii), using the fact that in steps of type (t1) the newly created busy
slot τ is the first available idle slot between t0 and tk.

Using Lemma 3, we can make the relation between Qs−1 and Qs more specific (see Figure 4). Let
h be the number of gaps in Qs−1 and let C0, ..., Ch be the blocks of Qs−1 ordered from left to right.
Thus C0 and Ch are exterior blocks and all other are interior blocks. Then, for some indices a ≤ b, the
blocks of Qs are C0, ..., Ca−1, D,Cb+1, ..., Ch, where the new block D contains Xs as well as all blocks
Ca, ..., Cb. As a result of adding Xs, in stage s the b−a gaps of Qs−1 between Ca and Cb disappear from
the reference schedule. For b = a, no gap disappears and Ca ⊂ D. In this case adding Xs causes Ca to
expand.

Two types of regions. We now define two types of forbidden regions, as we mentioned earlier. Consider
some forbidden region Xp. If all paths of P starting at Xp are leftward (resp. rightward) then we say that
Xp is left-oriented (resp. right-oriented). A region Xp that is either left-oriented or right-oriented will
be called oriented, and if it is neither, it will be called disoriented. Recall that trivial paths (consisting
only of the start vertex) are considered both leftward and rightward. An oriented region may contain a
number of trivial paths, but all non-trivial paths starting in this region must have the same orientation. A
disoriented region must contain starting slots of at least one non-trivial leftward path and one non-trivial
rightward path.

8

X7
Q6

Q7

X3X5

C4 C5 C6 C7 C8 C9

X6

X6

C4 C8 C9

X7X5 X3

D

Fig. 4 An illustration for updating reference schedules. Blocks are shaded, with forbidden regions being pattern-shaded.
The figure shows stage s = 7, when the new forbidden region X7 is added. As a result, a new block D of Q7 is created that
contains X7, as well as blocks C5, C6 and C7 of Q6. Other blocks of Q6 remain unchanged.

Charging disoriented regions. Let B0, ..., Bg∗ be the blocks of Q0, ordered from left to right. The lemma
below establishes some relations between disoriented forbidden regions Xs and the blocks and gaps of
Q0.

Lemma 4 (i) If Bq is an exterior block then Bq does not intersect any disoriented forbidden regions.
(ii) If Bq is an interior block then Bq intersects at most one disoriented forbidden region. (iii) If Xs is
a disoriented forbidden region then Xs intersects at least one block of Q0.

Proof Part (i) is simple. Without loss of generality, suppose Bq is the leftmost block, that is q = 0, and
let x ∈ B0 ∩Xs. If t ∈ P starts at x and is non-trivial then t cannot be leftward, because t ends in an
idle slot and there are no idle slots to the left of x. So all paths from P starting in B0∩Xs are rightward.
Thus Xs is right-oriented.

Now we prove part (ii). Fix some interior block Bq and, towards contradiction, suppose that there
are two disoriented forbidden regions that intersect Bq, say Xs and Xs′ , where Xs is before Xs′ . Then
there are two non-trivial transfer paths in P, a rightward path t = (t0, ..., tk) starting in Xs ∩ Bq and
a leftward path u = (u0, ..., ul) starting in Xs′ ∩ Bq. Both paths must end in idle slots of Q0 that are
not in Z and there are no such slots in Bq ∪Xs ∪Xs′ . Therefore t ends to the right of Xs′ and u ends
to the left of Xs. Thus we have ul < t0 < u0 < tk, which means that paths t and u cross, contradicting
Lemma 2, which P was assumed to satisfy.

The last part, (iii), follows directly from the definition of disoriented regions, since ifXs were contained
in a gap of Q0 then all transfer paths starting in Xs would be trivial.

Charging oriented regions. This is the most nuanced part of our analysis. We want to show that at each
stage when an oriented forbidden region is added, at least one gap in the reference schedule disappears.

To illustrate the principle of the proof, consider the first stage, when introducing the first forbidden
interval X1, and suppose that X1 is left-oriented. Assume also, for simplicity, that all slots in X1 are
busy in Q0, that is X1 is included in some block B = [fB , lB] of Q0. In this case, P1 has |X1| leftward
paths, all starting in X1 and ending strictly to the left of B, each in a different idle slot.

We now examine the truncation process that defines Q1. Imagine first that in stage 1 we always
choose the path t ∈ P1 −R whose endpoint is nearest to X1. Let G be the gap immediately to the left
of B. Since G itself is a candidate for a forbidden region, we have |G| ≤ |X1|. The path truncated in the
first iteration will end in the slot fB − 1, adjacent to B on the left, and this slot will now become busy,
extending B to a larger block. By the choice of this path, the remaining pending paths end to the left
of fB − 1. Thus the next path will get truncated at the slot fB − 2, and so on. During this process, no
truncated path will be removed from R, that is the case (t2) will never apply. This implies that after |G|
iterations all slots in G will become busy and G will disappear. If |X1| > |G|, the remaining iterations
will reduce the number of idle slots further, without increasing the number of gaps.

Next, we observe that it does not matter how the paths from P1 − R are chosen in this process –
we claim that G will disappear even if these choices are arbitrary. In this case it may happen that when
we choose some path t ∈ Ps −R, its endpoint tk may be busy, as in Case (t2). Then t will be added to
R, while the path u whose truncation û ends in tk will be removed from R. If this happens though we
have that the endpoint of u is to the left of tk. Thus eventually we will have to make |G| iterations of

9

type (t1), where the nearest still idle slot of G becomes busy, and after the last of these iterations G will
disappear.

Let us now consider the same scenario but at some stage s ≥ 2. In this case the argument is more
subtle. The difficulty that arises here is that during this process some paths from Ps−1 may be “rein-
carnated”, that is removed from R in (t2). What’s worse, these paths could even be rightward, so the
reasoning for s = 1 in the previous paragraph does not apply. To handle this difficulty, our argument
relies critically on the structure of Ps (as described in Lemma 2), and it shows that if the gap to the left
of Xs does not disappear in Qs then the gap to the right of Xs will have to disappear.

Lemma 5 If Xs = [fXs , lXs] is an oriented region then at least one gap of Qs−1 disappears in Qs.

Proof We start by making a few simple observations. If Xs contains a gap of Qs−1, then this gap will
disappear when stage s ends. Note also that Xs cannot be strictly contained in a gap of Qs−1, since
otherwise we could increase Xs, contradicting the algorithm. Thus for the rest of the proof we can assume
that Xs has a non-empty intersection with exactly one block B = [fB , lB] of Qs−1. If B is an exterior
block then Lemma 3 immediately implies that the gap adjacent to B will disappear, because Xs is at
least as long as this gap. Therefore we can assume that B is an interior block. Denote by G and H,
respectively, the gaps immediately to the left and to the right of B. By symmetry, we can assume that
Xs is left-oriented, so all paths in Ps − Ps−1 are leftward.

Summarizing, we have Xs ⊂ G ∪ B ∪ H and all sets G − Xs, B ∩ Xs, H − Xs are not empty. We
will show that at least one of the gaps G, H will disappear in Qs. The proof is by contradiction; we
assume that both G and H have some idle slots after stage s and show that this assumption leads to a
contradiction with Lemma 2, which P was assumed to satisfy.

We first give the proof for the case when Xs ⊆ B. From the algorithm, |Xs| ≥ max(|G|, |H|). By
Lemma 3, |Xs| idle slots immediately to the left or right of Xs will become busy. It is not possible that
all these slots are on one side of Xs, because then the gap on this side would disappear, contradicting
the assumption from the paragraph above. Therefore both gaps shrink; in particular, the rightmost slot
of G and the leftmost slot of H become busy in Qs.

At any step of the truncation process (including previous stages), when some path t = (t0, ..., tk) ∈ R
is truncated to t̂ = (t0, ..., ta, τ), all slots between t0 and τ are either forbidden or busy, so all these slots
are in the same block of W . This and the assumption that G and H do not disappear in Qs implies that,
in stage s, when we truncate t = (t0, ..., tk) and Case (t2) occurs, then the path u added to R must start
in B. Therefore at all steps of stage s the paths in Ps −R start in B.

Let u ∈ Ps be the path whose truncation û ends in fB − 1 (the rightmost slot of G) right after stage
s. There could be now some busy slots immediately to the left of fB − 1 introduced in stage s, but no
transfer paths start at these slots, because they were idle in Q0. Together with the previous paragraph,
this implies that u must be leftward and that it starts in B. If u does not start in Xs, it means that,
during the truncation process in stage s, it was added to R replacing some other path u′ which, by the
same argument, must also start in B. Proceeding in this manner, we can define a sequence u1, ...,up = u
of transfer paths from Ps, all starting in B, such that u1 is a leftward path starting in Xs (so u1 was
in Ps − Ps−1 when stage s started) and, for i = 1, ..., p − 1, ui+1 is the path replaced by ui in R at
some step of type (t2) during stage s. Similarly, define v to be the rightward path whose truncation ends
in the leftmost slot of H and let v1, ...,vq = v be the similarly defined sequence for v, namely v1 is a
leftward path starting in Xs and, for i = 1, ..., q− 1, vi+1 is the path replaced by vi in R. Our goal is to
show that there are paths ui and vj that cross, which would give us a contradiction.

Several steps in our argument will rely on the following simple observation which follows directly
from the definition of the truncation process. Note that this observation holds even if t is trivial.

Observation 1 Suppose that at some iteration of type (t2) in the truncation process we choose a path

t = (t0, ..., tk) ∈ Ps − R and it replaces a path t′ = (t′0, ..., t
′
l) in R (because t̂

′
ended at tk). Then

min(t′0, t
′
l) < tk < max(t′0, t

′
l).

Let ug be the leftward path among u1, ...,up whose start point ug0 is rightmost. Note that ug exists,
because up is a candidate for ug. Similarly, let vh be the rightward path among v1, ...,vq whose start
point vh0 is leftmost.

Claim We have (i) ug0 ≥ fXs
and (ii) the leftward paths in

{
u1, ...,up

}
cover the interval [fB , u

g
0], in the

following sense: for each z ∈ [fB , u
g
0] there is a leftward path ui = (ui0, ..., u

i
ki

) such that uiki ≤ z ≤ u
i
0.

10

The proof of Claim 4.1 is very simple. Part (i) holds because u1 is leftward and u10 ≥ fXs
. Property

(ii) then follows by applying Observation 1 iteratively to show that the leftward paths among ug, ...,up

cover the interval [fB , u
g
0]. More specifically, for i = g, ..., p − 1, we have that the endpoint uiki of ui

is between ui+1
0 and ui+1

ki+1
, the start and endpoints of ui+1. As i increases, uiki may move left or right,

depending on whether u is leftward or rightward, but it satisfies the invariant that the interval [uiki , u
g
0]

is covered by the leftward paths among ug, ...,ui, and the last value of uiki , namely upkp , is before fB .
This implies Claim 4.1.

Claim We have (i) vh0 < fXs
and (ii) the rightward paths in

{
v1, ...,vq

}
cover the interval [vh0 , lB], that

is for each z ∈ [vh0 , lB] there is a rightward path vj = (vj0, ..., v
j
lj

) such that vj0 ≤ z ≤ v
j
lj

.

The argument for part (ii) is analogous to that in Claim 4.1, so we only show part (i). Note that
part (i) is not symmetric to part (i) of Claim 4.1, and proving (i) requires a bit of work. We show that
if ve is the first non-trivial rightward path among v1, ...,vq then ve0 < fXs

. This ve exists because vq is
a candidate. The key fact here is that e 6= 1, because Xs is left-oriented. Since v0, ...,ve−1 are leftward,
Observation 1 implies that v0l0 > v1l1 > ... > ve−1le−1

, that is the sequence of their endpoints is decreasing.

But v0l0 ≤ v00 ∈ Xs, so we get that ve−1le−1
≤ lXs

. Applying Observation 1 again, we obtain ve0 < ve−1le−1
,

because ve is rightward. But Xs is left-oriented, so ve cannot start in Xs, which gives us ve0 < fXs , as
claimed. This completes the proof of Claim 4.1.

Continuing the proof of the lemma, we now focus on vh0 . The two claims above imply that vh0 <
ug0. Since the paths u1, ...,up cover [fB , u

g
0] and vh0 ∈ [fB , u

g
0], there is a leftward path ui such that

uia+1 < vh0 < uia, for some index a. Since the rightward paths among v1, ...,vq cover the interval [vh0 , lB]

and uia ∈ [vh0 , lB], there is a rightward path vj such that vjb < uia < vjb+1, for some index b. By these

inequalities and our choice of vh, we have

uia+1 < vh0 ≤ v
j
0 ≤ v

j
b < uia < vjb+1.

This means that ui and vj cross, giving us a contradiction.

We have thus completed the proof of the lemma when Xs ⊆ B. We now extend it to the general case,
when Xs may overlap G or H or both. Recall that both G−Xs and H −Xs are not empty. All we need
to do is to show that the idle slots adjacent to Xs ∪B will become busy in Qs, since then we can choose
paths u, v and the corresponding sequences as before, and the construction above applies.

Suppose that Xs ∩ G 6= ∅. We claim that the slot lXs
− 1, namely the slot of G adjacent to Xs,

must become busy in Qs. Indeed, if this slot remained idle in Qs then Xs ∪ {lXs
− 1} would be a viable

forbidden region in stage s, contradicting the maximality of Xs. By the same argument, if Xs ∩H 6= ∅
then the slot of H adjacent to Xs will become busy in Qs. This immediately takes care of the case when
Xs overlaps both G and H.

It remains to examine the case when Xs overlaps only one of G, H. By symmetry, we can assume that
Xs ∩G 6= ∅ but Xs ∩H = ∅. By the paragraph above, slot fXs − 1 will be busy in Qs, so we only need
to show that slot lB + 1 will be also busy. Towards contradiction, if lB + 1 is not busy in Qs, Lemma 3
implies that the nearest |Xs ∩ B| idle slots to the left of Xs will become busy. By the choice of Xs we
have |Xs| ≥ |G|, so |Xs ∩ B| ≥ |G − Xs|, which would imply that G will disappear in Qs, giving us a
contradiction. Thus lB + 1 must be busy in Qs.

Putting everything together now, Lemma 4 implies that the number of disoriented forbidden regions
among X1, ..., Xm is at most g∗− 1, the number of interior blocks in Q0. Lemma 5, in turn, implies that
the number of oriented forbidden regions among X1, ..., Xm is at most g∗, the number of gaps in Q0.
Thus m ≤ 2g∗ − 1. This gives us the main result of this paper.

Theorem 1 Suppose that the minimum number of gaps in a schedule of J is g∗ ≥ 1. Then the schedule
SLVG computed by Algorithm LVG has at most 2g∗ − 1 gaps.

11

LVG:

OPT:

8 jobs 6 jobs
2 jobs 4 jobs

4 jobs
6 jobs

...

...

...

Fig. 5 The lower-bound construction for k = 5. Only the leftmost portion of the instance is shown. Tight jobs are dark-
shaded and loose jobs are light-shaded in the schedules. Bundles are represented by bi-directional arrows spanning the
interval between the release time and deadline for this bundle and labelled by the number of jobs in the bundle.

4.2 A Lower Bound for Algorithm LVG

We now show that our analysis of Algorithm LVG in the previous section is tight. For any k ≥ 2 we show
that there is an instance Jk on which Algorithm LVG constructs a schedule with 2k − 1 gaps, while the
optimum schedule has g∗ = k gaps.
Jk has 2k tight jobs, where, for a = 0, 1, ..., k−1, the 2a’th tight job has release time and deadline equal

τ2a = (4k+ 1)a, and the (2a+ 1)’st tight job has release time and deadline equal τ2a+1 = (4k+ 1)a+ 2k.
For each tight job, except first and last, there is also an associated bundle of loose jobs. For a = 1, ..., k−1,
the bundle associated with the (2a)’th tight job has 2a identical jobs with release times τ2a − 2a and
deadlines τ2a + 2a, and the bundle associated with the (2a − 1)’th tight job has 2k − 2a identical jobs
with release times τ2a−1 − 2k + 2a and deadlines τ2a−1 + 2k − 2a. Algorithm LVG will first create k − 1
forbidden regions [τ2a−1 + 1, τ2a − 1] for a = 1, ..., k − 1, each of length 2k, and then another k regions
of length 1 inside the intervals [τ2a + 1, τ2a+1 − 1] for a = 0, 1, ..., k − 1, resulting in 2k − 1 gaps. For
a = 1, ..., k − 1, the optimum will schedule the jobs from batch 2a before τ2a, and the jobs from batch
2a− 1 after τ2a−1. This produces only k gaps [τ2a + 1, τ2a+1− 1], for a = 0, 1, ..., k− 1. The construction
is illustrated in Figure 5, which shows J5, the schedule produced by Algorithm LVG, and the optimal
schedule.

5 Implementation in Time O(n(g∗ + 1) log n)

We now show how to implement Algorithm LVG in time O(n(g∗ + 1) log n) and memory O(n), where g∗

is the optimum number of gaps. As mentioned in Section 2, we assume that initially all release times are
different and all deadlines are different. Any instance can be modified to satisfy this condition, without
affecting feasibility, in time O(n log n). We also assume that jobs 1 and n (with minimum and maximum
deadlines) are tight, that is r1 = d1 = rmin and rn = dn = dmax. By Theorem 1, the number of stages in
the algorithm is at most 2g∗− 1, so it is sufficient to show that each stage s can be implemented in time
O(n log n).

Rather than maintaining forbidden regions explicitly, our algorithm will remove these regions from
the timeline altogether. In addition, we will maintain the invariant that after each stage all release times
are different and all deadlines are different, without affecting the computed solution. Having all release
times different and all deadlines different will allow us to efficiently locate the next viable forbidden
region of maximum length. In order to maintain this invariant, at stage s, all deadlines that fall into
Xs, and possibly some earlier deadlines as well, will be shifted to the left. This needs to be done with
care; in particular, some deadlines may need to be reordered. Roughly, this will be accomplished by
assigning the deadlines moving back in time, starting from time fXs

− 1, and breaking ties in favor of
the jobs with later release times. An analogous procedure will be applied to release times, starting from
lXs + 1 and moving forward in time. After this, all release times and deadlines after lX can be reduced
by lXs

− fXs
+ 1, which has the effect of removing Xs from the timeline.

We now provide the details. We will use notation xj and yj for the release times and deadlines, as
they vary over time. Initially, (xj , yj) = (rj , dj), for all j. As explained before, we maintain the invariant
that all x1, ..., xn are different and all y1, ..., yn are different. We assume that at the beginning of each

12

stage the algorithm computes a permutation of each sequence (xj)j and (yj)j in increasing order. This
will take time O(n log n).

Finding a maximum viable forbidden region. We claim that an interval [u, v] is a viable forbidden region
if and only if it does not contain the whole range of any job, where the range of j is defined to be [xj , yj],
the interval where j can be scheduled. In other words, for any j, either xj /∈ [u, v] or yj /∈ [u, v]. Indeed,
if [u, v] contains the range of j then [u, v] is, trivially, not a viable forbidden region. On the other hand,
if [u, v] does not contain the range of any job, then we can schedule all jobs outside [u, v] as follows:
first schedule each job released before u at its release time, and then schedule all remaining jobs at their
deadlines. By the invariant described above, this is a feasible schedule.

The above paragraph implies that the maximum viable forbidden region has the form [xa + 1, yb− 1]
for two different jobs a, b such that ya ∈ [xa, yb − 1] and xb ∈ [xa + 1, yb]. We now show how to find such
a pair a, b in linear time.

We use variables a and b to store the indices of the largest viable forbidden interval [xa + 1, yb − 1]
found so far, and θ = yb − xa − 1 will be its length. Initially, we can set a = b = 1 and θ = −1. (Recall
that 1 is a special job with r1 = d1 = rmin. The values of x1 and y1 will not change during the algorithm.)
At the end, [xa + 1, yb− 1] will be the maximum forbidden interval. We use also two other indices α and
β to iterate over intervals [xα + 1, yβ − 1] that are viable forbidden regions and potential candidates for
a maximum one. For any choice of α and β, if yβ − xα − 1 > θ, we update (a, b, θ)← (α, β, yβ − xα − 1).

It remains to show how we list all candidate intervals [xα+1, yβ−1]. We start with α = β = 1. Then,
at any step we do this. If xβ ≤ xα then we choose the minimum yγ > yβ . Note that [xα + 1, yγ − 1] is
also a viable forbidden region because it does not contain xβ . So we set β← γ and continue. Otherwise,
we know that [xα + 1, yβ − 1] is the maximum viable forbidden region starting at xα + 1. In this case we
find the smallest xγ > xα, we update α← γ and proceed. Note that such γ exists and satisfies xγ ≤ yβ ,
because β itself is a candidate for γ.

At each iteration, we either increment α or β, so the total number of iterations will not exceed 2n.
Since we store all xi’s and all yi’s in a sorted order, each step will take constant time, so the overall
running time to find a maximum forbidden region is O(n).

Compressing forbidden regions. Let X = [fX , lX] denote the maximum forbidden region Xs found in the
current stage. We now want to compress X, that is remove it from the timeline. All deadlines inside X
are changed to fX−1 and all release times inside X are changed to lX +1. Next, we decrement all release
times and deadlines after lX by lX − fX + 1. Note that this operation does not change the ordering of
the xi’s or the yi’s, so their values can trivially be updated in linear time. Thus the compression stage
can be done in linear time.

The compression phase does not affect feasibility, that is a schedule that obeys X for the instance
before the compression can be converted into a schedule for the instance after the compression, and vice
versa. It is also important to observe, at this point, that in the modified instance both jobs a and b (for
which X was equal [xa + 1, yb − 1]) are now tight, that is xa = ya and xb = yb. Thus the forbidden
intervals found in the subsequent stages will not contain these two slots, guaranteeing that all found
intervals are disjoint.

As a result of compressing the schedule, different jobs may end up having equal deadlines or release
times, violating our invariant. It thus remains to show how to modify the instance to restore this invariant.

Updating release times and deadlines. We show how to update the deadlines yi; the computation for
the release times is similar. Recall that after compressing the forbidden interval X all deadlines from
this interval have been reset to fX − 1. Let K be the set of jobs whose deadlines were in X before the
compression. We set t = fX − 1 and decrement it repeatedly while updating K and the deadlines of jobs
removed from K. Specifically, this works as follows: If K = ∅, we are done. Otherwise, if there is a job
j /∈ K with yj = t, we add j to K (there can only be one such job). We then identify job k ∈ K with
maximum release time xk, remove it from K, set yk← t, and decrement t.

Here, again, we need to argue that this modification does not affect feasibility. It is sufficient to show
that for a collection K of jobs with the same deadline t, if k ∈ K has the maximum release time, then
reducing the deadlines of all jobs in K−{k} by 1 does not destroy feasibility. Indeed, this follows from a
simple exchange argument: if some other job c ∈ K is scheduled at time t then, since k is released after
c, we can exchange k and c in this schedule and thus have k scheduled at time t. This new schedule is
feasible even after all deadlines of jobs in K − {k} are reduced by 1.

13

This stage can be implemented in time O(n log n) using a priority queue to store K. Then each
insertion of a new job j (for which yj = t) and deletion of k ∈ K with maximum xk will take time
O(log n).

Output. For each s = 1, 2, ...,m, do this: let X = [fX , lX] be the forbidden region Xs found in this stage,
and let δ be the total size of the forbidden regions found by the algorithm in stages 1, 2, ..., s − 1 that
are located before fX . Then the algorithm outputs [fX + δ, lX + δ] as the forbidden region Xs. This
computation can be performed in time O(n log n).

6 Final Comments

A number of interesting questions remain open, the most intriguing one being whether it is possible
to efficiently approximate the optimum solution within a factor of 1 + ε, for arbitrary ε > 0. Ideally,
such an algorithm should run in near-linear time. We hope that our results in Section 2, that elucidate
the structure of the set of transfer paths, will be helpful in making progress towards designing such an
algorithm.

Our 2-approximation result for Algorithm LVG remains valid for the more general scheduling problem
where jobs have arbitrary processing times and preemptions are allowed, because then a job with process-
ing time p can be thought of as p identical unit-length jobs. For this case, although Algorithm LVG can be
still easily implemented in polynomial time, we do not have an implementation that would significantly
improve on the O(n5) running time from [4].

Acknowledgements. Marek Chrobak has been supported by National Science Foundation grants CCF-
0729071 and CCF-1217314. Mohammad Taghi Hajiaghayi has been supported in part by by the National
Science Foundation CAREER award 1053605, Office of Naval Research YIP award N000141110662, and a
University of Maryland Research and Scholarship Award (RASA). Fei Li has been supported by National
Science Foundation grants CCF-0915681 and CCF-1146578.

References

1. Susanne Albers. Energy-efficient algorithms. Communications of the ACM, 53(5):86–96, May 2010.
2. Susanne Albers and Antonios Antoniadis. Race to idle: new algorithms for speed scaling with a sleep state. In Proceedings

of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1266–1285, 2012.
3. Philippe Baptiste. Scheduling unit tasks to minimize the number of idle periods: a polynomial time algorithm for

offline dynamic power management. In Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 364–367, 2006.

4. Philippe Baptiste, Marek Chrobak, and Christoph Dürr. Polynomial time algorithms for minimum energy scheduling.
In Proceedings of the 15th Annual European Symposium on Algorithms (ESA), pages 136–150, 2007.

5. Philippe Chretienne. On single-machine scheduling without intermediate delays. Discrete Applied Mathematics,
156(13):2543 – 2550, 2008.

6. Erik D. Demaine, Mohammad Ghodsi, Mohammad Taghi Hajiaghayi, Amin S. Sayedi-Roshkhar, and Morteza Zadi-
moghaddam. Scheduling to minimize gaps and power consumption. In Proceedings of the ACM Symposium on Paral-
lelism in Algorithms and Architectures (SPAA), pages 46–54, 2007.

7. Sandy Irani and Kirk R. Pruhs. Algorithmic problems in power management. SIGACT News, 36(2):63–76, June 2005.

14

