Section 1: What is the problem?

Problem: How to invest in a few top performing sectors while accounting for transaction costs in online portfolio selection.

- Investors group stocks as sectors by the type of business
- Not all sectors can yield profit.
- Sectors react differently during economic conditions.

Goal: Learn the underlying structure within stocks to identify top performing sectors.

Section 2: Online Portfolio Selection

- Choose portfolio based on past stock performance: \(p_t = (p_t(1), \ldots, p_t(n)) \)
- Price relatives \(x(t) \) are the multiplicative factor by which a stock price changes
 - \(x(t) < 1 \) implies a loss
 - \(x(t) > 1 \) implies a gain
 - \(x(t) = 1 \) implies the price remained unchanged
- Maximize log gain in wealth: \(LS_T(p_1, \ldots, p_{T-1}, x_1, \ldots, x_T) = \sum_{t=1}^{T} \log(p_t^T x_t) \)

Section 3: What is the solution?

Solution: Group sparsity inducing regularizer in an online framework.

- At time \(t \) select \(p_t \) such that the regret is sublinear in \(T \): \(R_T = \sum_{t=1}^{T} \psi(p_t) - \min_{p \in P} \sum_{t=1}^{T} \psi(p^*) \leq o(T) \)
 - \(\psi(p) = f_t(p) + \lambda_1 \Omega(p) + \lambda_2 ||p - p_{t-1}||_1 \)
 - \(f_t(\cdot) \) -- convex loss function at time \(t \)
 - \(\Omega(\cdot) \) -- groupwise \(L2 \) norm for group sparsity
 - \(||\cdot||_1 \) -- \(L1 \) norm inducing lazy updates
 - Composite objective consisting of smooth and non-smooth terms.
 - Can pose online portfolio selection as special case with \(f_t(p) = -\log(p^T x_t) \)

Section 4: Online Lazy Updates with Group Sparsity (OLU-GS)

OLU-GS objective function:

\[
p_{t+1} = \arg\min_{p \in P} (\nabla f_t(p) + \lambda_1 \Omega(p) + \lambda_2 ||p - p_t||_1 + \frac{1}{2\beta} ||p - p_t||_2^2)
\]

ADMM Updates

\[
\begin{align*}
&\hat{p}_{t+1} = \arg\min_{p \in P} (\nabla f_t(p) + \frac{1}{2} ||p - p_t||_2^2 + \frac{\beta}{2} ||p - y(t)||_2^2 + \frac{1}{2} ||p - y(t)||_2^2) \\
&y(t+1) = \arg\min_{y \in P} \lambda_1 \Omega(y) + \frac{1}{2} ||y - \hat{p}_{t+1}||_2^2 \quad \text{(Closed form)} \\
&w_{t+1} = w(t) + (p_{t+1} - y(t+1)) \quad \text{(Soft thresholding on groups of variables)}
\end{align*}
\]

Analysis

- \(f_t \) is general convex: \(R_T \leq O(\sqrt{T}) \)
- \(f_t \) is strongly convex: \(R_T \leq O(\log(T)) \)

Section 5: Experiments and Results

Datasets:
- NYSE (36 stocks, 1962-1984): 8 sectors

Figure 1: As \(\lambda \) increases, the number of days with high group lasso value and active groups decrease.

Figure 2: Cyclic and Non-cyclic sectors during bear and bull market.

Figure 3: Transaction cost-adjusted wealth.

Figure 4: (a) Total Group Lasso (b) Number of Active Group changes.

Acknowledgements: The research was supported by NSF CAREER award IIS-0933274, NSF grants IIS-0916750, and IIS-1029711, and NASA grant NNX12AQ38A.