Timing Attacks
(Kocher '96)

Modular exponentiation: \(m = c^d \mod n \)

\[m = 1 \]

\[\text{for } i = 0 \ldots d-1 \text{ (d has k bits)} \]

\[\text{if } d[i] = 1: \]

\[m = c \cdot m \mod n \]

\[m = m^2 \mod n \quad \text{might sometimes be slow (repeated squaring)} \]

Hypothetically, running time depends on Hamming weight of \(d \Rightarrow \text{Bad} \)

How to turn into full attack?

Assumption:
Time taken by \(m_i = c \cdot m \mod n \) depends on \(m_i \)

\[\Rightarrow \text{if guess } d[i] \text{ wrong, no correlation} \]

We have access to the implementation and can check our work.

Attack:
1. Choose \(c_1, \ldots, c_k \) and measure time of decryption \(T_j = \sum_{i=0}^{d} t_{ij} + e_j \)
2. For bit \(b = 0 \ldots k \):
 - Guess value of \(d[0\ldots b] = d_i \)
 - Compute \(Z_j = T_j - \text{Time}(c_j; \text{main}) \)

\[Z_j \approx \sum_{i=0}^{b} t_{ij} + e_j \quad \text{if correct} \]

\[\approx \sum_{i=0}^{b} t_{ij} - (\sum_{i=0}^{b} t_{ij} + \sum_{i=b+1}^{d} s_{ij}) \quad \text{if incorrect from b} \]

3. Compute \(\text{Var}(Z_j) = \left(\sum_{i=0}^{b} \text{Var}(t_{ij}) \right) \text{ if correct} \)
\[+ \left(\sum_{i=b+1}^{d} \text{Var}(t_{ij}) \right) \quad \text{if incorrect from b} \]
Pour Analysis

Simple pour analysis
Plot pour consumption over time

Differential power analysis (DPA)
Look for statistical correlations between power traces based on intermediate computation

Block ciphers:

DES

Feistel Network

\[\text{Plaintext} \]
\[\rightarrow \text{Initial Permutation} \]
\[L_0 \quad R_0 \]
\[f \]
\[L_1 \quad R_1 \]
\[L_{15} \quad R_{15} \]
\[f \]
\[\text{Final Permutation} \]
\[\text{Ciphertext} \]

AES

Key schedule

\[\text{Key} (64 \text{bits}) \]
\[\text{Round 1} \]
\[\text{Round 2} \]
\[\text{Round 3} \]
\[\text{Mix Columns} \]

AES Rounds

\[L \]
\[R \]
\[f \]
\[L_{i-1} \]
\[\text{Expand} \]
\[D \]
\[S_1 \quad S_2 \quad \ldots \quad S_8 \]
\[\text{Permutation} \]

DES

\[L_0 \quad R_0 \]
\[f \]
\[L_1 \quad R_1 \]
\[L_{15} \quad R_{15} \]
\[f \]
\[\text{Final Permutation} \]
\[\text{Ciphertext} \]
DPA against S-boxes

\[
P_i \xrightarrow{+2 \text{ bytes of plaintext (view as in-strand)}} \]

\[
K_i \rightarrow \oplus \rightarrow S \rightarrow Z_i
\]

Assume:
- Know a bunch of traces for known plaintext EP3
- Know how cipher is implemented (like is mapping of S-boxes)

Attack:
1. Choose a "selection function"
 - \(\text{bit} 0 \) of \(Z_i \) is 0 or 1
2. For each possible \(K_i \):
 a. Compute corresponding \(Z_i \) for each \(P_i \) in sample.
 b. Sort traces into 2 piles
 \[
 \begin{align*}
 \text{ET: bit} 0 \text{ of } Z_i = 0 \Rightarrow S_0 \\
 \text{ET: bit} 0 \text{ of } Z_i = 1 \Rightarrow S_1
 \end{align*}
 \]
 c. Compute correlation:
 \[
 D_{i,j} = \frac{\sum T_{S_0}}{1501} - \frac{\sum T_{S_1}}{151,1}
 \]
3. Pick guess for \(K_i \) with "biggest spike"
4. Repeat until all key known.
Length as a side-channel

CRIME attack
(Duong & Rizzo 2012)

Summary: compress-then-encrypt is a problem
with chosen-plaintext attack + length side-channel

Kelsey 2002: compression is a side-channel

Assumption:
Attacker can control both aT requests, append k

POST / HTTP/1.1
Host: bob.com

Cookie: secret = 12345; attacker doesn't know

Cookie: secret = 0; body < attacker can control

Insight: Compressed length differs if attacker correctly guesses byte at output

LZ77 Compression Algorithm:

1. Start at beginning of stream.
 Repeat until done:
 2. Find longest match in window for lookahead buffer
 3. Output (L, L), C
 move C, copy L chars
 move back to output
 4. Move coding position L+1 chars forward
Error messages are side-channel

Blondelacker attack (1996)

Recall: PKCS#1 padding:

\[\begin{array}{c}
0101
\end{array} \]

Adaptive chosen-plaintext attack:

Attacker wants to find \(m = c^d \mod n \)

1. Choose integer \(s \), compute
 \[c' = c^s \mod n \]
2. Send \(c' \) to decryption oracle.
3. Oracle responds: if \(c' \) is PKCS\#1

 \[\Rightarrow ms = 0101 \ldots \]

 \[\Rightarrow 2^{2(k-2)} \leq ms \mod n < 3 \left(2^{8(k-2)} \right) \]
4. Progressively narrow range of possible \(m \) until done.

How does the oracle work in practice?

1. SSL servers returning different response if padding wrong vs. bad message
2. Timing side-channel
 \[\Rightarrow \text{Anley forgot right} \]
Countermesures

Blinding

Compute \(m = (c \cdot r^e)^d \cdot r^{-1} \mod n \)
- must be careful not to accidentally leak \(r \)
- can be expensive

Masking

Operate on bytes before
- must update nonlinear components, like S-boxes to masked versions
- must update markings