Srtuation Recognition

Visual Semantic Role Labeling for Image Understanding

Mg s kalr

in collaboration w/ Luke Zettlemoyer, Ali Farhadi




How can we summarize what Is happening in an image!
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s the same thing happening In two Images!
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s the same thing happening in two Images?
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turkers say... why yes!?
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s the same thing happening in two Images?
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yes somewhat no throwing  playing ball sport



s the same thing happening in two Images?
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somewhat no beer pouring glass destination source  other



Systematically describe how objects participate
N activities through roles
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Srtuation Recognition
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Srtuation Recognition
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mSrtu
A Large Scale Srtuation Dataset

| 20k+ images, 500+ verbs, |00k+ srtuations



Natural Language Processing: Semantic Role Labeling

Activity
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A boy Is fixing a car tire with a tire iron outdoors.



Natural Language Processing: Semantic Role Labeling
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Natural Language Processing: Semantic Role Labeling
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A boy is fixing a car tire with a tire iron outdoors.
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Natural Language Processing: Semantic Role Labeling
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A Jockey falling from a horse onto the ground at a racetrack.

FALLING

AGENT  SOURCE DESTINATION PLACE
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creating ImSitu

FramelNet forVerb and Role Inventory

semantic role labeling
ontology:
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creating ImSitu

. FrameNet
Visualness

filter verbs, semantic roles

~ | 000 visual verbs
~3.5 roles/verb

semantic role labeling
ontology:
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creating ImSitu
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WordNet for Noun Inventory

semantic role labeling
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creating Imsitu
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creating ImSitu
FrameNet

Visualness
WordNet
Filter Images

Fill Values

semantic role labeling
ontology:

FramelNet (8000 verbs)
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values from noun ontology: WordNet (80, 000 nouns)




creating ImSitu

Irisiie DElEsEr Steilsiics T
Visualness
; VWordNet
klz Filter Images
Fill Values
Verbs 504
Images 126,102
Situation/Image 3
Roles (types) 1,788 (190)
Nouns ( >=3) 11,538 (6,794)
Annotations 1,481,851
Images/ Verb 200-400

Unigq. situations (>= 3) 205,095 (21,505)

Despite 80,000 possible values, 2/3 annotators on 76.8% of role-value
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Srtuation Recognition

Models, Evaluation and Basic Results

structure matters
situation recognrition iImproves object and activity recognition



Neural Conditional Random Field
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Incorrect

SHAVING DETAINING GIVING
AGENT MAN PERSON AGENT | SOLDIER || AGENT | SOLDIER
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TOOL RAZOR | RAZOR
PLACE INSIDE INSIDE
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Quantrtive : Structured Prediction Crucial
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Generalize to Unseen Combinations
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Srtuations Improves Object and Activity Recognition
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Srtuations Improves Object and Activity Recognition
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http://imsitu.org

Conclusion

Introduced situation recognition
role-centric structured representation of whats happening

Collected imSitu
| 20k+ images, 500+ verbs, |00k+ situations

Introduced simple model neural CRF for srtuation

structure matters
provides strong context for activity and object recognition

data/browsing/demo/code

msitu.org



http://cs.washington.edu/homes/~my89

