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Part 1

THE FIVE CHAPTERS IN THIS FIRST PART focus squarely on whether the Ran-
dom Walk Hypothesis is a plausible description of recent US stock market
prices. At the time we started our investigations—in 1985, just a year af-
ter we arrived at the Wharton School—the Random Walk Hypothesis was
taken for granted as gospel truth. A number of well-known empirical stud-
ies had long since established the fact that markets were “weak-form effi-
cient” in Roberts’s (1967) terminology, implying that past prices could not
be used to forecast future prices changes (see, for example, Cowles and
Jones (1973), Kendall (1953), Osborne (1959, 1962), Roberts (1959, 1967),
Larson (1960), Cowles (1960), Working (1960), Alexander (1961, 1964),
Granger and Morgenstern (1963), Mandelbrot (1963), Fama (1965), and
Fama and Blume (1966)). And although some of these studies did find
evidence against the random walk, e.g., Cowles and Jones (1973), they were
largely dismissed as statistical anomalies or not economically meaningful
after accounting for transactions costs, e.g., Cowles (1960). For example,
after conducting an extensive empirical analysis of the “runs’ of US stock
returns from 1956 to 1962, Fama (1965) concludes that, . .. there is no ev-
idence of important dependence from either an investment or a statistical
point of view.”

It was in this milieu that we decided to revisit the Random Walk Hypoth-
esis. Previous studies had been unable to reject the random walk, hence we
surmised that perhaps a more sensitive statistical test was needed, one ca-
pable of detecting small but significant departures from pure randomness.
In the jargon of statistical inference, we hoped to develop a more “power-
ful” test, a test that has a higher probability of rejecting the Random Walk
Hypothesis if it is indeed false. Motivated partly by an insight of Merton’s
(1980), that variances can be estimated more accurately than means when
data is sampled at finer intervals, we proposed a test of the random walk
based on a comparison of variances at different sampling intervals. And
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14 Part 1

by casting the comparison as a Hausman (1978) specification test, we were
able to obtain an asymptotic sampling theory for the variance ratio statis-
tic almost immediately, which we later generalized and extended in many
ways. These results and their empirical implementation are described in
Chapter 2.

In retrospect, our motivation for the variance ratio test was completely
unnecessary.

Although Merton’s (1980) observation holds quite generally, H.ro over-
whelming rejections of the Random Walk Hypothesis that we obtained for
weekly US stock returns from 1962 to 1985 implied that a more powerful test
was not needed—the random walk could have been rejected on the basis
of the simple firstorder autocorrelation coefficient, which we estimated to
be 30 percent for the equal-weighted weekly returns index! We were S.;S:
completely by surprise (and carefully re-checked our programs several times
for coding errors before debuting these results in a November 1986 confer-
ence). How could such compelling evidence against the random walk be
overlooked by the vast literature we were fed as graduate students? .

At first, we attributed this to our using weekly returns—prior studies
used either daily or monthly. We chose a weekly sampling interval to Um_m.:no
the desire for a large sample size against the problems associated with high-
{requency financial data, e.g., monsynchronous prices, bid/ask “bounce,”
etc. But we soon discovered that the case against the random walk was
equally compelling with daily returns. . . .

This puzzling state of affairs sparked the series of studies contained in

Chapters 3 to 6, studies that attempted to reconcile what we, and many

others, viewed as a sharp contradiction between our statistical inferences
and the voluminous literature that came before us. We checked the ac-
curacy of our statistical methods (Chapter 3), we quantified the woma:nm_
biases introduced by nonsynchronous prices (Chapter 4), we investigated
the sources of the rejections of the random walk and traced them to large
positive cross-autocorrelations and lead/lag effects (Chapter 5), and we con-
sidered statistical fractals as an alternative to the random walk (Chapter 6).
Despite our best efforts, we werc unable to explain away the evidence against
the Random Walk Hypothesis.

With the benefit of hindsight and a more thorough review of the lit-
erature, we have come to the conclusion that the apparent inconsistency
between the broad support for the Random Walk Hypothesis and our empir-
ical findings is largely due to the common misconception that 5.@ Random
Walk Hypothesis is equivalent to the Efficient Markets Hypothesis, and the
near religious devotion of economists to the latter (see Chapter 1). Once we
saw that we, and our colleagues, had been trained to study the data through
the filtered lenses of classical market efficiency, it became clear that the
problem lay not with our empirical analysis, but with the economic implica-
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tions that others incorrected attributed to our results—unbounded profit
opportunities, irrational investors, and the like.

We also discovered that ours was not the first study to reject the random
walk, and that the departures from the random walk uncovered by Osborne
(1962), Larson (1960), Cootner (1962), Steiger (1964), Niederhoffer and
Osborne (1966), and Schwartz and Whitcomb (1977), to name just a few
examples, were largely ignored by the academic community and unknown
to us undl after our own papers were published.®> We were all in a collec-
tive fog regarding the validity of the Random Walk Hypothesis, but as we
confronted the empirical evidence from every angle and began to rule out
other explanations, slowly the fog lifted for us.

In Niederhoffer's (1997) entertaining and irreverent autobiography,
he sheds some light on the kind of forces at work in creating this fog. In
describing the Random Walk Hypothesis as it developed at the University
of Chicago in the 1960’s, he writes:

This theory and the attitude of its adherents found classic expression
in one incident I personally observed that deserves memorialization. A
team of four of the most respected graduate students in finance had
Joined forces with two professors, now considered venerable enough to
have won or to have been considered for a Nobel prize, but at that time
feisty as Hades and insecure as a kid on his first date. This elite group
was studying the possible impact of volume on stock price movements,
a subject I had researched. As I was coming down the steps from the
library on the third floor of Haskell Hall, the main business building,
I could see this Group of Six gathered together on a stairway landing,
examining some computer output. Their voices wafted up to me, echo-
ing off the stone walls of the building. One of the students was pointing
to some output while querying the professors, “Well, what if we really
do find something? We’ll be up the creek. It won’t be consistent with
the random walk model.” The younger professor replied, “Don’t worry,
we'll cross that bridge in the unlikely event we come to it.”

I could hardly believe my ears—here were six scientists openly hoping
to find no departures from ignorance. I couldn’t hold my tongue, and
blurted out, “I sure am glad you are all keeping an open mind about
your research.” I could hardly refrain from grinning as I walked past
them. I heard muttered imprecations in response.

%In fact, both Alexander (1961) and Schwartz and Whitcomb (1977) use variance ratios
to test the Random Walk Hypothesis, and although they do not employ the kind of rigorous
statistical infercnce that we derived in our study, nevertheless it was our mistake to have over-
looked their contributions. Our only defense is that none of our colleagues were aware of
these studies cither, for no one pointed out thése references to us either before or afier our
papers were published.
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From this, Niederhoffer (1997) concludes that “As usual, academicians are
way behind the form” and with respect to the Random Walk Hypothesis, we
arc forced to agree.

But beyond the interesting implications that this cognitive dissonance
provides for the sociology of science, we think there is an even more im-
portant insight to be gleaned from all of this. In a recent update of our
original variance ratio test for weekly US stock market indexes, we discov-
ered that the most current data (1986-1996) conforms more closely to the
random walk than our original 1962-1985 sample period. Moreover, upon
further investigation, we learned that over the past decade several invest-
ment firms—most notably, Morgan Stanley and D.E. Shaw—have been en-
gaged in high-frequency equity trading strategies specifically designed to
take advantage of the kind of patterns we uncovered in 1988. Previously
known as “pairs trading” and now called “statistical arbitrage,” these strate-
gies have fared reasonably well until recently, and are now regarded as a very
competitive and thin-margin business because of the proliferation of hedge
funds engaged in these activities. This provides a plausible explanation for
the trend towards randomness in the recent data, one that harkens back to
Samuelson’s “Proof that Properly Anticipated Prices Fluctuate Randomly.”

But if Morgan Stanley and D.E. Shaw were profiting in the 1980’s from
the predictability in stock returns that is now waning because of competition,
can we conclude that markets were inefficient in the 1980’s? Not without
additional information about the cost and risk of their trading operations,
and the novelty of their trading strategies relative to their competitors’.

In particular, the profits carned by the early statistical arbitrageurs may
be viewed as economic rents that accrued to their innovation, creativity,
perseverance, and appetite for risk. Now that others have begun to re-
verse engineer and mimick their technologies, profit margins are declining.
Therefore, neither the evidence against the random walk, nor the more re-
cent trend towards the random walk, are inconsistent with the practical
version of the Efficient Markets Hypothesis. Market opportunities need not
be market inefficiencies.

Stock Market Prices

Do Not Follow Random Walks:
Evidence from a Simple
Specification Test

m_zﬂ.um KEYNES’ (1936) NOW FAMOUS PRONOUNGEMENT that most investors’
decisions “can only be taken as a result of animal spirits—of a spontaneous
urge to action rather than inaction, and not as the outcome of a weighted
average of benefits multiplied by quantitative probabilities,” a great deal
of ._.mmmwnnr has been devoted to examining the efficiency of stock market
price formation. In Fama’s (1970) survey, the vast majority of those studies
were unable to reject the “efficient markets” hypothesis for common stocks.
Although several seemingly anomalous departures from market nm,mnmo:@
have been well documented,' many financial economists would agree with
Jensen’s (1978a) belief that “there is no other proposition in economics
which has more solid empirical evidence supporting it than the Efficient
Markets Hypothesis.”

Although a precise formulation of an empirically refutable efficient mar-
kets hypothesis must obviously be model-specific, historically the majority
of such tests have focused on the forecastability of common stock returns.
Within this paradigm, which has been broadly categorized as the “random
walk” theory of stock prices, few studies have been able to reject the random
im_r. ann_ statistically. However, several recent papers have uncovered
empirical evidence which suggests that stock returns contain predictable
components. For example, Keim and Stambaugh (1986) find statistically
significant predictability in stock prices by using forecasts based on certain
predetermined variables. In addition, Fama and French (1988) show that

— . .
. See, for example, the studies in Jensen’s (1978b) volume on anomalous evidence regard-
ing market cfficiency.
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long holding-period returns are significantly negatively serially correlated,
implying that 25 to 40 percent of the variation of longer-horizon returns is
predictable from past returns.

In this chapter we provide further evidence that stock prices do not
follow random walks by using a simple specification test based on variance
estimators. Our empirical results indicate that the random walk model is
generally not consistent with the stochastic behavior of weekly returns, es-
pecially for the smaller capitalization stocks. However, in contrast to the
negative serial correlation that Fama and French (1988) found for longer-
horizon returns, we find significant positive serial correlation for weekly
and monthly holding-period returns. For example, using 1216 weekly ob-
servations from September 6, 1962, to December 26, 1985, we compute the
weekly first-order autocorretation coefficient of the equal-weighted Genter
for Research in Security Prices (CRSP) returns index to be 30 percent! The
statistical significance of our results is robust to heteroskedasticity. We also
develop a simple model which indicates that these large autocorrelations
cannot be attributed solely to the effects of infrequent trading. This empir-
ical puzzle becomes even more striking when we show that autocorrelations
of individual securities are generally negative.

Of course, these results do not necessarily imply that the stock market
is inefficient or that prices are not rational assessments of “fundamental”
values. As Leroy (1973) and Lucas (1978) have shown, rational expectations
equilibrium prices need not even form a martingale sequence, of which the
random walk is a special case. Thercfore, without a more explicit economic
model of the price-generating mechanism, a rejection of the random walk
hypothesis has few implications for the efficiency of market price formation.
Although our test results may be interpreted as a rejection of some economic
model of efficient price formation, there may exist other plausible models
that are consistent with the empirical findings. Our more modest goal in
this study is to employ a test that is capable of distinguishing among several
interesting alternative stochastic price processes. Our test exploits the fact
that the variance of the increments of a random walk is linear in the sampling
interval. If stock prices are generated by a random walk (possibly with drift),
then, for example, the variance of monthly sampled log-price relatives must
be 4 times as large as the variance of a weekly sample. Comparing the (per
unit time) variance estimates obtained from weekly and monthly prices may

then indicate the plausibility of the random walk theory.? Sucha comparison

?The use of variance ratios is, of course, not new. Most recently, Campbcll and Mankiw
(1987), Cochrane (1987b, 1987c), Fama and French (1988), French and Roll (1986), and
Huizinga (1987) have all computed variance ratios in a variety of contexts; however, these stud-
ies do not provide any formal sampling theory for our statistics. Specifically, Cochrane (1988},
Fama and French (1988), and French and Roll (1986) all rely on Monte Carlo simulations to
obtain standard errors for their variance ratios under the null. Campbell and Mankiw (1987)
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is formed quantitatively along the lines of the Hausman (1978) specification
test and is particularly simple to implement. |

In Section 2.1 we derive our specification test for both homoskedastic
and heteroskedastic random walks. Our main results are given in Section
2.2, where rejections of the random walk are extensively documented for
s.Bme returns indexes, size-sorted portfolios, and individual securities. Sec-
tion 2.3 contains a simple model which demonstrates that infrequent trading
cannot fully account for the inagnitude of the estimated autocorrelations
of SwwEw stock returns. In Section 2.4 we discuss the consistency of our
empirical rejections with a mean-reverting alternative to the random walk
model. We summarize briefly and conclude in Section 2.5.

2.1 The Specification Test

Denote by P, Eo.MHOnw price at time ¢ and define X; = In P, as the log-price
process. Our maintained hypothesis is given by the recursive relation

X =pu+Xa+e (2.1.1)

where 4 is an arbitrary drift parameter and ¢, is the random disturbance
term. We assume throughout that forall ¢, E[¢,] = 0, where E[-] denotes the

and Oo&:ﬂmo (1987c) do derive the asymptotic variance of the variance ratio but only under
the assumption that the aggregation value ¢ grows with (but more slowly than) the sanple size
T. mvon;.,_ou._? they use Priestley's (1981, page 463) cxpression for the asymptolic variance
of the estimator of the spectral density of AX; at frequency 0 (with a Bartlett window) as the
appropriate asymptotic variance of the variance ratio. But Priestley’s result requires (among
other ,n::mmv that § - 00, T — 00, and ¢/ T -» 0. In this chapter we develop the formal
sampling -..:ooJ. of the variance-ratio statistics for the more general case.

Our variance ratio may, however, be related to the spectral-density estimates in the following

way. Letting f(0) denote the spectral density of the inc ents
e Tyl _.m_mc.oq.: ty rements AX; at frequency 0, we have

[0 = YO +2 ) y(k)
k=1

where y (k) is the autocovariance function. Dividing both sides by the variance y (0) then yields

O =142 ok
k=1

where f* is ._.ro normalized spectral density and p (&) is the autocorrelation function. Now in
.”oao_. to estimate the quantity /*(0), the infinite sum on the right-hand side of the preced-
ing equation must obviously be truncated. If, in addition to truncation, the autocorrelations
are sﬁ_mr.pan_ using Newey and West's (1987) procedure, then the resulting estimator is for-
mally equivalent to our M,(g)-statistic. Although he docs not cxplicitly use this variance ratio,

Mo_.“.wu.ﬂmm (1987) does employ the Newey and West (1987) estimator of the normalized spectral
sity.
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expectations operator. Although the traditional random walk hypothesis re-
stricts the €,’s to be independently and identically distributed (IID) Gaussian
random variables, there is mounting evidence that financial time series often
possess time-varying volatilities and deviate from normality. Since it is the
unforecastability, or uncorrelatedness, of price changes that is of interest,
a rejection of the IID Gaussian random walk because of heteroskedasticity
or nonnormality would be of less import than a rejection that is robust to
these two aspects of the data. In Section 2.1.2 we develop a test statistic
which is sensitive to correlated price changes but which is otherwise robust
to many forms of heteroskedasticity and nonnormality. Although our empir-
ical results rely solely on this statistic, for purposes of clarity we also present
in Section 2.1.1 the sampling theory for the more restrictive IID Gaussian
random walk.

2.1.1 Homoskedastic Increments

We begin with the null hypothesis H that the disturbances ¢, are indepen-
dently and identically distributed normal random variables with variance
o2; thus,

H: ¢, 1ID N(0,0?). (2.1.2)
In addition to homoskedasticity, we have made the assumption of indepen-
dent Gaussian increments. An example of such a specification is the ex-
act discrete-time process X; obtained by sampling the following well-known
continuous-time process at equally spaced intervals:

dX(1) = pdt+o,dW(2) (2.1.3)

where dW(¢) denotes the standard Wiener differential. The solution to
this stochastic differential equation corresponds to the popular lognormal
diffusion price process.

One important property of the random walk X, is that the variance of
its increments is linear in the observation interval. That is, the variance of
X, — Xi_o is twice the variance of X; — X;_1. Therefore, the plausibility of
the random walk model may be checked by comparing the variance esti-
mate of X; — X,_ to, say, one-half the variance estimate of X; — Xis. This
is the essence of our specification test; the remainder of this section is de-
voted to developing the sampling theory required to compare the variances
quantitatively.

Suppose that we obtain 2n + 1 observations X, X1, ..., Xon of X at
equally spaccd intervals and consider the following estimators for the un-
known parameters 4 and o2:

H 2n H
ho= — X - X 1) = — (Xon — 2.1.4
h M:W: 1) = 5 (Xon = Xo) (2.1.42)
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1 2n
)M _ -
6 = o > K- Xy — )2 (2.1.4b)
Lt
n 1 &
62 = 5 > Kok — Xops — 20)2. (2.1.4¢)
k=1

The estimators £ and 67 correspond to the maximum-likelihood estimators
of the y and o parameters; 8; is also an estimator of o2 but uses only the
m_cvmoﬁ of n+1 wvmngmosm X0, X9, X4, ..., Xo,, and corresponds formally to
g times the variance estimator for increments of even-numbered observa-
tions. Under standard asymptotic theory, all three estimators are strongly
consistent; that is, holding all other parameters constant, as the total num-
ber of observations 27 increases without bound the estimators converge
almost surely to their population values. In addition, it is well known that
both 62 and 67 possess the following Gaussian limiting distributions:

V2n (62 —62) L N(0, 20 (2.1.5a)
V2n(6} — ol 2 N, 402 (2.1.5b)

e

a . . . . -
where ~ indicates that the distributional equivalence is asymptotic. Of

course, it is the limiting distribution of the difference of the variances that
interests us. Although it may readily be shown that such a difference is
m_.mo .mqu:wﬂomnw:w Gaussian with zero mcan, the variance of the limiting
distribution is not apparent since the two variance estimators are clearly not
asymptotically uncorrelated. However, since the estimator 62 is asymptoti-
cally efficient under the null hypothesis H, we may apply INCMENEW (1978)
result, which shows that the asymptotic variance of the difference is simpl
the difference of the asymptotic variances.® If we define Ji=62—62 EWM
we have the result S

V2nJ; ~ N(©,20%). (2.1.6)

Cm_:.m any consistent estimator of the asymptotic variance of J4, a standard
significance test may then be performed. A more convenient alternative

m . .
Briefly, Im:m:.m_b (1978) cxploits the fact that any asymptotically efficient estimator of
a parameter ®.>mmv~ Ge, must possess the property that it is asymptotically uncorrelated with
the difference 6, — 8,, where 8, is any other estimator of §. If not, then there exists a linear

noﬂvmamno: of 0, and Q,n Iaﬂ thatis more efficient than Q)e contradicting the assumed efficiency
of 6,. The result follows directly, then, since

aVar(d,) = aVar(d, + 6, — 6,) = aVar(d,) + aVar(d, — 6,)
= aVar(§, — Qﬁv = m<m_‘€>=v - m<m_.%>nv

where aVar(:) denotes the asymptolic variance operator.
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test statistic is given by the ratio of the variances, J,:*
Jo= 2 - VnJ, L NQ©, 2. ©.1.7)

Although the variance estimator &; is Um.aoa on the &mmonﬁ.ﬂnom of every
other obscrvation, alternative variance estimators may be ogm_noﬂ by using
the differences of every gth observation. Suppose that we obtain ng + 1
observations Xy, X1, ..., X,,, where ¢ is any integer greater than 1. Define
the estimators:

=% H
g 4 q

ng

6= — > (XK= Xy — ) (2.1.8b)
g =

52g) = — > Kok = Xopq — q)° @189
nq 4

. X 5, (9)
Ju =6X—-62,  J(g= WW —1. (2.1.8d)

The specification test may then be performed using Theorem 2.1.°

Theorem 2.1. Under the null hypothesis H, the asymptotic distributions of J4(q) and
J-(q) are given by

Vg Ju(g) ~ N(0,2(q — 1)a}) (2.1.92)
Vg (@) ~ N(0,2(g—1)). (2.1.9b)

Two further refinements of the statistics J; and J; result in more desirable
finite-sample properties. The first is to use overlapping qth a:qﬂonnbnmom of X,
in estimating the variances by defining the following estimator of o;:

ng
62(g) = L M (X — Xiegq — qi1)%. (2.1.10)

nq =g

#Note that if (67)? is uscd to estimate o), then the standard ttest of J; = 0 will yield
inferences identical to those obtained from the corresponding test of J; = 0 for the ratio,

since

el 3 ~ N, 1).

J2i | 28T

5Proofs of all the theorcms are given in the Appendices.
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This differs from the estimator 6;(g) since this sum contains ng--q+1 terms,
whereas the estimator §2(g) contains only n terms. By using overlapping qth
increments, we obtain a more efficient estimator and hence a more powerful
test. Using 6%(¢) in our variance-ratio test, we define the corresponding test
statistics for the difference and the ratio as

O

X -6 Mg = S L 2.1.11)

My(q)

The second refinement involves using unbiased variance estimators in the
calculation of the M-statistics. Denote the unbiased estimators as 62 and
&2(q), where

_ 1 )
Pm = (X%— X — )? (2.1.12a)
k=1

Q
It

ng—1

_ 1 & X
50 =~ 3 (K= Xg — git)?
k=q

m = q(ng—q+1) AH - :va (2.1.12b)
and define the statistics:
~2
— _c _ — g
M) = 629 —62,  Bi(g) = wMa ~1. (2.1.13)

a

Although this does not yield an unbiased variance ratio, simulation experi-
ments show that the finite-sample properties of the test statistics are closer to
their asymptotic counterparts when this bias adjustmentis made.® Inference
for. the overlapping variance differences and ratios may then be performed
using Theorem 2.2.

Theorem 2.2. Under the null kypothesis H, the asymptotic distributions of the statis-
tics My(q), M. (), My(q), and M, (q) are given by

VREMAg) % /7 Maq) & N Ao. 2@g-Dig -1 %v (2.1.14a)

3q °
JAM ) L S Mg A N Ao. MEIMM@ - cV . @l14b)

®According to'the results of Monte Carlo experiments in Lo and MacKinlay (1989a), the

~ behavior of the bias-adjusted M-statistics (which we denote as 5&6 and 3‘38 does not depart
-~ significantly from that of their asymptotic limits even for small sample sizes. Therefore, all our
- empirical results are based on the M, (g)-statistic.
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In practice, the statistics in Equations (2.1.14) may be standardized 5.9.@
usual manner (e.g., define the (asymptotically) standard normal test statistic
/g M 12 2 N(0,1)).
= /nq M,(9)(2(2¢ — 1)(¢ — 1)/3¢9) 1
" To QQ\@_OW MoEm intuition for these variance ratios, observe that for an
aggregation value ¢ of 2, the M,(g)-statistic may be reexpressed as

1
4ng?2

:uﬁ - uwc - .D\vm + Aumw: - ummzlw - .D\VMH = mﬂwv

(2.1.15)
Hence, for ¢ = 2 the M,(g)-statistic is NVEQ&BNS_% the first-order auto-
correlation coefficient estimator 5(1) of the differences. More generally, it
may be shown that

M, (2) = p(1)—

-1 . 2(¢—2) .,
2g-D p(1) + g2 p

q q
where p(k) denotes the kth-order autocorrelation noommnmo.:a omamdm:wa of
the first differences of X;.” Equation (2.1.16) provides a simple :zﬁﬂo-
tation for the variance ratios computed with an aggregation value ¢: They

are (approximately) linear combinations of the mam_h.m -1 m.EHOnon“,w:.o:
coefficient estimators of the first differences with arithmetically declining

weights.®

2,
M;(q) = @+:.+mm£|: (2.1.16)

2.1.2 Heteroskedastic Increments

Since there is already a growing consensus among financial economists Hrm.;
volatilities do change over time,” a rejection of the 3.:&05 walk hypothesis
because of heteroskedasticity would not be of much interest. We Hrmaomog_
wish to derive a version of our specification test of .Hrm random walk Bomo
that is robust to changing variances. As long as the increments are csno:.ﬂ
lated, even in the presence of roﬁaom_ﬁammmn:v.\ the <~5~:w8 ratio :EM mMu !
approach unity as the number of observations increase i:.roca UOCM )

the variance of the sum of uncorrelated increments must still m@.c& the sum
of the variances. However, the asymptotic variance of the variance ratios
will clearly depend on the type and degree oﬁw heteroskedasticity _WHanMM
One possible approach is to assume some mmnn_mn form of rmﬁwom wﬂ mm:a
ity and then to calculate the asymptotic variance of M;(¢) under this n

7 i i endix. :
Sce Equation (A.1.6a) in the App . e )
ch% te mgo similarity between these variance ratios and nrw _woz.m._o.nnn D..mE_._m:n..«uw_nr:_ww
linear combination of squared autocorrelations with all the weights set ﬂod_m_nﬂ_w\ o%—dcm . N M_n W
i i i tios to be ¢
h we may expect the finite-sample behavior of the variance ra :
R” Mﬂmwﬂﬂoi@.mgmanvc:&an the null hypothesis, they can have very Em.nnos.n power properties
under various alternatives. See Lo and MacKinlay (1989a) for further details. s
9See, for example, Merton (1980), Poterba and Summers (1986), and French, Schwert,
and Stambaugh (1987).

- tions2.1.2and 2.1.2 are restrictions on the
-~ allowable while still permitting some fo
. theorem to obtain. See White (1984) fo
- sequences. Condition 2.1.2 implies that

simplicity (see note 12).
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hypothesis. However, to allow for more general forms of heteroskedastic-
ity, we employ an approach developed by White (1980) and by White and
Domowitz (1984). This approach also allows us to relax the requirement of
Gaussian increments, an especially important extension in view of stock re-
turns’ well-documented empirical departures from normality. ! Specifically,
we consider the null hypothesis H*:!!
(Al) Forall ¢, E(e;) = 0, and E(e, €)= 0foranyt #£ 0.
(A2) {e:} is ¢-mixing with coefficients ¢ (m) of size r/(2r — 1) or is a-
mixing with coefficients a(m) of size r/(r — 1), where r > 1, such
that for all ¢ and for any > 0, there exists some § > 0 for which

Ele; e, 20 <« A < o0, (2.1.17)

ng

M mAme = Qw < 00.

=1

(A4) Forall ¢, E(e, €:—j € €:-) = 0 for any nonzero jand % where J# k.

1
(A3) lim —
ng—0 ng

This null hypothesis assumes that X, possesses uncorrelated increments but
allows for quite general forms of heteroskedasticity, including deterministic
changes in the variance (due, for example, to seasonal factors) and Engle’s
(1982) ARCH processes (in which the conditional variance de
information).

Since M, (g) still approaches zero under H*, we need only compute
its asymptotic variance (call it 8(9) to perform the standard inferences.
We do this in two steps. First, recall that the following equality obtains
asymptotically:

pends on past

g-1

=, a M -7 A, -
Mg =Y IQQ!SS. 2.1.18)
=1

Second, note that under H* (condition 2.1.2) the autocorrelation coeffi-
cient estimators 4(j) are asymptotically uncorrelated.'? If we can obtain

loof course, second moments are still assumed to finite; otherwise,
longerwell defined. This rules out distributions with infinite
Pareto-Levy family (with characteristic exponents that are less than 2) proposed by Mandelbrot
(1963) and Fama (1965). We do, however, allow for many other forms of leptokurtosis, such as
thatgenerated by Engle’s (1982) autoregressive conditionally heteroskedastic (ARCH) process.

" Condition 2.1.2 is the essential property of the random walk that we wish to test. Condi-
maximum degree of dependence and heterogencity
rm of the law of large numbers and the central limit
r the precise definitions of ¢- and a-mixing random
the sample autocorrelations of ¢ are asymptotically
be weakened considerably at the expense of computational

the variance ratio is no
variance, such as those in the stable

uncorrelated; this condition may

EEEOGN: this restriction on the fourth cross-moments of ¢, may seem somewhat unintu-

 itive, it is satisfied for any process with independent increments (regardless of heterogeneity)
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i i ] h of the $(j) under H*, we may readily cal-
asymptotic variances 3 () for eac 1 ; !
culate the asymptotic variance 6(q) of M;(q) as 9.@ weighted sum of the 3(j),
where the weights are simply the weights in relation (2.1.18) squared. More

formally, we have:
Theorem 2.3. Denote by 8(j) and 6(q) the asymplotic variances of p(j) and M,(q),
respectively. Then under the null hypothesis H* :

1. The statistics Ju(@), J-(@), My(q), M. (), .NSAEY and M,(q) all converge
almost surely to zero for all q as n increases S&Sﬁ bound. .
2. The following is a heteroskedasticity-consistent estimator of 8(y):

:.& R R M
ng ¥ K= X1 = 0 Xej = Xemjot = )

S(j) = ——8 (2.1.19)
8N = ” - 5
Y (K= X — )
k=1
3. The following is a heteroskedasticity-consistent estimator of 6(q):
q—1 g w>
b9 = ) TEQFJ 5(j). (2.1.20)
=1 :

Despite the presence of general heteroskedasticity, the standardized test

statistic 2 (q) = ,/ng M, () \/\w is still asymptotically standard normal. F
Section 2.2 we use the z*(g) statistic to test empirically for random walks in

weekly stock returns data.

2.2 The Random Walk Hypothesis for Weekly Returns

To test for random walks in stock market prices, we focus on the HMH.@.SoMW
time span from September 6, 1962, to December 26, mem.. Our mro._nm.o a
weekly observation interval was determined by mo,\.oa& no:m_moawno:v. _Enm
our sampling theory is based wholly on asymptotic approximations, a arge
number of observations is appropriate. While daily sampling yields many

and also for linear Gaussian ARCH processes. This assumption may @o _.n_E.SQ mdnmm_x _.Mn»c:..

ing the estimation of the asymptotic covariances of the autocorrelation estimators in or .n._. S

nmmﬁw:w the limiting variance 8 of >.ALS via relation Aw.wwvmv.. 250.._&#”””“ MMHM_MM.W Mch:ﬂ

3 i S jon (2.1. itis conceptu rwar

tor of @ would be more complicated than Equation ( , o
‘cadi : i { Newey and West (1987). An even more ge

and may rcadily be formed along the lines o : ( e b
i i i tios may be obtained using

and possibly more exact) sampling theory for the variance rat .
_A.mmcron U:Mo:a (1981) and Dufour and Roy (1985). Again, this would sacrifice much of the

simplicity of our asymptotic results.
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observations, the biases associated with nontrading, the bid-ask spread, asyn-
chronous prices, etc., are troublesome. Weckly sampling is the ideal com-
promise, yielding a large number of observations while minimizing the bi-
ases inherent in daily data,

The weekly stock returns are derived from the CRSP daily returns file.
The weekly return of each security is computed as the return from Wednes-
day’s closing price to the following Wednesday’s close. If the following
Wednesday’s price is missing, then Thursday’s price (or Tuesday’s if Thurs-
day’s is missing) is used. If both Tuesday’s and Thursday’s prices are missing,
the return for that week is reported as missing.'®

In Section 2.2.1 we perform our test on both equal- and value-weighted
CRSP indexes for the entire 1216-week period, as well as for 608-week sub-
periods, using aggregation values ¢ ranging from 2 to 16.4 Section 2.2.2
reports corresponding test results for size-sorted portfolios, and Section
2.2.3 presents results for individual securities.

2.2.1 Results for Market Indexes

~ Tables 2.1aand 2.1b report the variance ratios and the test statistics z*(¢q) for
CRSP NYSE-AMEX marketreturns indexes. Table 2.1a presents the results
fora one-week base observation period, and Table 2.1b reports similar results
for a four-week base observation period. The values reported in the main
rows are the actual variance ratios T&%S + 1], and the entries enclosed in
parentheses are the z*(q) statistics.'®

Panel A of Table 2.1a displays the results for the CRSP equal-weighted
index. The first row presents the variance ratios and test statistics for the
entire 1216-week sample period, and the next two rows give the results for
the two 608-wecek subperiods. The random walk null hypothesis may be
rejected at all the usual significance levels for the entire time period and
all subperiods. Moreover, the rejections are not due to changing variances
since the z*(g) statistics are robust to heteroskedasticity. The estimates of the
variance ratio are larger than 1 for all cases. For example, the entries in the
first column of panel A correspond to variance ratios with an aggregation
value ¢ of 2. In view of Equation (2.1.15), ratios with ¢ = 2 are approxi-
mately equal to 1 plus the first-order autocorrelation coefficient estimator
of weekly returns; hence, the entry in the first row, 1.30, implies that the

.

3The average fraction (over all securities) of the entire sample where this occurs is less
than 0.5 percent of the time for the 1216-week sample period.

4Additional empirical results (304-week subperiods, larger g values, etc.) are reported in
Lo and MacKinlay (1987b).

5Since the values of z*(q) are always smaller than the values of z(g) in our empirical results,
to conserve space we report only the more conservative statistics. Both statistics are reported
in Lo and MacKinlay (1987b).
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Table 2.1a. Variance-ratio test of the random walk hypothesis for CRSP equal- and value-

wel \wnm& nﬁ&& orinesam ngcﬁ \.-.Rg W gmﬂ. Q ~ W_QN to ~ vmﬁg&‘% N 1 W 5, U .\, .\, atlion ﬁacﬁ
m % Q‘:Rh @n S ENHM or a jour gmm\h g& Q.@hNﬂ:Q
m. R.m.wu.\, n\u Sa \QN& % y > s ’

eriods. The variance ratios 1+M,(q) arereported in the main rows, with Q&.E&E%&E:.&.Q- Number Number ¢ of base observations
W%ER .R,: statistics z* (q) given in parentheses immediately below each main row. Q:&ﬁ the Time period nq of base aggregated to form variance ratio
random walk null hypothesis, the value of the variance ratio is 1 and the test statistics nave observations 5 " 2 T

a standard normal distribution (asymptotically). Test statistics marked with asterisks indica

that the corresponding variance ratios are statistically different from 1 at the 5 percenl level of A. Equal-weighted CRSP NYSE-AMEX index

significance 620906-851226 304 1.15 1.19 1.30 1.30
— Namber g of base observations (2.26) (1.54) (1.52)  (1.07)
. - umbe aggregated to form variance ratio 620906740501 152 1.13 1.23 1.40
Time perio nq of —umﬁo " 5 6 (1.39) (1.32) (1.46)
observations 2 740502-851226 152 1.15 1.11 1.02
A. Equal-weighted CRSP NYSE-AMEX index o5 (1.68) (0.64) (0.09)
620906-851226 1216 1.30 AW. va AW. va, Aw. 59)* B. Value-weighted CRSP NYSE-AMEX index
(7.51)* .87 . .
Lol e L o9 9.09 620906-851226 304 1.05 1.00 1.11 1.07
$20906-740501 608 a. 35)" 8. 03 (5.76)° (477" (0.75) (0.00) (0.57)  (0.26)
e - _.. s s | o3 Lol 620906740501 152 A W. mmv A W . mmv A w : Mv
74050285 532 (652 (618 (417 . . .
: 740502851226 152 1.05 0.95 0.89

B. Value-weighted CRSP NYSE-AMEX index (0.63) (—0.81) (—0.42)

1.22
1216 1.08 1.16 1.22
620906-851226 (2.33)* (2.31)* (2.07)* (1.38) Variance-ratio test of the random walk hypothesis for RSP equal-and value-weighted indexes,
. 1.99 1.97 1.39 for the sample period from September 6, 1962, to Decernber 26, 1985, and subperiods. The
620906-740501 608 1.15 . ae H. 79) (1.46) variance ratios 1 + M, (¢) are reported in the main rows, with the heteroskedasticity-robust
(2.89) (2.28) . ’ test statistics z*(¢) given in parentheses immediately below each main row. Under the random
740502-851226 608 1.05 1.12 1.18 1.10 walk null hypothesis, the value of the variance ratio is 1 and the test statistics have a stan-

(0.92) (1.28) (1.24) (0.46) dard normal distribution (asymptotically). Test statistics marked with asterisks indicate that
) the corresponding variance ratios are statistically different from 1 at the 5 percent level of

significance.

first-order autocorrelation for weekly returns is approximately 30 annnmmh
The random walk hypothesis is easily rejected at common levels oﬁrm_mwm ;
cance. The variance ratios increase with ¢, but the me:_z.aom .Om ez HN
statistics do not. Indeed, the test statistics seem to decline with ¢; wo:mn. mM
significance of the rejections becomes Eomwwa as nomam.n.a.mmn%_n <mﬂ_mMno ¥
are compared to weekly variances. O~.: finding of positive m:HOnMwnMHm@mmv
for weekly holding-period returns differs from mM:.dw mna..mﬁm@:nm s g
finding of negative serial correlation for long roEEm.vn:o Hn :an.ma Vi
positive correlation is significant not only for our entire sample peri
eriods.

e %ﬂom_a_nwwwwuoz of the random im_w hypothesis is much inm_ﬁw mo_n _,,MM
value-weighted index, as panel B indicates; nevertheless, &o. Mowoam:w s
terns persist: the variance ratios exceed 1, and the z*(g) statistics dec

g increases. The rejections for the value-weighted index are due primarily
to the first 608 weeks of the sample period.

Table 2.1b presents the variance ratios using a base observation period
of four weeks; hence, the first entry of the first row, 1.15, is the variance
ratio of eight-week returns to four-week returns. With a base interval of four
- weeks, we generally do not reject the random walk model even for the equal-
- weighted index. This is consistent with the relatively weak evidence against
the random walk that previous studies have found when using monthly
- data.
~ Although the test statistics in Tables 2.1a and 2.1b are based on nominal
. stock returns, it is apparent that virtually the same results would obtain with
| real or excess returns. Since the volatility of weekly nominal returns is so

much larger than that of the inflation and Treasury-bill rates, the use of



30 2 Stock Market Prices Do Not Follow Random Walks

nominal, real, or excess returns in a volatility-based test will yield practically

identical inferences.

2.2.2 Results for Size-Based Portfolios

An implication of the work of Keim and Stambaugh (1986) is that, condi-
tional on stock and bond market variables, the logarithms of wealth relatives
of portfolios of smaller stocks do not follow random walks. For portfolios
of larger stocks, Keim and Stambaugh’s results are less conclusive. Con-
sequently, it is of interest to explore what evidence our tests provide for
the random walk hypothesis for the logarithm of size-based portfolio wealth
relatives.

We compute weekly returns for five size-based portfolios from the NYSE-
AMEX universe on the CRSP daily returns file. Stocks with returns for
any given week are assigned to portfolios based on which quintile their
market value of equity is in. The portfolios are equal-weighted and have a
continually changing noﬂdvomao:.a The number of stocks included in the
portfolios varies from 2036 to 2720.

Table 2.2 reports the >Na$v test results for the size-based portfolios, us-
ing a base observation period of one week. Panel A reports the results for
the portfolio of small firms (first quintile), panel B reports the results for
the portfolio of medium-size firms (third quintile), and panel C reports
the results for the portfolio of large firms (fifth quintile). Evidence against
the random walk hypothesis for small firms is strong for all time periods
considered; in panel A all the z*(g) statistics are well above 2.0, ranging
from 6.12 to 11.92. As we proceed through the panels to the results for the
portfolio of large firms, the z*(g) statistics become smaller, but even for the
Jarge-firms portfolio the evidence against the null hypothesis is strong. As
in the case of the returns indexes, we may obtain estimates of the first-order
autocorrelation coeflicient for returns on these size-sorted portfolios simply
by subtracting 1 from the entries in the ¢ = 2 column. The values in Table
99 indicate that the portfolio returns for the smallest quintile have a 42

percent weekly autocorrelation over the entire sample period! Moreover,
this autocorrelation reaches 49 percent in subperiod 2 (May 2, 1974, to De-
cember 26, 1985). Although the serial correlation for the woﬁmo:o returns.
of the largest quintile is much smaller (14 percent for the entire sample
period), it is statistically significant.

16ye also performed our tests using value-weighted portfolios and obtained n&n::»:w...

the same results. The only difference appeared in the largest quintile of the valuc-weighted
portfolio, for which the random walk hypothesis was generally not rejected. This, of course,
is not surprising, given that the largest value-weighted quintile is quite similar to the vall
weighted market index.
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Table 2.2. Variance-ratio test
of the random walk k is ;
a2 . ypothesis for size-sorted portfoli
S“.N 1 \M:wa mﬂvcs uaﬂ%@«“ 6, 1962, to December 26, 1985, and %%SMQMWS.W\NQMMMM SM
r(q) are reported in the main rows, with the ) ict ; e

N.. : : ‘ : A heteroskedasticity-robust ¢ 15t
p V_MNVSWMMJ MW .ewﬂw:ng& NSNE&&«@ below each main row. Under Sv_@. waﬁ&%h.m H_\,MNE&M
b m awh” NR. Q\N NQ&_ variarce .ﬁn,z.c s 1 and the test statistics have a standard :S.SMMH%
mbtion ﬂnw plotica hy v.. Test statistics marked with asterisks indicate that the corn e

atios are statistically different from 1 at the 5 percent level of significance Hponding

Time period Zcﬂvoa Number ¢ of base observations aggregated
ng of base to form variance ratio
observations 92 4 8
. . 16
A. Portfolio of firms with market values in smallest NYSE-AMEX quintile
620906-851226 1216 1.42 1.97 2.49 2.68
(8.81)*  (11.58)* A:.wo * .
. .92 9.65)*
620906-740501 608 1.37 1.83 2 mqv Am mwv
(6.12)" (7.83)* G.cA * 68)°
740502851226 608 1.49 2.14 2 qmv AM.MMV
k. | (6.44)* (8.66)* (9.06)* G”oQ.
1 B. Portfolio of firms with market values in central NYSE-AMEX quintile
620906-851226 1216 1.28 | 1.60 1.84 1.91
(738 (830 (170 (5.
. . 5.78)*
620906-740501 608 1.30 1.59 1 mmv Am owv
(5.31)* (5.73)* Am.mm * .
. . 4.42)*
740502-851226 608 1.27 1.59 1 mov AH MMV
e (5.31)" (5.73)* (5.33)* AAHAB.
- L. Porttolio of firms with market values in lar
5 gest NYSE-AMEX quintil
620906851226 1216 1.14 1.27 Hﬁwm h 1.34
(3.82)* (3.99)* Am.ﬁm * 22)*
, , : 620906~740501 608 1.21 1.36 HAmv AW.MMV
. (4.04)* (3.70)* Am.@m * .
; . . 2.02)*
3 740502~-851226 608 1.09 1.20 1 mqv AH WMV
(1.80) (2.18)" (1.95) Ao”md

: mn_mwmmmnwwwa ovmnzmco:. interval of four weeks, much of the evidence
gt ol om iw:m mOn.m_No-mn.VZna portfolios disappears. Although the
p m.M o M WM_MMO__O still exhibits a serial correlation of 23 percentwith
: U9, none of the variance ratios for i
tic : the largest- i
oissignificantly different from 1. In the interest of vansw EM MMHMH

.



32 2. Stock Market Prices Do Not Follow Random Walks

report those results here but refer interested readers to Lo and MacKinlay
(1987b).

The results for size-based portfolios are generally consistent with those
for the market indexes. The patterns of (1) the variance ratios increasing
in ¢ and (2) the significance of rejections decreasing in g that we observed
for the indexes also obtain for these portfolios. The evidence against the
random walk hypothesis for the logarithm of wealth relatives of small-firms
portfolios is strong in all cases considered. For larger firms and a one-week
base observation interval, the evidence is also inconsistent with the random
walk; however, as the base observation interval is increased to four weeks,
our test does not reject the random walk model for larger firms.

2.2.3 Results for Individual Securities

For completeness, we performed the variance-ratio test on all individual
stocks that have complete return histories in the CRSP database for our en-
tire 1216-week sample period, yielding a sample of 625 securities. Owing to
space limitations, we report only a brief summary of these results in Table
9 3. Panel A contains the crosssectional means of variance ratios for the en-
tire sample as well as for the 100 smallest, 100 intermediate, and 100 largest
stocks. Crosssectional standard deviations are given in parentheses below
the main rows. Since the variance ratios are clearly not crosssectionally
independent, these standard deviations cannot be used to form the usual
tests of significance; they are reported only to provide some indication of
the cross-sectional dispersion of the variance ratios.

The average variance ratio for individual securities is less than unity
when ¢ = 2, implying that there is negative serial correlation on average.
For all stocks, the average serial correlation is —3 percent, and —6 percent
for the smallest 100 stocks. However, the serial correlation is both statis-
tically and economically insignificant and provides little evidence against
the random walk hypothesis. For example, the largest average z*(q) statistic
over all stocks occurs for ¢ = 4 and is —0.90 (with a cross-sectional standard
deviation of 1.19); the largest average z*(¢) for the 100 smallest stocks is

—1.67 (for ¢ = 2, with a crosssectional standard deviation of 1.75). These
results complement French and Roll’s (1986) finding that daily returns of

individual securities are slightly negatively autocorrelated.

For comparison, panel B reports the variance ratios of equal- and value- -
weighted portfolios of the 625 securities. The results are consistent with
those in Tables 2.1 and 2.2; significant positive autocorrelation for the equal-
weighted portfolio, and less significant positive autocorrelation for the value-

weighted portfolio.

That the returns of individual securities have statistically insignificantaus )
tocorrelation is not surprising. Individual returns contain much company--
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Table 2.3. ; - .
ries from Sep HWMH‘WNQWMQS:% 7atios over all individual securities with complete return histo-
the smallon 100 Ma%w “ \MN to bmnéw\ 26, 1985 (625 stocks). Means of variance ratios for
For iapsess of o » ¢ intermediate 100 stocks, and the largest 100 stocks are also reported.
porifolios .w&?naﬁm.whnwxmwwwmma%w wNSW the variance ratios for equal- and q&ﬁw.é&w}x_w
AR g Stocks. Parenthetical entries indivi
curities o Jor averages of ind;
qnln:h\wﬂwm@\t are standard &85:3& of the crosssection of qn:.azaw E:.\c,h. MMMNMMNMM
1o porfore the are MS“. 3.9:.:.&8:&& independent, the standard deviation cannot be used
i E&&&NMA Mﬁs%&:&. hm,:&. they are reported only to provide an indication of “Ma
(panel B) are the i&w&ﬂ«a&:ﬁﬂ dishersion. Parenthetical entries for portfolio variance ratios
e L (e ticity-robust 2*(q) statistics. Asterisks inds ; .
that are statistically different from 1 at the 5 percent level of &ws%mnw“&g&a variance ratios

Sample Number Number ¢ of base observations
nq of base aggregated to form variance ratio
observations 9 4 8 ]
- 6

T . . .
Averages of variance ratios over individual securities

MM_MMHMMMA& 1216 AN.NMV. AMNM 0.92 0.89
wﬁw_”ﬂ”ﬂ” 1216 0.94 o..va AMM% AMMMV
e L
A— s 051 ooy om  war
o .86 0.86

(0.04) (0.07) (0.11) 0.17)

B. Vari :
Variance ratios of equal- and value-weighted portfolios of all stocks

Mmmﬂmcmﬁ.inmmrana portfolio 1216 1.21 1.64 1.65 1.7
stocks) . . ‘ p
. (5.949)*  (6.71)*  (6.06)* ( *
M\M..wm?im_mrﬁna portfolio 1216 1.04 1.08 AH va Aw.wmv
eig! . . . 12
) (1.30) (1.24) (1.16) (0.76)

! wnnwmn“ or “idiosyncratic,’
of predictable componen
ated by forming portfoli
“systematic”

’ noise that makesit difficult to detect the presence
ts. Since the idiosyncratic noise is largely attenu-
o ot MHN ﬂio EMEQ €xXpect to uncover the predictable
O e ponent m wm wom ._Q when securities are combined. Nev-
fiicle, gativity of t c m:a_SQc& securities’ autocorrelations is an
g contrast to the positive autocorrelation of the portfolio returns

ce this is a well-known s i
ymptom of infre i i
B eaion o Seoe m.m.w quent trading, we consider such
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2.3 Spurious Autocorrelation Induced by Nontrading

Although we have based our empirical results on weekly data to minimize
the biases associated with market microstructure issues, this alone docs not
ensure against the biases’ possibly substantial influences. In this section we
explicitly consider the conjecture that infrequent or nonsynchronous trad-
ing may induce significant spurious correlation in stock returns.!” The com-
mon intuition for the source of such artificial serial correlation is that small
capitalization stocks trade less frequently than larger stocks. Therefore,
new information is impounded first into large-capitalization stock prices
and then into smallerstock prices with a lag. This lag induces a positive
serial correlation in, for example, an o@ﬁm_.sﬁmrﬁa index of stock returns.
Of course, this induced positive serial correlation would be less pronounced
in a value-weighted index. Since our rejections of the random walk hypoth-
esis are most resounding for the equal-weighted index, they may very well
be the result of this nontrading phenomenon. To investigate this possibility,
we consider the following simple model of nontrading.'®

Suppose that our universe of stocks consists of N securities indexed by
i, ecach with the return-generating process

Ry = Ryt € i=1,...,N (2.3.1)

where Ry represents a factor common to all returns (e.g., the market)
and is assumed to be an independently and identically distributed (I1ID)
random variable with mean iy and variance Q_@. The €;; term represents
the idiosyncratic component of security #'s return and is also assumed to be
IID (over both i and ¢), with mean 0 and variance ok The return-generating
process may thus be identified with N securities each with a unit beta such
that the theoretical R? of a market-model regression for each security is 0.50.

Suppose that in each period ¢ there is some chance that security i does
not trade. One simple approach to modeling this phenomenon is to distin-
guish between the observed returns process and the virtual returns process.
For example, suppose that security i has traded in period ¢ — 1; consider its
behavior in period ¢. Ifsecurity i does not trade in period ¢, we define its vir-

17s¢e, for example, Scholes and Williams (1977) and Cohen, Hawawini, Maier, Schwartz,
and Whitcomb (1983a).

1B Although our model is formulated in discrete time for simplicity, it is in fact slightly
more gencral than the Scholes and Williams (1977) continuous-time model of nontrading.
Specifically, Scholes and Williams implicitly assume that cach sccurity trades at least once within
a given time interval by “ignoring periods over which no trades occur” (page 311), whereas our
model requires no such restriction. Asa consequence, it may be shown that, ceteris paribus, the
magnitude of spuriously induced autocorrclation is lower in Scholes and Williams (1977) than
in our framework. However, the qualitative predictions of the two models of nontrading are
essentially the same. For example, both models imply that returns for individual securities will
exhibit negative serial correlation but that portfolio returns will be positively autocorrelated.
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tual return as R;, (which is given by Equation (2.3.1)), whereas its observed

o O
return Rj is zero. If security i then trades at £+ 1, its observed return R?

. e 14118
defined to be the sum of its virtual returns Ri; and Ry 1; hence, :o:qm.ﬁ::m

is assumed to cause returns to cumulate. The cumulation of returns over pe-
riods of nontrading captures the essence of spuriously induced noqgmn%a
due to the nontrading lag.

To n.m_nc_mmn the magnitude of the positive serial correlation induced b
nontrading, we must specify the probability law governing the :o::&&:v\
cvent. For simplicity, we assume that whether or not a serucity trades Bmm
be Bo.ao_na by a Bernoulli trial, so that in each period and for each mnnclﬂw
there is a probability p that it trades and a probability 1 — P that is does
not. It is assumed that these Bernoulli trials are IID across securities and,

for .omnr security, are IID over time. Now consider the observed return R?
at time ¢ of an equal-weighted portfolio: n

) H ~<
R =< MU RS, (2.3.2)

The observed return Ry, for security { may be expressed as

Ri = Xu(O)Rit + Xi(DRy—1 + Xi(DRig + - - - (2.3.3)

where Xi(5), j =1, 2,3, ... are random variables defined as

1 if Z trades at ¢
X (0) =
«(0) ? otherwise (2.3.4a)
Xo(1) = 1 if i does not trade at ¢ — 1 and i trades at ¢
. 0 otherwise (2.3.4b)
1 ifitradesat tand d
X.,(2) = oes not tradeat ¢t — 1 and ¢ —
«2) T otherwise - ? (2.3.4c)

The X;:(j) variables are merely indicators of the number of consecutive pe-

Moam before ¢ in which security j has not traded. Using this relation, we
ave u

1 X 1 X N
o 1 . 1
R == M XuOR+ = 37 Xu(DRiy + D K@ Ry 4+

. . (2.35
For large N, it may readily be shown that because the €;; component of omn_w
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1 is idi i expectation, the following
security’s return is idiosyncratic and has zero exp ,

www_.oiawmon obtains:

4.

(2.3.6)

Xit(j) become arbitrarily close,
o-trades followed by

N
3 ! 3 W X:(2) Bage—
R} ~ W MU Xi(0)Raye + W M_U XD Ry-1+ M_ 1(2) Rae—2

N
Itisalso apparent thatthe m<oawmom.ﬁ\2v.m_. .
again for large N, to the probability of j consecutive i

a trade; that is,

2 .
wzazlsw MU Xu(j) = pQl—pY- (2.3.7)

en by the approximation

(2.3.8)

The observed equal-weighted return is then giv

R’ = pRyu+ p(1 — p)Ryer + P = P2 Rpe—2 +

Using this expression, the general jth-order autocorrelation coefficient p(5)

may be readily computed as
Cov(R?, R_))
Var(RY)

= (1—-p). (2.3.9)
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rresponding to our single period

. imoplicit time i lco
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By specifying reasonable value
calculate the induced autocorre
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our assumptions, this random variable has a binomial distribution with p

rameters (N, p); hence, its oxwonﬁa value and 5.1&:8 are mﬁos by Np Mbmm
Np(1 = p) respectively. Therefore, the probability p 53\%@ EHQMMMMn i
. ities that trades on &
tion of the total number of N securities

M“M Mﬂm:owmaoa. A value of .90 implies that, on average, 10 percent of the

.ties do not trade in a single period. .
mon:‘ﬂwmmo 2.4 presents the theoretical daily and weekly mEOnoiﬁmco:mH ﬂun
duced by nontrading for nontrading Eovwg:com of 10 to 50 wMann:M.QNQn
first row shows that when (on average) 10 percent of the stocks do :M._ .
each day, this induces a weekly autocorrelation of only 2.1 percent!

when the probability of nontrading isi

ncreased to 50 percent (whichis quite :
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Table 2.4. Spuriously induced autocorrelations are reported for nontrading probabilities 1 — p
of 10 to 50 percent. In the absence of the nontrading phenomenon, the theoretical values of
daily jth-order autocorrelations p(j) and the weekly first-order autocorrelation p¥ (1) are all

2e10.

1—p p(1) P(2) r(3) p(4) p(5) ¥ (D)
10 .1000 0100 .0010 0001 0000 0211
20 2000 .0400 .0080 0016 .0003 0454
30 3000 .0900 0270 0081 0024 0756
40 14000 1600 0640 0256 0102 1150
50 5000 2500 1250 0625 0312 1687

unrealistic), the induced weekly autocorrelation is 17 percent.!¥ We con-
clude that our rejection of the random walk hypothesis cannot be attributed
solely to infrequent trading.

The positive autocorrelation of portfolio returns and the negative auto-
correlation of individual securities is puzzling. Although our stylized model
suggests that infrequent trading cannot fully account for the 30 percent au-
tocorrelation of the equal-weighted index, the combination of infrequent

195everal other factors imply that the actual sizes of the spurious autocorrelations induced

by infrequent trading are lower than those given in Table 2.4. For example, in calculating the
induced correlations using Equation (2.3.9), we have ignored the idiosyncratic components
in returns because diversification makes these components trivial in the limit; in practice,
perfect diversification is never achieved. But any residual risk increases the denominator of
- Equation (2.3.9) and does not necessarily increase the numerator (since the €;’s are cross-
~ sectionally uncorrelated). To see this explicity, we simulated the returns for 1000 stocks over
. 5120 days, calculated the weekly autocorrelations for the virtual returns and for the observed

- returns, computed the difterence of those autocorrelations, repeated this procedure 20 timcs,
‘and then averaged the differences. With a (daily) nontrading probability of 10 percent, the
' simulations yield a difference in weekly autocorrelations of 2.1 percent, of 4.3 percent for a
- nontrading probability of 20 percent, and of 7.6 percent for a nontrading probability of 30

percent.
~ Another factor that may reduce the spurious positive autocorrelation empirically is that,
within the CRSP files, if a security does not trade, its price is reported as the average of the
bid-ask spread. As long as the spccialist adjusts the apread to reflect the new information, even
if no trade occurs the reported CRSP price will reflect the new information. Although there
, may still bc some delay beforc the bid-ask spread is adjusted, it is presumably less than the lag
between trades.
2 Also, if it is assumed that the probability of no-trades depends upon whether or not the
curity has traded recently, it is natural to suppose that the likelihood of a no-trade tomorrow
lower if there is a no-trade today. In this case, it may readily be shown that the induced
tocorrelation is even lower than that computed in our IID framework.
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trading and Roll’s (1984a) bid-ask effect may explain a large part of the
small negative autocorrelation in individual returns.

Onc possible stochastic model that is loosely consistent with these obser-
vations is to let returns be the sum of a positively autocorrelated common
component and an idiosyncratic white-noise component. The common
component induces significant positive autocorrelation in portfolios since
the idiosyncratic component s trivialized by diversification. The white-noise
component reduces the positive autocorrelation of individual stock returns,
and the combination of infrequent trading and the bid-ask spread effects
drives the autocorrelation negative. Of course, explicit statistical estimation
is required in order to formalize such heuristics and, ultimately, what we
seek is an economic model of asset prices that might give rise 0 such em-

pirical findings. This is beyond the scope of this chapter, but it is the focus

of current investigation.

9.4 The Mean-Reverting Alternative to the Random Walk

Although the variance-ratio test has shown weekly stock returns to be in-
compatible with the random walk model, the rejections do not offer any
explicit guidance toward a more plausible model for the data. However,
the patterns of the test’s rejections over different base observation intervals

Jues g do shed considerable light on the relative merits

and aggregation va
of competing alternatives to the random walk. For example, one currently
be described by
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the standard Black-Scholes pricing formula for stock index options is mis-
specified.

Although our variance-based test may be used as a diagnostic check for
the random walk specification, it is a more difficult task to determine pre-
cisely which stochastic process best fits the data. The results of French and
Roll (1986) for return variances when markets are open versus when they
are closed add yet another dimension to this challenge. The construction
of a single stochastic process that fits both short and long holding-period
returns data is one important direction for further investigation. However,
perhaps the more pressing problem is to specify an economic model that
might give rise to such a process for asset prices, and this will be pursued in
subsequent research.

Appendix A2
Proof of Theorems

Proof of Theorem 2.1

Und . C .
nder Em IID Gaussian distributional assumption of the null hypothesis H,

B -2 A . . . .
. 0, and 6, are maximum-ikelihood estimators of o2 with respect to data

~ Sets consisting of every observation and of every gth observation, respec-
¢ 1s suppressed for notational simplicity).

 tively (the dependence of 67 on
Therefore, it is well known that

VGG ~383) ~ N(©, 20 (A2.1)
VG (GF ~85) ~ N(0,25%). (A2.2)

‘Since, under the null hypothesis H, %aw is the maximum-likelihood estimator

ﬁm o2 using S\wQ observation, it is asymptotically efficient. Therefore, follow-

ing Em:mnmwn s (1978) approach, we conclude that the asymptotic <,m:.w:no

of )\.awlmﬁqv — 62 is simply the difference of the asymptotic variances of -
V746, — o) and ,/ng(62 — 62). Thus, we have

VG Ju(n) = Rg6E - 62 2 A, 2(g — Vo). (A2.3)

‘Lhe asymptotic distribution of the ratio then follows by applying the “delta

method” to the quantity /mg(z(62, 62
g . J1g(g(6;, 6;) — g(a2, 62)), ivari
ction g is defined as gu, v) = v/ :h@rn:n.m. o)) where the bivariate

AT = EA % _ v LNO2-1). a2
Q.ED.



