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Abstract

We give the first rigorous upper bounds on the error of temporal difference (td)
algorithms for policy evaluation as a function of the amount of experience. These
upper bounds prove exponentially fast convergence, with both the rate of conver-
gence and the asymptote strongly dependent on the length of the backupsk or the
parameter�. Our bounds give formal verification to the long-standing intuition that
td methods are subject to a “bias-variance” trade-off, and they lead to schedules
for k and� that are predicted to be better than any fixed values for these parame-
ters. We give preliminary experimental confirmation of our theory for a version of
the random walk problem.

1 Introduction

In thepolicy evaluationproblem, we must predict the expected discounted return (orvalue)
for a fixed policy�, given only the ability to generate experience in an unknown Markov
decision process (MDP)M . A family of well-studiedtemporal difference(or td) [3] algo-
rithms have been developed for this problem that make use of repeated trajectories under�
from the state(s) of interest, and perform iterative updates to the value function. The main
difference between thetd variants lies in how far they look ahead in the trajectories. The
td(k) family of algorithms use the firstk rewards and the (current) value prediction at the
(k + 1)st state reached in making itsupdate. The more commonly usedtd(�) family of al-
gorithms use exponentially weighted sums oftd(k) updates (with decay parameter�). The
smaller the value fork or �, the less the algorithm depends on the actual rewards received
in the trajectory, and the more it depends on the current predictions for the value function.
Conversely, the larger the value fork or �, the more the algorithm depends on the actual
rewards obtained, with the current value function playing a lessened role. The extreme cases
of td(k = 1) andtd(� = 1) become the Monte Carlo algorithm, which updateseach
prediction to be the average of the discounted returns in the trajectories.

A long-standing question is whether it is better to use large or small values of the parameters
k and�. Watkins [5] informally discusses the trade-off that this decision gives rise to: larger
values for thetd parameters suffer larger variance in the updates (since more stochastic
reward terms appear), but also enjoy lower bias (since the error in the current value function
predictions have less influence). This argument has largely remained an intuition. However,
some conclusions arising from this intuition– for instance, that intermediate values ofk and�
often yield the best performance in the short term – have been borne out experimentally [4, 2].

In this paper, we provide the first rigorous upper bounds on the error in the value functions of



thetd algorithms as a function of the number of trajectories used. In other words, we give
bounds on thelearning curvesof td methods that hold for any MDP. These upper bounds
decay exponentially fast, and are obtained by first deriving a one-step recurrence relating the
errors before and after atd update, and then iterating this recurrence for the desired number
of steps. Of particular interest is the form of our bounds, since it formalizes the trade-off
discussed above — the bounds consist of terms that are monotonically growing withk and�
(corresponding to the increased variance), and terms that are monotonically shrinking withk
and� (corresponding to the decreased influence of the current error).

Overall, our bounds provide the following contributions and predictions:

1. A formal theoretical explanation of the bias-variance trade-off in multi-steptd up-
dates;

2. A proof of exponentially fast rates of convergence for any fixedk or �;

3. A rigorous upper bound that predicts that larger values ofk and� lead to faster
convergence, but tohigherasymptotic errror;

4. Formal explanation of the superiority of intermediate values ofk and� (U-shaped
curves) for any fixed number of iterations;

5. Derivation of a decreasingscheduleof k and� that our bound predicts should beat
any fixed value of these parameters.

Furthermore, we provide some preliminary experimental confirmation of our theory for the
random walk problem. We note that some of the findings above were conjectured by Singh
and Dayan [2] through analysis of specific MDPs.

2 Technical Preliminaries

Let M = (P;R) be an MDP consisting of thetransition probabilitiesP (�js; a) and the
reward distributionsR(�js). For any policy� in M , and any start states0, a trajectory
generated by� starting froms0 is a random variable that is an infinite sequence of states
and rewards:� = (s0; r0) ! (s1; r1) ! (s2; r2) ! � � �. Here each random rewardri is
distributed according toR(�jsi), and each statesi+1 is distributed according toP (�jsi; �(si)).
For simplicity we will assume that the support ofR(�jsi) is [�1;+1]. However, all of our
results easily generalize to the case of bounded variance.

We now recall the standardtd(k) (also known ask-step backup) andtd(�) methods for
updating an estimate of the value function. Given a trajectory� generated by� from s0, and
given an estimatêV �(�) for the value functionV �(�), for any natural numberk we define

td(k; �; V̂ �(�)) = (1� �)V̂ �(s0) + �
�
r0 + r1 + � � �+ k�1rk�1 + k V̂ �(sk)

�
:

Thetd(k) update based on� is simply V̂ �(s0)  td(k; �; V̂ �(�)). It is implicit that the
update is always applied to the estimate at the initial state of the trajectory� , and we regard
the discount factor and thelearning rate� as being fixed. For any� 2 [0; 1], thetd(�)
update can now be easily expressed as an infinite linear combination of thetd(k) updates:

td(�; �; V̂ �(�)) =
1X
k=1

(1� �)�k�1td(k; �; V̂ �(�)):

Given a sequence�1; �2; �3; : : :, we can simply apply either type oftd update sequentially.
In either case, as eitherk becomes large or� approaches 1, the updates approach a Monte
Carlo method, in which we useeach trajectory�i entirely, and ignore our current estimate
V̂ �(�). As k becomes small or� approaches 0, we rely heavily on the estimateV̂ �(�), and



effectively use only a few steps of each�i. The common intuition is that early in the sequence
of udpates, the estimatêV �(�) is poor, and we are better off choosingk large or� near 1.
However, since the trajectories�i do obey the statistics of�, the value function estimates will
eventually improve, at which point we may be better off “bootstrapping” by choosing small
k or �.

In order to provide a rigorous analysis of this intuition, we will study a framework which
we callphasedtd updates. This framework is intended to simplify the complexities of the
moving average introduced by the learning rate�. In each phase, we are givenn trajectories
under� from every states, wheren is a parameter of the analysis. Thus, phaset consists
of a setS(t) = f� si (t))gs;i, wheres ranges over all states,i ranges from1 to n, and� si (t)
is an independent random trajectory generated by� starting from states. In phaset, phased
td averages alln of the trajectories inS(t) that start from states to obtain its update of the
value function estimate fors. In other words, thetd(k) updates become

V̂ �
t+1(s) (1=n)

nX
i=1

�
ri0 + ri1 + � � �+ k�1rik�1 + kV̂ �

t (sik)
�

where therij are the rewards along trajectory� si (t), andsik is thekth state reached along that
trajectory. Thetd(�) updates become

V̂ �
t+1(s) (1=n)

nX
i=1

 
1X
k=1

(1� �)�k�1
�
ri0 + ri1 + � � �+ k�1rik�1+ kV̂ �

t (sik)
�!

Phasedtd updates with a fixed value ofn are analogous to standardtd updates with a
constant learning rate� [1]. In the ensuing sections, we provide a rigorous upper bound on
the error in the value function estimates of phasedtd updates as a function of the number of
phases. This upper bound clearly captures the intuitions expressed above.

3 Bounding the Error of td Updates

Theorem 1 (Phasedtd(k) Error Recurrence) LetS(t) be the set of trajectories generated
by� in phaset (n trajectories from each state), let̂V �

t (�) be the value function estimate of
phasedtd(k) after phaset, and let�t = maxsfjV̂ �

t (s)�V �(s)jg. Then for any1 > � > 0,
with probability at least1� �,

�t �
1� k

1� 

r
3 log(k=�)

n
+ k�t�1: (1)

Here the error�t�1 after phaset � 1 is fixed, and the probability is taken over only the
trajectories inS(t).

Proof:(Sketch) We begin by writing

V �(s) = E[r0 + r1 + � � �+ k�1rk�1 + kV �(sk)]

= E[r0] + E[r1] + � � �+ k�1E[rk�1] + kE[V �(sk)]:

Here the expectations are over a random trajectory under�; thusE[r`] (` � k � 1) denotes
the expected value of thèth reward received, whileE[V �(sk)] is the expected value of
the true value function at thekth state reached. The phasedtd(k) update sums the terms
`(1=n)

Pn

i=1 r
i
`, whose expectations are exactly the`E[r`] appearing above. By a stan-

dard large deviation analysis (omitted), the probability that any of these terms deviate by
more than� =

p
3 log(k=�)=n from their expected values is at most�. If no such devi-

ation occurs, the total contribution to the error in the value function estimate is bounded



by ((1 � k)=(1 � ))�, giving rise to the “variance” term in our overall bound above.
The remainder of the phasedtd(k) update is simplyk(1=n)

Pn

i=1 V̂
�
t�1(s

i
k). But since

jV̂ �
t�1(s

i
k)� V �(sik)j � �t�1 by definition, the contribution to the error is at mostk�t�1,

which is the “bias” term of the bound. We note that a similar argument leads to bounds in
expectation rather than the PAC-style bounds given here. 2

Let us take a brief moment to analyze the qualitative behavior of Equation (1) as a function of
k. For large values ofk, the quantityk becomes negligible, and the bound is approximately
(1=(1� ))

p
3 log(k=�)=n, giving almost all the weight to the error incurred by variance in

the firstk rewards, and negligible weight to the error in our current value function. At the
other extreme, whenk = 1 our reward variance contributes error only

p
3 log(1=�)=n, but

the error in our current value function has weight. Thus, the first term increases withk,
while the second term decreases withk, in a manner that formalizes the intuitive trade-off
that one faces when choosing between longer or shorter backups.

Equation (1) describes the effect of a single phase oftd(k) backups, but we can iterate this
recurrence over many phases to derive an upper bound on the full learning curve for any value
of k. Assuming that the recurrence holds fort consecutive steps,1 and assuming�0 = 1
without loss of generality, solution of the recurrence (details omitted) yields

�t �
1� kt

1� 

p
3 log(k=�)=n+ kt: (2)

This bound makes a number of predictions about the effects of different values fork.
First of all, as t approaches infinity, the bound on�t approaches the value(1=(1 �
))
p

3 log(k=�)=n, which increases withk. Thus, the bound predicts thatthe asymptotic
error of phasedtd(k) updates is larger for largerk. On the other hand, therate of con-
vergence to this asymptote iskt, which is always exponentially fast, butfasterfor largerk.
Thus, in choosing a fixed value ofk, we must choose between having either rapid conver-
gence to a worse asymptote, or slower convergence to a better asymptote. This prediction is
illustrated graphically in Figure 1(a), where with all of the parameters besidesk andt fixed
(namely,, �, andn), we have plotted the bound of Equation (2) as a function oft for several
different choices ofk.

Note that while the plots of Figure 1(a) were obtained by choosingfixed values fork and
iterating the recurrence of Equation (1), at each phaset we can instead use Equation (1) to
choose the value ofk that maximizes the predicted decrease in error�t � �t+1. In other
words, the recurrence immediately yields aschedulefor k, along with an upper bound on the
learning curve for this schedule that outperforms the upper bound on the learning curve for
any fixed value ofk. The learning curve for the schedule is also shown in Figure 1(a), and
Figure 1(b) plots the schedule itself.

Another interesting set of plots is obtained by fixing the number of phasest, and computing
for eachk the error aftert phases usingtd(k) updates that is predicted by Equation (2).
Such plots are given in Figure 1(c), and they clearly predict a unique minimum — that is, an
optimal value ofk for each fixedt (this can also be verified analytically from equation 2).
For moderate values oft, values ofk that are too small suffer from their overemphasis on a
still-inaccurate value function approximation, while values ofk that are too large suffer from
their refusal to bootstrap. Of course, ast increases, the optimal value ofk decreases, since
small values ofk have time to reach their superior asymptotes.

We now go on to provide a similar analysis for thetd(�) family of updates, beginning with
the analogue to Theorem 1.

1Formally, we can apply Theorem 1 by choosing� = �0=(tN), whereN is the number of states in
the MDP. Then with probability at least1� �0, the bound of Equation (1) will hold at every state fort
consecutive steps.
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Figure 1: (a) Upper bounds on the learning curves�t of phasedtd(k) for several values ofk, as
a function of the number of phasest (parametersn = 3000, = 0:9, � = 0:1). Note that larger
values ofk lead to more rapid convergence, but to higher asymptotic errors. Both the theory and the
curves suggest a (decreasing) schedule fork, intuitively obtained by always “jumping” to the learning
curve that enjoys the greatest one-step decrease from the current error. This schedule can be efficiently
computed from the analytical upper bounds, and leads to the best (lowest) of the learning curves plotted,
which is significantly better than for any fixedk. (b) The schedule fork derived from the theory as a
function of the number of phasest. (c) For several values of the number of phasest, the upper bound
on�t for td(k) as a function ofk. These curves show the predicted trade-off, with a unique optimal
value fork identified untilt is sufficiently large to permit 1-step backups to converge to their optimal
asymptotes.

Theorem 2 (Phasedtd(�) Error Recurrence) LetS(t) be the set of trajectories generated
by� in phaset (n trajectories from each state), let̂V �

t (�) be the value function estimate of
phasedtd(�) after phaset, and let�t = maxsfjV̂ �

t (s)�V �(s)jg. Then for any1 > � > 0,
with probability at least1� �,

�t � min
k

(
1� (�)k

1� �

r
3 log(k=�)

n
+

(�)k

1� �

)
+

(1� �)

1� �
�t�1: (3)

Here the error�t�1 after phaset � 1 is fixed, and the probability is taken over only the
trajectories inS(t).

We omit the proof of this theorem, but it roughly follows that of Theorem 1. That proof
exploited the fact that intd(k) updates, we only need to apply large deviation bounds to
the rewards of a finite number (k) of averaged trajectory steps. Intd(�), all of the rewards
contribute to the update. However, we can always choose to bound the deviations of the first
k steps, for any value ofk, and assume maximum variance for the remainder (whose weight
diminishes rapidly as we increasek). This logic is the source of theminkf�g term of the
bound. One can view Equation (3) as a variational upper bound, in the sense that it provides
a family of upper bounds, one foreachk, and then minimizes over the variational parameter
k.

The reader can verify that the terms appearing in Equation (3) exhibit a trade-off as a function
of � analogous to that exhibited by Equation (1) as a function ofk. In the interest of brevity,
we move directly to thetd(�) analogue of Equation (2). It will be notationally convenient
to definek� = argminkfF (�)g, whereF (�) is the function appearing inside theminkf�g
in Equation (3). (Here we regard all parameters other than� as fixed.) It can be shown that
for �0 = 1, repeated iteration of Equation (3) yields thet-phase inequality

�t � a�
1� b�

t

1� b�
+ b�

t (4)

where

a� =
1� (�)k�

1� �

r
3 log(k�=�)

n
+

(�)k�

1� �
b� =

(1 � �)

1� �
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Figure 2: (a) Upper bounds on the learning curves�t of phasedtd(�) for several values of�, as a
function of the number of phasest (parametersn = 3000, = 0:9, � = 0:1). The predictions are
analogous to those fortd(k) in Figure 1, and we have again plotted the predicted best learning curve
obtained via a decreasing schedule of�. (b) For several values of the number of phasest, the upper
bound on�t for td(�) as a function of�.

While Equation (4) may be more difficult to parse than itstd(k) counterpart, the basic pre-
dictions and intuitions remain intact. Ast approaches infinity, the bound on�t asymptotes
at a�=(1 � b�), and the rate of approach to this asymptote is simplyb�

t, which is again
exponentially fast. Analysis of the derivative ofb� with respect to� confirms that for all
 < 1, b� is a decreasing function of� — that is, the larger the�, the faster the convergence.
Analytically verifying that the asymptotea�=(1� b�) increases with� is more difficult due
to the presence ofk�, which involves a minimization operation. However, the learning curve
plots of Figure 2(a) clearly show the predicted phenomena — increasing� yields faster con-
vergence to a worse asymptote. As we did for thetd(k) case, we use our recurrence to derive
a schedule for�; Figure 2(a) also shows the predicted improvement in the learning curve by
using such a schedule. Finally, Figure 2(b) again shows the non-monotonic predicted error
as a function of� for a fixed number of phases.

4 Some Experimental Confirmation

In order to test the various predictions made by our theory, we have performed a number
of experiments using phasedtd(k) on a version of the so-calledrandom walkproblem [4].
In this problem, we have a Markov process with 5 states arranged in a ring. At each step,
there is probability 0.05 that we remain in our current state, and probability 0.95 that we
advance one state clockwise around the ring. (Note that since we are only concerned with the
evaluation of a fixed policy, we have simply defined a Markov process rather than a Markov
decision process.) Two adjacent states on the ring have reward+1 and�1 respectively,
while the remaining states have reward 0. The standard random walk problem has a chain
of states, with an absorbing state at each end; here we chose a ring structure simply to avoid
asymmetries in the states induced by the absorbing states.

To test the theory, we ran a series of simulations computing thetd(k) estimate of the value
function in this Markov process. For several different values ofk, we computed the error�t

in the value function estimate as a function of the number of phasest. (�t is easily computed,
since we can compute the true value function for this simple problem.) The resulting plot in
Figure 3(a) is the experimental analogue of the theoretical predictions in Figure 1(a). We see
that these predictions are qualitatively confirmed — largerk leads to faster convergence to
an inferior asymptote.

Given these empirical learning curves, we can then compute the “empirical schedule” that
they suggest. Namely, to determine experimentally a schedule fork that should outperform
(at least) the values ofk we tested in Figure 3(a), we used the empirical learning curves
to determine, for any given value of�, which of the empirical curves enjoyed the greatest
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Figure 3: (a) Empirical learning curves�t for td(k) for several values ofk on the random walk
problem (parametersn = 40 and = 0:98). Each plot is averaged over 5000 runs oftd(k). Also
shown is the learning curve (averaged over 5000 runs) for the empirical schedule computed from the
td(k) learning curves, which is better than any of these curves. (b) The empirical schedule.

one-step decrease in error when its current error was (approximately)�. This is simply the
empirical counterpart of the schedule computation suggested by the theory described above,
and the resulting experimental learning curve for this schedule is also shown in Figure 3(a),
and the schedule itself in Figure 3(b). We see that there are significant improvements in the
learning curve from using the schedule, and that the form of the schedule is qualitatively
similar to the theoretical schedule of Figure 1(b).

5 Conclusion

We have given the first provable upper bounds on the error oftd methods for policy evalu-
ation. These upper bounds have exponential rates of convergence, and clearly articulate the
“bias-variance” trade-off that such methods obey.
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