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1. Introduction

Finding Nash equilibria of strategic form or extensive form games can be di�cult
and tedious. A computer program for this task would allow greater detail of game-
theoretic models, and enhance their applicability. Algorithms for solving games have
been studied since the beginnings of game theory, and have proven useful for other
problems in mathematical optimization, like linear complementarity problems.

This paper is a survey and exposition of linear methods for �nding Nash equi-
libria. Above all, these apply to games with two players. In an equilibrium of a two-
person game, the mixed strategy probabilities of one player equalize the expected
payo�s for the pure strategies used by the other player. This de�nes an optimiza-
tion problem with linear constraints. We do not consider nonlinear methods like
simplicial subdivision for approximating �xed points, or systems of inequalities for
higher-degree polynomials as they arise for noncooperative games with more than
two players. These are surveyed in McKelvey and McLennan (1996).

First, we consider two-person games in strategic form (see also Parthasarathy
and Raghavan, 1971; Raghavan, 1994, 1998). The classical algorithm by Lemke and

Howson (1964) �nds one equilibrium of a bimatrix game. It provides an elemen-
tary, constructive proof that such a game has an equilibrium, and shows that the
number of equilibria is odd, except for degenerate cases. We follow Shapley's (1974)
very intuitive geometric exposition of this algorithm. The maximization over linear
payo� functions de�nes two polyhedra which provide further geometric insight. A
complementary pivoting scheme describes the computation algebraically. Then we
clarify the notion of degeneracy, which appears in the literature in various forms,
most of which are equivalent. The lexicographic method extends pivoting algorithms
to degenerate games. The problem of �nding all equilibria of a bimatrix game can
be phrased as a vertex enumeration problem for polytopes.

Second, we look at two methods for �nding equilibria of strategic form games
with additional re�nement properties (see van Damme, 1987, 1998; Hillas and
Kohlberg, 1998). Wilson (1992) modi�es the Lemke{Howson algorithm for com-
puting simply stable equilibria. These equilibria survive certain perturbations of the
game that are easily represented by lexicographic methods for degeneracy resolu-
tion. Van den Elzen and Talman (1991) present a complementary pivoting method
for �nding a perfect equilibrium of a bimatrix game.

Third, we review methods for games in extensive form (see Hart, 1992). In
principle, such game trees can be solved by converting them to the reduced strategic
form and then applying the appropriate algorithms. However, this typically increases
the size of the game description and the computation time exponentially, and is
therefore infeasible. Approaches to avoiding this problem compute with a small
fraction of the pure strategies, which are generated from the game tree as needed
(Wilson, 1972; Koller and Megiddo, 1996). A strategic description of an extensive
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game that does not increase in size is the sequence form. The central idea, set forth
independently by Romanovskii (1962), Selten (1988), Koller and Megiddo (1992),
and von Stengel (1996a), is to consider only sequences of moves instead of pure
strategies which are arbitrary combinations of moves. We will develop the problem
of equilibrium computation for the strategic form in a way that can also be applied to
the sequence form. In particular, the algorithm by van den Elzen and Talman (1991)
for �nding a perfect equilibrium carries over to the sequence form (von Stengel, van
den Elzen and Talman, 1998).

The concluding section addresses issues of computational complexity, and men-
tions ongoing implementations of the algorithms.

2. Bimatrix games

We �rst introduce our notation, and recall notions from polytope theory and linear
programming. Equilibria of a bimatrix game are the solutions to a linear comple-
mentarity problem. This problem is solved by the Lemke{Howson algorithm, which
we explain in graph-theoretic, geometric, and algebraic terms. Then we consider
degenerate games, and review enumeration methods.

2.1. Preliminaries

We use the following notation throughout. Let (A;B) be a bimatrix game, where
A and B are m � n matrices of payo�s to the row player 1 and column player 2,
respectively. All vectors are column vectors, so an m-vector x is treated as an
m� 1 matrix. A mixed strategy x for player 1 is a probability distribution on rows,
written as an m-vector of probabilities. Similarly, a mixed strategy y for player 2 is
an n-vector of probabilities for playing columns. The support of a mixed strategy
is the set of pure strategies that have positive probability. A vector or matrix with
all components zero is denoted 0. Inequalities like x � 0 between two vectors hold
for all components. B> is the matrix B transposed.

Let M be the set of the m pure strategies of player 1 and let N be the set of
the n pure strategies of player 2. It is sometimes useful to assume that these sets
are disjoint, as in

M = f1; : : : ; mg; N = fm+ 1; : : : ; m+ ng: (2:1)

Then x 2 IRM and y 2 IRN , which means, in particular, that the components of y
are yj for j 2 N . Similarly, the payo� matrices A and B belong to IRM�N .

Denote the rows of A by ai for i 2 M , and the rows of B> by bj for j 2 N
(so each b>j is a column of B). Then aiy is the expected payo� to player 1 for the
pure strategy i when player 2 plays the mixed strategy y, and bjx is the expected
payo� to player 2 for j when player 1 plays x.
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A best response to the mixed strategy y of player 2 is a mixed strategy x of
player 1 that maximizes his expected payo� x>Ay. Similarly, a best response y of
player 2 to x maximizes her expected payo� x>By. A Nash equilibrium is a pair
(x; y) of mixed strategies that are best responses to each other. Clearly, a mixed
strategy is a best response to an opponent strategy if and only if it only plays pure
strategies that are best responses with positive probability:

Theorem 2.1. (Nash, 1951.) The mixed strategy pair (x; y) is a Nash equilibrium
of (A;B) if and only if for all pure strategies i in M and j in N

xi > 0 =) aiy = max
k2M

aky ; (2:2)

yj > 0 =) bjx = max
k2N

bkx : (2:3)

We recall some notions from the theory of (convex) polytopes (see Ziegler,
1995). An a�ne combination of points z1; : : : ; zk in some Euclidean space is of the
form

Pk
i=1 zi�i where �1; : : : ; �k are reals with

Pk
i=1 �i = 1. It is called a convex

combination if �i � 0 for all i. A set of points is convex if it is closed under forming
convex combinations. Given points are a�nely independent if none of these points
is an a�ne combination of the others. A convex set has dimension d if and only if
it has d+ 1, but no more, a�nely independent points.

A polyhedron P in IRd is a set fz 2 IRd j Cz � qg for some matrix C and
vector q. It is called full-dimensional if it has dimension d. It is called a polytope

if it is bounded. A face of P is a set f z 2 P j c>z = q0g for some c 2 IRd, q0 2 IR
so that the inequality c>z � q0 holds for all z in P . A vertex of P is the unique
element of a 0-dimensional face of P . An edge of P is a one-dimensional face of P .
A facet of a d-dimensional polyhedron P is a face of dimension d � 1. It can be
shown that any nonempty face F of P can be obtained by turning some of the
inequalities de�ning P into equalities, which are then called binding inequalities.
That is, F = f z 2 P j ciz = qi; i 2 Ig, where ciz � qi for i 2 I are some
of the rows in Cz � q. A facet is characterized by a single binding inequality
which is irredundant , that is, the inequality cannot be omitted without changing
the polyhedron (Ziegler, 1995, p. 72). A d-dimensional polyhedron P is called
simple if no point belongs to more than d facets of P , which is true if there are no
special dependencies between the facet-de�ning inequalities.

A linear program (LP) is the problem of maximizing a linear function over
some polyhedron. The following notation is independent of the considered bimatrix
game. Let M and N be �nite sets, I �M , J � N , A 2 IRM�N , b 2 IRM , c 2 IRN .
Consider the polyhedron
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P = f x 2 IRN j X
j2N

aijxj = bi; i 2 M � I;

X
j2N

aijxj � bi; i 2 I;

xj � 0; j 2 J g:
Any x belonging to P is called primal feasible. The primal LP is the problem

maximize c>x subject to x 2 P : (2:4)

The corresponding dual LP has the feasible set

D = f y 2 IRM j X
i2M

yiaij = cj; j 2 N � J;

X
i2M

yiaij � cj; j 2 J;

yi � 0; i 2 I g
and is the problem

minimize y>b subject to y 2 D : (2:5)

Here the indices in I denote primal inequalities and corresponding nonnegative dual
variables, whereas those in M � I denote primal equality constraints and corre-
sponding unconstrained dual variables. The sets J and N � J play the same role
with \primal" and \dual" interchanged. By reversing signs, the dual of the dual
LP is again the primal. We recall the duality theorem of linear programming, which
states (a) that for any primal and dual feasible solutions, the corresponding objec-
tive functions are mutual bounds, and (b) if the primal and the dual LP both have
feasible solutions, then they have optimal solutions with the same value of their
objective functions.

Theorem 2.2. Consider the primal-dual pair of LPs (2.4), (2.5). Then

(a) (Weak duality.) c>x � y>b for all x 2 P and y 2 D.

(b) (Strong duality.) If P 6= � and D 6= � then c>x = y>b for some x 2 P and
y 2 D.

For a proof see Schrijver (1986). As an introduction to linear programming we
recommend Chv�atal (1983).

2.2. Linear constraints and complementarity

Mixed strategies x and y of the two players are nonnegative vectors whose compo-
nents sum up to one. These are linear constraints, which we de�ne using

E = [1; : : : ; 1] 2 IR1�M ; e = 1; F = [1; : : : ; 1] 2 IR1�N ; f = 1 : (2:6)
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Then the sets X and Y of mixed strategies are

X = f x 2 IRM j Ex = e; x � 0 g; Y = f y 2 IRN j Fy = f; y � 0 g : (2:7)

With the extra notation in (2.6), the following considerations apply also if X and Y
are more general polyhedra, where Ex = e and Fy = f may consist of more than
a single row of equations. Such polyhedrally constrained games, �rst studied by
Charnes (1953) for the zero-sum case, are useful for �nding equilibria of extensive
games (see Section 4).

Given a �xed y in Y , a best response of player 1 to y is a vector x in X that
maximizes the expression x>(Ay). That is, x is a solution to the LP

maximize x>(Ay) subject to Ex = e; x � 0: (2:8)

The dual of this LP with variables u (by (2.6) only a single variable) states

minimize
u

e>u subject to E>u � Ay: (2:9)

Both LPs are feasible. By Theorem 2.2(b), they have the same optimal value.

Consider now a zero-sum game, where B = �A. Player 2, when choosing y, has
to assume that her opponent plays rationally and maximizes x>Ay. This maximum
payo� to player 1 is the optimal value of the LP (2.8), which is equal to the optimal
value e>u of the dual LP (2.9). Player 2 is interested in minimizing e>u by her
choice of y. The constraints of (2.9) are linear in u and y even if y is treated as a
variable, which must belong to Y . So a minmax strategy y of player 2 (minimizing
the maximum amount she has to pay) is a solution to the LP

minimize
u; y

e>u subject to Fy = f; E>u� Ay � 0; y � 0: (2:10)

Figure 2.1 shows an example.

The dual of the LP (2.10) has variables v and x corresponding to the primal
constraints Fy = f and E>u� Ay � 0, respectively. It has the form

maximize f>v subject to Ex = e; F>v � A>x � 0; x � 0: (2:11)

It is easy to verify that this LP describes the problem of �nding a maxmin strategy
x (with maxmin payo� f>v) for player 1. We have shown the following.

Theorem 2.3. A zero-sum game with payo� matrix A for player 1 has the equi-
librium (x; y) if and only if u; y is an optimal solution to the LP (2.10) and v; x
is an optimal solution to its dual LP (2.11). Thereby, e>u is the maxmin payo�
to player 1 and f>v is the minmax payo� to player 2. Both payo�s are equal and
denote the value of the game.

Thus, the \maxmin = minmax" theorem for zero-sum games follows directly
from LP duality (see also Raghavan, 1994). This connection was noted by von
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Figure 2.1. Left: Example of the LP (2.10) for a 3�2 zero-sum game. The objective
function is separated by a line, nonnegative variables are marked by
\� 0". Right: The dual LP (2.11), to be read vertically.

Neumann and Dantzig in the late 1940s when linear programming took its shape.
Conversely, linear programs can be expressed as zero-sum games (see Dantzig, 1963,
p. 277). There are standard algorithms for solving LPs, in particular Dantzig's
Simplex algorithm. Usually, they compute a primal solution together with a dual
solution which proves that the optimum is reached.

A best response x of player 1 against the mixed strategy y of player 2 is a
solution to the LP (2.8). This is also useful for games that are not zero-sum. By
strong duality, a feasible solution x is optimal if and only if there is a dual solution u
ful�lling E>u � Ay and x>(Ay) = e>u, that is, x>(Ay) = (x>E>)u or equivalently

x>(E>u� Ay) = 0 : (2:12)

Because the vectors x and E>u� Ay are nonnegative, (2.12) states that they have
to be complementary in the sense that they cannot both have positive components
in the same position. This characterization of an optimal primal-dual pair of feasible
solutions is known as complementary slackness in linear programming. Since x has
at least one positive component, the respective component of E>u�Ay is zero and
u is by (2.6) the maximum of the components of Ay. Any pure strategy i in M of
player 1 is a best response to y if and only if the ith component of the slack vector
E>u� Ay is zero. That is, (2.12) is equivalent to (2.2).

For player 2, strategy y is a best response to x if and only if it maximizes
(x>B)y subject to y 2 Y . The dual of this LP is the following analogous LP to
(2.9): minimize f>v subject to F>v � B>x. Here, a primal-dual pair y; v of feasible
solutions is optimal if and only if, analogous to (2.12),

y>(F>v � B>x) = 0 : (2:13)
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Considering these conditions for both players, this shows the following.

Theorem 2.4. The game (A;B) has the Nash equilibrium (x; y) if and only if for
suitable u; v

Ex = e

Fy = f

E>u � Ay � 0

F>v �B>x � 0

x ; y � 0

(2:14)

and (2.12), (2.13) hold.

The conditions in Theorem 2.4 de�ne a so-called mixed linear complementarity

problem (LCP). There are various solutions methods for LCPs. For a comprehensive
treatment see Cottle, Pang, and Stone (1992). The most important method for
�nding one solution of the LCP in Theorem 2.4 is the Lemke{Howson algorithm.

2.3. The Lemke{Howson algorithm

In their seminal paper, Lemke and Howson (1964) describe an algorithm for �nding
one equilibrium of a bimatrix game. We follow Shapley's (1974) exposition of this
algorithm. It requires disjoint pure strategy sets M and N of the two players as in
(2.1). Any mixed strategy x in X and y in Y is labeled with certain elements of
M [N . These labels denote the unplayed pure strategies of the player and the pure
best responses of his or her opponent. For i 2M and j 2 N , let

X(i) = fx 2 X j xi = 0 g;
X(j) = fx 2 X j bjx � bkx for all k 2 Ng;
Y (i) = fy 2 Y j aiy � aky for all k 2Mg;
Y (j) = fy 2 Y j yj = 0g:

Then x has label k if x 2 X(k) and y has label k if y 2 Y (k), for k 2 M [ N .
Clearly, the best response regions X(j) for j 2 N are polytopes whose union is X .
Similarly, Y is the union of the sets Y (i) for i 2 M . Then a Nash equilibrium is a
completely labeled pair (x; y) since then by Theorem 2.1, any pure strategy k of a
player is either a best response or played with probability zero, so it appears as a
label of x or y.

Theorem 2.5. A mixed strategy pair (x; y) in X � Y is a Nash equilibrium of
(A;B) if and only if for all k 2M [N either x 2 X(k) or y 2 Y (k) (or both).

For the 3� 2 bimatrix game (A;B) with

A =

2
64 0 6
2 5
3 3

3
75 ; B =

2
64 1 0
0 2
4 3

3
75 ; (2:15)
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Figure 2.2. Mixed strategy sets X and Y of the players for the bimatrix game
(A;B) in (2.15). The labels 1; 2; 3, drawn as circled numbers, are the
pure strategies of player 1 and marked in X where they have probability
zero, in Y where they are best responses. The pure strategies of player 2
are similar labels 4; 5. The dots mark points x and y with a maximum
number of labels.

the labels of X and Y are shown in Figure 2.2. The equilibria are (x1; y1) =�
(0; 0; 1)>; (1; 0)>

�
where x1 has the labels 1, 2, 4 (and y1 the remaining labels 3

and 5), (x2; y2) =
�
(0; 1

3
; 2
3
)>; (2

3
; 1
3
)>
�
with labels 1, 4, 5 for x2 , and (x3; y3) =�

(2
3
; 1
3
; 0)>; (1

3
; 2
3
)>
�
with labels 3, 4, 5 for x3 .

This geometric-qualitative inspection is very suitable for �nding equilibria of
games of size up to 3 � 3. It works by inspecting any point x in X with m labels
and checking if there is a point y in Y having the remaining n labels. Usually, any x
in X has at most m labels, and any y in Y has at most n labels. A game with this
property is called nondegenerate, as stated in the following equivalent de�nition.

De�nition 2.6. A bimatrix game is called nondegenerate if the number of pure
best responses to a mixed strategy never exceeds the size of its support.

A game is usually nondegenerate since every additional label introduces an
equation that reduces the dimension of the set of points having these labels by
one. Then only single points x in X have m given labels and single points y in Y
have n given labels, and no point has more labels. Nondegeneracy is discussed in
greater detail in Section 2.6 below. Until further notice, we assume that the game
is nondegenerate.

Theorem 2.7. In a nondegenerate m�n bimatrix game (A;B), only �nitely many
points in X have m labels and only �nitely many points in Y have n labels.
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Proof. Let K and L be subsets of M [ N with jKj = m and jLj = n. There are
only �nitely many such sets. Consider the set of points in X having the labels in K ,
and the set of points in Y having the labels in L. By Theorem 2.10(c) below, these
sets are empty or singletons.

The �nitely many points in the preceding theorem are used to de�ne two graphs
G1 and G2. Let G1 be the graph whose vertices are those points x in X that have
m labels, with an additional vertex 0 in IRM that has all labels i in M . Any two
such vertices x and x0 are joined by an edge if they di�er in one label, that is, if
they have m � 1 labels in common. Similarly, let G2 be the graph with vertices y
in Y that have n labels, with the extra vertex 0 in IRN having all labels j in N ,
and edges joining those vertices that have n � 1 labels in common. The product

graph G1 �G2 of G1 and G2 has vertices are (x; y) where x is a vertex of G1, and
y is a vertex of G2. Its edges are given by fxg � fy; y0g for vertices x of G1 and
edges fy; y0g of G2 , or by fx; x0g�fyg for edges fx; x0g of G1 and vertices y of G2 .

The Lemke{Howson algorithm can be de�ned combinatorially in terms of these
graphs. Let k 2M [N , and call a vertex pair (x; y) of G1�G2 k-almost completely

labeled if any l in M [ N � fkg is either a label of x or of y. Since two adjacent
vertices x; x0 in G1 , say, have m � 1 labels in common, the edge fx; x0g � fyg of
G1 � G2 is also called k-almost completely labeled if y has the remaining n labels
except k. The same applies to edges fxg � fy; y0g of G1 �G2 .

Then any equilibrium (x; y) is in G1 �G2 adjacent to exactly one vertex pair
(x0; y0) that is k-almost completely labeled: Namely, if k is the label of x, then x
is joined to the vertex x0 in G1 sharing the remaining m � 1 labels, and y = y0.

If k is the label of y, then y is similarly joined to y0 in G2 and x = x0 . In the
same manner, a k-almost completely labeled pair (x; y) that is completely labeled
has exactly two neighbors in G1 �G2 . These are obtained by dropping the unique
duplicate label that x and y have in common, joining to an adjacent vertex either
in G1 and keeping y �xed, or in G2 and keeping x �xed. This de�nes a unique k-

almost completely labeled path in G1 �G2 connecting one equilibrium to another.
The algorithm is started from the arti�cial equilibrium (0; 0) that has all labels,
follows the path where label k is missing, and terminates at a Nash equilibrium of
the game.

Figure 2.3 demonstrates this method for the above example. Let 2 be the
missing label k. The algorithm starts with x = (0; 0; 0)> and y = (0; 0)>. Step I:
y stays �xed and x is changed in G1 to (0; 1; 0)>, picking up label 5, which is now
duplicate. Step II: dropping label 5 in G2 changes y to (0; 1)>, picking up label 1.
Step III: dropping label 1 in G1 changes x to x3 , picking up label 4. Step IV:
dropping label 4 in G2 changes y to y3 which has the missing label 2, terminating
at the equilibrium (x3; y3). In a similar way, steps V and VI indicated in Figure 2.3
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Figure 2.3. The graphs G1 and G2 for the game in (2.15). The set of 2-almost
completely labeled pairs is formed by the paths with edges (in G1�G2)
I{II{III{IV, connecting the arti�cial equilibrium (0; 0) and (x3; y3), and
V{VI, connecting the equilibria (x1; y1) and (x2; y2).

join the equilibria (x1; y1) and (x2; y2) on a 2-almost completely labeled path. In
general, one can show the following.

Theorem 2.8. (Lemke and Howson, 1964; Shapley, 1974.) Let (A;B) be a non-
degenerate bimatrix game and k be a label in M [ N . Then the set of k-almost
completely labeled vertices and edges in G1 �G2 consists of disjoint paths and cy-
cles. The endpoints of the paths are the equilibria of the game and the arti�cial
equilibrium (0; 0). The number of Nash equilibria of the game is odd.

This theorem provides a constructive, elementary proof that every nondegen-
erate game has an equilibrium, independently of the result of Nash (1951). By
di�erent labels k that are dropped initially, it may be possible to �nd di�erent
equilibria. However, this does not necessarily generate all equilibria, that is, the
union of the k-almost completely labeled paths in Theorem 2.8 for all k 2 M [ N
may be disconnected (Shapley, 1974, p. 183, reports an example due to R. Wilson).
For similar observations see Aggarwal (1973), Bastian (1976), Todd (1976, 1978).
Shapley (1981) discusses more general methods as a potential way to overcome this
problem.

2.4. Representation by polyhedra

The vertices and edges of the graphs G1 and G2 used in the de�nition of the Lemke{
Howson algorithm can be represented as vertices and edges of certain polyhedra. Let

H1 = f(x; v) 2 IRM � IR j x 2 X; B>x � F>v g;
H2 = f(y; u) 2 IRN � IR j y 2 Y; Ay � E>u g : (2:16)
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The elements of H1 � H2 represent the solutions to (2.14). Figure 2.4 shows H2

for the example (2.15). The horizontal plane contains Y as a subset. The scalar u,
drawn vertically, is at least the maximum of the functions aiy for the rows ai of A and
for y in Y . The maximum itself shows which strategy of player 1 is a best response
to y. Consequently, projecting H2 to Y by mapping (y; u) to y, in Figure 2.4 shown
as (y; 0), reveals the subdivision of Y into best response regions Y (i) for i 2 M
as in Figure 2.2. Figure 2.4 shows also that the unbounded facets of H2 project to
the subsets Y (j) of Y for j 2 N . Furthermore, the maximally labeled points in Y
marked by dots appear as projections of the vertices of H2 . Similarly, the facets of
H1 project to the subsets X(k) of X for k 2M [N .
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Figure 2.4. The polyhedron H2 for the game in (2.15), and its projection to the
set f (y; 0) j (y; u) 2 H2 g. The vertical scale is displayed shorter. The
circled numbers label the facets of H2 analogous to Figure 2.2.

The graph structure of H1 and H2 with its vertices and edges is therefore
identical to that of G1 and G2, except for the m unbounded edges of H1 and the
n unbounded edges of H2 that connect to \in�nity" rather than to the additional
vertex 0 of G1 and G2 , respectively.

The constraints (2.14) de�ning H1 and H2 can be simpli�ed by eliminating the
payo� variables u and v, which works if these are always positive. For that purpose,
assume that

A and B> are nonnegative and have no zero column. (2:17)

This assumption can be made without loss of generality since a constant can be
added to all payo�s without changing the game in a material way, so that, for
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example, A > 0 and B > 0. For examples like (2.15), zero matrix entries are also
admitted in (2.17). By (2.6), u and v are scalars and E> and F> are single columns
with all components equal to one, which we denote by the vectors 1M in IRM and
1N in IRN , respectively. Let

P1 = f x0 2 IRM j x0 � 0; B>x0 � 1Ng;
P2 = f y0 2 IRN j Ay0 � 1M ; y

0 � 0g : (2:18)

It is easy to see that (2.17) implies that P1 and P2 are full-dimensional polytopes,
unlike H1 and H2.

The set H1 is in one-to-one correspondence with P1�f0g with the map (x; v) 7!
x � (1=v). Similarly, (y; u) 7! y � (1=u) de�nes a bijection H2 ! P2 � f0g. These
maps have the respective inverse functions x0 7! (x; v) and y0 7! (y; u) with

x = x0 � v; v = 1=1>Mx
0; y = y0 � u; u = 1=1>Ny

0: (2:19)

These bijections are not linear. However, they preserve the face incidences since a
binding inequality in H1 corresponds to a binding inequality in P1 and vice versa. In
particular, vertices have the same labels de�ned by the binding inequalities, which
are some of the m+ n inequalities de�ning P1 and P2 in (2.18).
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Figure 2.5. The map H2 ! P2 , (y; u) 7! y0 = y�(1=u) as a projective transformation
with projection point (0; 0). The left hand side shows this for a single
component yj of y, the right hand side shows how P2 arises in this way
from H2 in the example (2.15).

Figure 2.5 shows a geometric interpretation of the bijection (y; u) 7! y � (1=u)
as a projective transformation (see Ziegler, 1995, Sect. 2.6). On the left hand side,
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the pair (yj; u) is shown as part of (y; u) in H2 for any component yj of y. The
line connecting this pair to (0; 0) contains the point (y0j; 1) with y0j = yj=u. Thus,
P2 � f1g is the intersection of the lines connecting any (y; u) in H2 with (0; 0) in
IRN � IR with the set f(y0; 1) j y0 2 IRNg. The vertices 0 of P1 and P2 do not arise
as such projections, but correspond to H1 and H2 \at in�nity".

2.5. Complementary pivoting

Traversing a polyhedron along its edges has a simple algebraic implementation
known as pivoting. The constraints de�ning the polyhedron are thereby represented
as linear equations with nonnegative variables. For P1 � P2, these have the form

Ay0 + r = 1M

B>x0 + s = 1N
(2:20)

with x0; y0; r; s � 0 where r 2 IRM and s 2 IRN are vectors of slack variables. The
system (2.20) is of the form

Cz = q (2:21)

for a matrix C , right hand side q, and a vector z of nonnegative variables. The
matrix C has full rank, so that q belongs always to the space spanned by the
columns Cj of C . A basis � is given by a basis fCj j j 2 �g of this column space, so
that the square matrix C� formed by these columns is invertible. The corresponding
basic solution is the unique vector z� = (zj)j2� with C�z� = q, where the variables
zj for j in � are called basic variables, and zj = 0 for all nonbasic variables zj ,
j 62 � , so that (2.21) holds. If this solution ful�lls also z � 0, then the basis � is
called feasible. If � is a basis for (2.21), then the corresponding basic solution can
be read directly from the equivalent system C�1

� Cz = C�1
� q, called a tableau, since

the columns of C�1
� C for the basic variables form the identity matrix. The tableau

is equivalent to the system

z� = C�1
� q �X

j 62�

C�1
� Cjzj (2:22)

which shows how the basic variables depend on the nonbasic variables.

Pivoting is a change of the basis where a nonbasic variable zj for some j not
in � enters and a basic variable zi for some i in � leaves the set of basic variables.
The pivot step is possible if and only if the coe�cient of zj in the ith row of the
current tableau is nonzero, and is performed by solving the ith equation for zj and
then replacing zj by the resulting expression in each of the remaining equations.

For a given entering variable zj , the leaving variable is chosen to preserve
feasibility of the basis. Let the components of C�1

� q be qi and of C�1
� Cj be cij , for

i 2 � . Then the largest value of zj such that z� = C�1
� q � C�1

� Cjzj � 0 in (2.22) is
obviously given by

minf qi=cij j i 2 �; cij > 0 g: (2:23)
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This is called a minimum ratio test. Except in degenerate cases (see below), the
minimum in (2.23) is unique and determines the leaving variable zi uniquely. After
pivoting, the new basis is � [ fjg � fig.

The choice of the entering variable depends on the solution that one wants to
�nd. The Simplex method for linear programming is de�ned by pivoting with an
entering variable that improves the value of the objective function. In the system
(2.20), one looks for a complementary solution where

x0
>
r = 0; y0

>
s = 0 (2:24)

because it implies with (2.19) the complementarity conditions (2.12) and (2.13) so
that (x; y) is a Nash equilibrium by Theorem 2.4. In a basic solution to (2.20), every
nonbasic variable has value zero and represents a binding inequality, that is, a facet
of the polytope. Hence, each basis de�nes a vertex which is labeled with the indices
of the nonbasic variables. The variables of the system come in complementary pairs

(xi; ri) for the indices i 2 M and (yj; sj) for j 2 N . Recall that the Lemke{
Howson algorithm follows a path of solutions that have all labels in M [N except
for a missing label k. Thus a k-almost completely labeled vertex is a basis that
has exactly one basic variable from each complementary pair, except for a pair of
variables (xk; rk), say (if k 2 M ) that are both basic. Correspondingly, there is
another pair of complementary variables that are both nonbasic, representing the
duplicate label. One of them is chosen as the entering variable, depending on the
direction of the computed path. The two possibilities represent the two k-almost
completely labeled edges incident to that vertex. The algorithm is started with all
components of r and s as basic variables and nonbasic variables (x0; y0) = (0; 0).
This initial solution ful�lls (2.24) and represents the arti�cial equilibrium.

Algorithm 2.9. (Complementary pivoting.) For a bimatrix game (A;B) ful�lling
(2.17), compute a sequence of basic feasible solutions to the system (2.20) as follows.

(a) Initialize with basic variables r = 1M , s = 1N . Choose k 2 M [ N , and let
the �rst entering variable be x0k if k 2M and y0k if k 2 N .

(b) Pivot such as to maintain feasibility using the minimum ratio test.

(c) If the variable zi that has just left the basis has index k, stop. Then (2.24)
holds and (x; y) de�ned by (2.19) is a Nash equilibrium. Otherwise, choose the
complement of zi as the next entering variable and go to (b).

We demonstrate Algorithm 2.9 for the example (2.15). The initial basic solution
in the form (2.22) is given by

r1 = 1 � 6y05

r2 = 1� 2y04 � 5y05

r3 = 1� 3y04 � 3y05

(2:25)
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and
s4 = 1� x01 � 4x03

s5 = 1 � 2x02 � 3x03 :
(2:26)

Pivoting can be performed separately for these two systems since they have no
variables in common. With the missing label 2 as in Figure 2.3, the �rst entering
variable is x02 . Then the second equation of (2.26) is rewritten as x02 =

1

2
� 3

2
x03� 1

2
s5

and s5 leaves the basis. Next, the complement y05 of s5 enters the basis. The
minimum ratio (2.23) in (2.25) is 1=6, so that r1 leaves the basis and (2.25) is
replaced by the system

y05 =
1

6
� 1

6
r1

r2 =
1

6
� 2y04 +

5

6
r1

r3 =
1

2
� 3y04 +

1

2
r1 :

(2:27)

Then the complement x01 of r1 enters the basis and s4 leaves, so that the system
replacing (2.26) is now

x01 = 1� 4x03 � s4

x02 =
1

2
� 3

2
x03 � 1

2
s5 :

(2:28)

With y04 entering, the minimum ratio (2.23) in (2.27) is 1=12, where r2 leaves the
basis and (2.27) is replaced by

y05 =
1

6
� 1

6
r1

y04 =
1

12
+ 5

12
r1 � 1

2
r2

r3 =
1

4
� 3

4
r1 � 3

2
r2 :

(2:29)

Then the algorithm terminates since the variable r2, with the missing label 2 as
index, has become nonbasic. The solution de�ned by the �nal systems (2.28) and
(2.29), with the nonbasic variables on the right hand side equal to zero, ful�lls
(2.24). Renormalizing x0 and y0 by (2.19) as probability vectors gives the equilibrium
(x; y) = (x3; y3) mentioned after (2.15) with payo�s 4 to player 1 and 2/3 to player 2.

Assumption (2.17) with the simple initial basis for the system (2.20) is used by
Wilson (1992). Lemke and Howson (1964) assume A < 0 and B < 0, so that P1 and
P2 are unbounded polyhedra and the almost completely labeled path starts at the
vertex at the end of an unbounded edge. To avoid the renormalization (2.19), the
Lemke{Howson algorithm can also be applied to the system (2.14) represented in
equality form. Then the unconstrained variables u and v have no slack variables as
counterparts and are always basic, so they never leave the basis and are disregarded
in the minimum ratio test. Then the computation has the following economic inter-

pretation (Wilson, 1992; van den Elzen, 1993): Let the missing label k belong to M .
Then the basic slack variable rk which is basic together with xk can be interpreted
as a \subsidy" payo� for the pure strategy k so that player 1 is in equilibrium. The
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algorithm terminates when that subsidy or the probability xk vanishes. Player 2 is
in equilibrium throughout the computation.

2.6. Degenerate games

The path computed by the Lemke{Howson algorithm is unique only if the game is
nondegenerate. Like other pivoting methods, the algorithm can be extended to de-
generate games by \lexicographic perturbation", as suggested by Lemke and Howson
(1964). Before we explain this, we show that various de�nitions of nondegeneracy
used in the literature are equivalent. In the following theorem, IM denotes the iden-
tity matrix in IRM�M . Furthermore, a pure strategy i of player 1 is called payo�

equivalent to a mixed strategy x of player 1 if it produces the same payo�s, that is,
ai = x>A. The strategy i is called weakly dominated by x if ai � x>A, and strictly

dominated by x if ai < x>A holds. The same applies to strategies of player 2.

Theorem 2.10. Let (A;B) be an m�n bimatrix game so that (2.17) holds. Then
the following are equivalent.

(a) The game is nondegenerate according to De�nition 2.6.

(b) For any x in X and y in Y , the rows of
�
IM
B>

�
for the labels of x are linearly

independent, and the rows of
�
A
IN

�
for the labels of y are linearly independent.

(c) For any x in X with set of labels K and y in Y with set of labels L, the
set

T
k2KX(k) has dimension m � jKj, and the set

T
l2L Y (l) has dimension

n� jLj.
(d) P1 and P2 in (2.18) are simple polytopes, and any pure strategy of a player

that is weakly dominated by or payo� equivalent to another mixed strategy is
strictly dominated by some mixed strategy.

(e) In any basic feasible solution to (2.20), all basic variables have positive values.

Lemke and Howson (1964) de�ne nondegenerate games by condition (b). Krohn
et al. (1991), and, in slightly weaker form, Shapley (1974), de�ne nondegeneracy as
in (c). Van Damme (1987, p. 52) has observed the implication (b))(a). Some of
the implications between the conditions (a){(e) in Theorem 2.10 are easy to prove,
whereas others require more work. For details of the proof see von Stengel (1996b).

The m+n rows of the matrices in (b) de�ne the inequalities for the polytopes
P1 and P2 in (2.18), where the labels denote binding inequalities. This condition
explains why a generic bimatrix game is nondegenerate with probability one: We call
a game generic if each payo� is drawn randomly and independently from a continuous
distribution, for example the normal distribution with small variance around an
approximate value for the respective payo�. Then the rows of the matrices described
in 2.10(b) are linearly independent with probability one, since a linear dependence
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imposes an equation on at least one payo�, which is ful�lled with probability zero.
However, the strategic form of an extensive game (like Figure 4.1 below) is often
degenerate since its payo� entries are not independent. A systematic treatment of
degeneracy is therefore of interest.

The dimensionality condition in Theorem 2.10(c) has been explained informally
before Theorem 2.7 above. The geometric interpretation of nondegeneracy in 2.10(d)
consists of two parts. The polytope P1 (and similarly P2) is simple since a point
that belongs to more than m facets of P1 has too many labels. In the game

A =

2
64 0 6
2 5
3 3

3
75 ; B =

2
64 1 0
0 2
4 4

3
75 ; (2:30)

the polytope P1 is not simple because its vertex (0; 0; 1
4
)> belongs to four facets.

This game is degenerate since the pure strategy 3 of player 1 has two best responses.
Apart from this, degeneracy may result due to a redundancy of the description of
the polytope by inequalities (for example, if A has two identical rows of payo�s to
player 1). It is not hard to show that such redundant inequalities correspond to
weakly dominated strategies. A binding inequality of this sort de�nes a face of the
respective polytope. The strict dominance in (d) asserts that this face is empty if
the game is nondegenerate.

Theorem 2.10(e) states that every feasible basis of the system is nondegenerate,
that is, all basic variables have positive values. This condition implies that the
leaving variable in step (b) of Algorithm 2.9 is unique, since otherwise, another
variable that could also leave the basis but stays basic will have value zero after the
pivoting step. This concludes our remarks on Theorem 2.10.

The lexicographic method extends the minimum ratio test in such a way that the
leaving variable is always unique, even in degenerate cases. The method simulates
an in�nitesimal perturbation of the right hand side of the given linear system (2.21),
z � 0, and works as follows. Let Q be a matrix of full row rank with k columns.
For any " � 0, consider the system

Cz = q +Q � ("1; : : : ; "k)> (2:31)

which is equal to (2.21) for " = 0 and which is a perturbed system for " > 0. Let �
be a basis for this system with basic solution

z� = C�1
� q + C�1

� Q � ("1; : : : ; "k)> = q +Q � ("1; : : : ; "k)> (2:32)

and zj = 0 for j 62 � . It is easy to see that z� is positive for all su�ciently small " if
and only if all rows of the matrix [q; Q] are lexico-positive, that is, the �rst nonzero
component of each row is positive. Then � is called a lexico-feasible basis. This
holds in particular for q > 0 when � is a nondegenerate basis for the unperturbed
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system. Because Q has full row rank, Q has no zero row, which implies that any
feasible basis for the perturbed system is nondegenerate.

In consequence, the leaving variable for the perturbed system is always unique.
It is determined by the following lexico-minimum ratio test. As for the minimum
ratio test (2.23), let, for i 2 � , the entries of the entering column C�1

� Cj be cij ,
those of q in (2.32) be qi0, and those of Q be qil for 1 � l � k. Then the leaving
variable is determined by the maximum choice of the entering variable zj such that
all basic variables zi in (2.31) stay nonnegative, that is,

zi = qi0 + qi1"
1 + � � �+ qik"

k � cijzj � 0

for all i 2 � . For su�ciently small ", the sharpest bound for zj is obtained for
that i in � with the lexicographically smallest row vector 1=cij � (qi0; qi1; : : : ; qik)
where cij > 0 (a vector is called lexicographically smaller than another if it is
smaller in the �rst component where the vectors di�er). No two of these row vectors
are equal since Q has full row rank. Therefore, this lexico-minimum ratio test,
which extends (2.23), determines the leaving variable zi uniquely. By construction,
it preserves the invariant that all computed bases are lexico-feasible, provided this
holds for the initial basis like that in Algorithm 2.9(a) which is nondegenerate.
Since the computed sequence of bases is unique, the computation cannot cycle and
terminates like in the nondegenerate case.

The lexico-minimum ratio test can be performed without actually perturbing
the system, since it only depends on the current basis � and Q in (2.32). The
actual values of the basic variables are given by q, which may have zero entries,
so the perturbation applies as if " is vanishing. The lexicographic method requires
little extra work (and none for a nondegenerate game) since Q can be equal to C
or to that part of C containing the identity matrix, so that Q in (2.32) is just the
respective part of the current tableau. Wilson (1992) uses this to compute equilibria
with additional stability properties, as discussed in Section 3.1 below.

2.7. Equilibrium enumeration and other methods

For a given bimatrix game, the Lemke{Howson algorithm �nds at least one equi-
librium. Sometimes, one wishes to �nd all equilibria, for example in order to know
if an equilibrium is unique. A simple approach (as used by Dickhaut and Kaplan,
1991) is to enumerate all possible equilibrium supports, solve the corresponding
linear equations for mixed strategy probabilities, and check if the unplayed pure
strategies have smaller payo�s. In a nondegenerate game, both players use the same
number of pure strategies in equilibrium, so only supports of equal cardinality need
to be examined. They can be represented as M \ S and N � S for any n-element
subset S of M [N except N . There are

�
m+n
n

�
�1 many possibilities for S , which is

exponential in the smaller dimension m or n of the bimatrix game. Stirling's asymp-
totic formula

p
2�n(n=e)n for the factorial n! shows that in a square bimatrix game
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where m = n, the binomial coe�cient
�
2n
n

�
is asymptotically 4n=

p
�n. The number

of equal sized supports is here not substantially smaller than the number 4n of all
possible supports.

An alternative is to inspect the vertices of H1 � H2 de�ned in (2.16) if they
represent equilibria. Mangasarian (1964) does this by checking if the bilinear func-
tion x>(A+B)y�u�v has a maximum, that is, has value zero, so this is equivalent
to the complementarity conditions (2.12) and (2.13). It is easier to enumerate the
vertices of P1 and P2 in (2.18) since these are polytopes if (2.17) holds. Analogous
to Theorem 2.5, a pair (x0; y0) in P1 � P2, except (0; 0), de�nes a Nash equilibrium
(x; y) by (2.19) if it is completely labeled. The labels can be assigned directly to
(x0; y0) as the binding inequalities. That is, (x0; y0) in P1 � P2 has label i in M if
x0i = 0 or aiy = 1, and label j in N if bjx

0 = 1 or y0j = 0 holds.

Theorem 2.11. Let (A;B) be a bimatrix game so that (2.17) holds, and let V1
and V2 be the sets of vertices of P1 and P2 in (2.18), respectively. Then if (A;B) is
nondegenerate, (x; y) given by (2.19) is a Nash equilibrium of (A;B) if and only if
(x0; y0) is a completely labeled vertex pair in V1 � V2 � f(0; 0)g.

Thus, computing the vertex sets V1 of P1 and V2 of P2 and checking their
labels �nds all Nash equilibria of a nondegenerate game. This method was �rst
suggested by Vorob'ev (1958), and later simpli�ed by Kuhn (1961). An e�cient and
simple method for vertex enumeration is due to Avis and Fukuda (1992), which has
apparently not yet been applied to bimatrix games.

The number of vertices of a polytope is in general exponential in the dimension.
The maximal number is described in the following theorem, where btc for a real
number t denotes the largest integer not exceeding t.

Theorem 2.12. (Upper bound theorem for polytopes, McMullen, 1970.) The max-
imum number of vertices of a d-dimensional polytope with k facets is

�(d; k) =

 
k � bd�1

2
c � 1

bd
2
c

!
+

 
k � bd

2
c � 1

bd�1
2
c

!
:

For a self-contained proof of this theorem see Mulmuley (1994). This result
shows that P1 has at most �(m;n +m) and P2 has at most �(n;m + n) vertices,
including 0 which is not part of an equilibrium. In a nondegenerate game, any
vertex is part of at most one equilibrium, so the smaller number of vertices of the
polytope P1 or P2 is a bound for the number of equilibria.

Corollary 2.13. (Keiding, 1997.) A nondegenerate m � n bimatrix game has at
most minf�(m;n +m);�(n;m + n)g � 1 equilibria.

It is not hard to show that m < n implies �(m;n +m) < �(n;m + n). For
m = n, Stirling's formula shows that �(n; 2n) is asymptotically c � (27=4)n=2=pn or
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about c � 2:598n=pn, where the constant c is equal to 2
q
2=3� or about .921 if n is

even, and
q
2=� or about .798 if n is odd. Since 2:598n grows less rapidly than 4n,

vertex enumeration is more e�cient than support enumeration.

Although the upper bound in Corollary 2.13 is probably not tight, it is possible
to construct bimatrix games that have a large number of Nash equilibria. The
n � n bimatrix game where A and B are equal to the identity matrix has 2n � 1
Nash equilibria. Then both P1 and P2 are equal to the n-dimensional unit cube,
where each vertex is part of a completely labeled pair. Quint and Shubik (1997)
conjectured that no nondegenerate n � n bimatrix game has more equilibria. This
follows from Corollary 2.13 for n � 3 and is shown for n = 4 by Keiding (1997) and
McLennan and Park (1999). However, there are counterexamples for n � 6, with
asymptotically c � (1+p

2)n=
p
n or about c � 2:414n=pn many equilibria, where c is

23=4=
p
� or about .949 if n is even, and (29=4 � 27=4)=

p
� or about .786 if n is odd

(von Stengel, 1999). These games are constructed with the help of polytopes which
have the maximum number �(n; 2n) of vertices. This result suggests that vertex
enumeration is indeed the appropriate method for �nding all Nash equilibria.

For degenerate bimatrix games, Theorem 2.10(d) shows that P1 or P2 may be
not simple. Then there may be equilibria (x; y) corresponding to completely labeled
points (x0; y0) in P1 � P2 where, for example, x0 has more than m labels and y0

has fewer than n labels and is therefore not a vertex of P2. However, any such
equilibrium is the convex combination of equilibria that are represented by vertex
pairs, as shown by Mangasarian (1964). The set of Nash equilibria of an arbitrary
bimatrix game is characterized as follows.

Theorem 2.14. (Winkels, 1979; Jansen, 1981.) Let (A;B) be a bimatrix game
so that (2.17) holds, let V1 and V2 be the sets of vertices of P1 and P2 in (2.18),
respectively, and let R be the set of completely labeled vertex pairs in V1 � V2 �
f(0; 0)g. Then (x; y) given by (2.19) is a Nash equilibrium of (A;B) if and only if
(x0; y0) belongs to the convex hull of some subset of R of the form U1 � U2 where
U1 � V1 and U2 � V2.

Proof. Labels are preserved under convex combinations. Hence, if the set U1 � U2

is contained in R, then any convex combination of its elements is also a completely
labeled pair (x0; y0) that de�nes a Nash equilibrium by (2.19).

Conversely, assume (x0; y0) in P1�P2 corresponds to a Nash equilibrium of the
game via (2.19). Let I = f i 2 M j aiy0 < 1 g and J = f j 2 N j y0j > 0 g, that
is, x0 has at least the labels in I [ J . Then the elements z in P1 ful�lling zi = 0
for i 2 I and bjz = 1 for j 2 J form a face of P1 (de�ned by the sum of these
equations, for example) which contains x0 . This face is a polytope and therefore
equal to the convex hull of its vertices, which are all vertices of P1 . Hence, x

0 is the
positive convex combination

P
k2K xk�k of certain vertices xk of P1, where �k > 0
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for k 2 K . Similarly, y0 is the positive convex combination
P

l2L y
l�l of certain

vertices yl of P2, where �l > 0 for l 2 L. This implies the convex representation

(x0; y0) =
X

k2K; l2L

�k�l(x
k; yl) :

With U1 = f xk j k 2 Kg and U2 = f yl j l 2 Lg, it remains to show (xk; yl) 2 G
for all k 2 K and l 2 L. Suppose otherwise that some (xk; yl) was not completely
labeled, with some missing label, say j 2 N , so that bjx

k < 1 and ylj > 0. But then
bjx

0 < 1 since �k > 0 and y0j > 0 since �l > 0, so label j would also be missing from
(x0; y0) contrary to the assumption. So indeed U1 � U2 � G.

The set R in Theorem 2.14 can be viewed as a bipartite graph with the com-
pletely labeled vertex pairs as edges. The subsets U1�U2 are cliques of this graph.
The convex hulls of the maximal cliques of R are the convex components of Nash
equilibria. Their union is the set of all equilibria, but they are not necessarily dis-
joint. The topological equilibrium components are unions of non-disjoint convex
components.
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Figure 2.6. A game (A;B), and its set R of completely labeled vertex pairs in
Theorem 2.14 as a bipartite graph. The labels denoting the binding
inequalities in P1 and P2 are also shown for illustration.

An example is shown in Figure 2.6, where the convex components of Nash

equilibria are, as sets of mixed strategies, f(1; 0)>g � Y and X � f(0; 1)>g. This
degenerate game illustrates the second part of condition 2.10(d): The polytopes
P1 and P2 are simple but have vertices with more labels than the dimension due
to weakly but not strongly dominated strategies. Dominated strategies could be
iteratively eliminated, but this may not be desired here since the order of elimination
matters. Knuth, Papadimitriou, and Tsitsiklis (1988) study computational aspects
of strategy elimination where they overlook this fact; see also Gilboa, Kalai, and
Zemel (1990, 1993).

Quadratic optimization is used for computing equilibria by Mills (1960), Man-
gasarian and Stone (1964), and Mukhamediev (1978). Audet et al. (1996) enumerate
equilibria with a search over polyhedra de�ned by parameterized linear programs.
Bomze (1992) describes an enumeration of the evolutionarily stable equilibria of a
symmetric bimatrix game. Yanovskaya (1968), Howson (1972), Eaves (1973), and
Howson and Rosenthal (1974) apply complementary pivoting to polymatrix games,
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which are multi-player games obtained as sums of pairwise interactions of the play-
ers.

3. Equilibrium re�nements

Nash equilibria of a noncooperative game are not necessarily unique. A large num-
ber of re�nement concepts have been invented for selecting some equilibria as more
\reasonable" than others. We give an exposition (with further details in von Sten-
gel, 1996b) of two methods that �nd equilibria with additional re�nement properties.
Wilson (1992) extends the Lemke{Howson algorithm so that it computes a simply

stable equilibrium. A complementary pivoting method that �nds a perfect equilib-
rium is due to van den Elzen and Talman (1991).

3.1. Simply stable equilibria

Kohlberg and Mertens (1986) de�ne strategic stability of equilibria. Basically, a
set of equilibria is called stable if every game nearby has equilibria nearby (Wilson,
1992). In degenerate games, certain equilibrium sets may not be stable. In the
bimatrix game (A;B) in (2.30), for example, all convex combinations of (x1; y1) and
(x2; y2) are equilibria, where x1 = x2 = (0; 0; 1)> and y1 = (0; 1)> and y2 = (1

3
; 2
3
)>.

Another, isolated equilibrium is (x3; y3). As shown in the right picture of Figure 3.1,
the �rst of these equilibrium sets is not stable since it disappears when the payo�s
to player 2 for her second strategy 5 are slightly increased.
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Figure 3.1. Left and center: Mixed strategy sets X and Y for the game (A;B) in
(2.30) with labels similar to Figure 2.2. The game has an in�nite set
of equilibria indicated by the pair of rectangular boxes. Right: Mixed
strategy set X where strategy 5 gets slightly higher payo�s, and only
the equilibrium (x3; y3) remains.

Wilson (1992) describes an algorithm that computes a set of simply stable

equilibria. There the game is not perturbed arbitrarily but only in certain system-
atic ways that are easily captured computationally. Simple stability is therefore
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weaker than the stability concepts of Kohlberg and Mertens (1986) and Mertens
(1989, 1991). Simply stable sets may not be stable, but no such game has yet been
found (Wilson, 1992, p. 1065). However, the algorithm is more e�cient and seems
practically useful compared to the exhaustive method by Mertens (1989).

The perturbations considered for simple stability do not apply to single payo�s
but to pure strategies, in two ways. A primal perturbation introduces a small
minimum probability for playing that strategy, even if it is not optimal. A dual

perturbation introduces a small bonus for that strategy, that is, its payo� can be
slightly smaller than the best payo� and yet the strategy is still considered optimal.
In system (2.20), the variables x0; y0; r; s are perturbed by corresponding vectors
�; �; �; � that have small positive components, �; � 2 IRM and �; � 2 IRN . That is,
(2.20) is replaced by

A(y0 + �) + IM(r + �) = 1M

B>(x0 + �) + IN (s+ �) = 1N :
(3:1)

If (3.1) and the complementarity condition (2.24) hold, then a variable xi or yj
that is zero is replaced by �i or �j , respectively. After the transformation (2.19),
these terms denote a small positive probability for playing the pure strategy i or j ,
respectively. So � and � represent primal perturbations.

Similarly, � and � stand for dual perturbations. To see that �i or �j indeed
represents a bonus for i or j , respectively, consider the second set of equations in
(3.1) with � = 0 for the example (2.30):

�
1 0 4
0 2 4

�0B@x01
x02
x03

1
CA+

�
s4 + �4
s5 + �5

�
=
�
1
1

�
:

If, say, �5 > �4 , then one solution is x01 = x02 = 0 and x03 = (1� �5)=4 with s5 = 0

and s4 = �5 � �4 > 0, which means that only the second strategy of player 2 is
optimal, so the higher perturbation �5 represents a higher bonus for that strategy
(as shown in the right picture in Figure 3.1). Dual perturbations are a generalization
of primal perturbations, letting � = A� and � = B>� in (3.1). Here, only special
cases of these perturbations will be used, so it is useful to consider them both.

Denote the vector of perturbations in (3.1) by

(�; �; �; �)> = � = (�1; : : : ; �k)
>; k = 2(m+ n): (3:2)

For simple stability, Wilson (1992, p. 1059) considers only special cases of �. For
each i 2 f1; : : : ; kg, the component �i+1 (or �1 if i = k) represents the largest
perturbation by some " > 0. The subsequent components �i+2; : : : ; �k; �1; : : : ; �i are
equal to smaller perturbations "2; : : : ; "k . That is,

di+j = "j if i + j � k;

di+j�k = "j if i + j > k;
1 � j � k: (3:3)
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De�nition 3.1. (Wilson, 1992.) Let (A;B) be an m � n bimatrix game. Then a
connected set of equilibria of (A;B) is called simply stable if for all i = 1; : : : ; k,
all su�ciently small " > 0, and (�; �; �; �) as in (3.2), (3.3), there is a solution
r = (x0; y0; r; s)> � 0 to (3.1) and (2.24) so that the corresponding strategy pair
(x; y) de�ned by (2.19) is near that set.

Due to the perturbation, (x; y) in De�nition 3.1 is only an \approximate"
equilibrium. When " vanishes, then (x; y) becomes a member of the simply stable
set. A perturbation with vanishing " is mimicked by a lexico-minimum ratio test as
described in Section 2.6 that extends step (b) of Algorithm 2.9. The perturbation
(3.3) is therefore easily captured computationally. With (3.2), (3.3), the perturbed
system (3.1) is of the form (2.31) with

z = (x0; y0; r; s)>; C =
�
0 A IM 0

B> 0 0 IN

�
; q =

�
1M
1N

�
(3:4)

and Q = [�Ci+1; : : : ;�Ck;�C1; : : : ;�Ci] if C1; : : : ; Ck are the columns of C . That
is, Q is just �C except for a cyclical shift of the columns, so that the lexico-minimum
ratio test is easily performed using the current tableau.

The algorithm by Wilson (1992) computes a path of equilibria where all pertur-
bations of the form (3.3) occur somewhere. Starting from the arti�cial equilibrium
(0; 0), the Lemke{Howson algorithm is used to compute an equilibrium with a lex-
icographic order shifted by some i. Having reached that equilibrium, i is increased
as long as the computed basic solution is lexico-feasible with that shifted order. If
this is not possible for all i (as required for simple stability), a new Lemke{Howson
path is started with the missing label determined by the maximally possible lexico-
graphic shift. This requires several variants of pivoting steps. The �nal piece of the
computed path represents the connected set in De�nition 3.1.

3.2. Perfect equilibria and the tracing procedure

An equilibrium is perfect (Selten, 1975) if it is robust against certain small mistakes
of the players. Mistakes are represented by small positive minimum probabilities
for all pure strategies. We use the following characterization (Selten, 1975, p. 50,
Theorem 7) as de�nition.

De�nition 3.2. (Selten, 1975.) An equilibrium (x; y) of a bimatrix game is called
perfect if there is a continuous function " 7! (x("); y(")) where (x("); y(")) is a pair
of completely mixed strategies for all " > 0, (x; y) = (x(0); y(0)), and x is a best
response to y(") and y is a best response to x(") for all ".

Positive minimum probabilities for all pure strategies de�ne a special primal
perturbation as considered for simply stable equilibria. Thus, as noted by Wilson
(1992, p. 1042), his modi�cation of the Lemke{Howson algorithm can also be used for
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computing a perfect equilibrium. Then it is not necessary to shift the lexicographic
order, so the lexico-minimum ratio test described in Section 2.6 can be used with
Q = �C .
Theorem 3.3. Consider a bimatrix game (A;B) and, with (3.4), the LCP Cz = q,
z � 0, (2.24). Then Algorithm 2.9, computing with bases � so that C�1

� [q;�C] is
lexico-positive, terminates at a perfect equilibrium.

Proof. Consider the computed solution to the LCP, which represents an equilibrium
(x; y) by (2.19). The �nal basis � is lexico-positive, that is, for Q = �C in the
perturbed system (2.32), the basic variables z� are all positive if " > 0. In (2.32),
replace ("; : : : ; "k)> by

� = (�; �; �; �)> = ("; : : : ; "m+n; 0; : : : ; 0)>; (3:5)

so that z� is still nonnegative. Then z� contains the basic variables of the solution
(x0; y0; r; s) to (3.1), with � = 0, � = 0 by (3.5). This solution depends on ", so
r = r("), s = s("), and it determines the pair x0(") = x0 + � , y(") = y0 + � which
represents a completely mixed strategy pair if " > 0. The computed equilibrium
is equal to this pair for " = 0, and it is a best response to this pair since it is
complementary to the slack variables r("); s("). Hence the equilibrium is perfect by
De�nition 3.2.

A di�erent approach to computing perfect equilibria of a bimatrix game is due
to van den Elzen and Talman (1991, 1995); see also van den Elzen (1993). The
method uses an arbitrary starting point (p; q) in the product X � Y of the two
strategy spaces de�ned in (2.7). It computes a piecewise linear path in X � Y that
starts at (p; q) and terminates at an equilibrium. The pair (p; q) is used throughout
the computation as a reference point. The computation uses an auxiliary variable z0 ,
which can be regarded as a homotopy parameter. Initially, z0 = 1. Then, z0 is
decreased and, after possible intermittent increases, eventually becomes zero, which
terminates the algorithm.

The algorithm computes a sequence of basic solutions to the system

Ex + e z0 = e

Fy + f z0 = f

r = E>u � Ay � (Aq)z0 � 0

s = F>v � B>x � (B>p)z0 � 0 ;

x ; y ; z0 � 0 :

(3:6)

These basic solutions contain at most one basic variable from each complementary
pair (xi; ri) and (yj; sj) and therefore ful�ll

x>r = 0; y>s = 0 : (3:7)
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The constraints (3.6), (3.7) de�ne an augmented LCP which di�ers from (2.14) only
by the additional column for the variable z0 . That column is determined by (p; q).
An initial solution is z0 = 1 and x = 0, y = 0. As in Algorithm 2.9, the computation
proceeds by complementary pivoting. It terminates when z0 is zero and leaves the
basis. Then the solution is an equilibrium by Theorem 2.4.

As observed in von Stengel, van den Elzen, and Talman (1998), the algorithm
in this description is a special case of the algorithm by Lemke (1965) for solving
an LCP (see also Murty, 1988; Cottle et al., 1992). Any solution to (3.6) ful�lls
0 � z0 � 1, and the pair

(x; y) = (x + pz0; y + qz0) (3:8)

belongs to X � Y since Ep = e and Fq = f . Hence, (x; y) is a pair of mixed
strategies, initially equal to the starting point (p; q). For z0 = 0, it is the computed
equilibrium. The set of these pairs (x; y) is the computed piecewise linear path in

X � Y . In particular, the computed solution is always bounded. The algorithm
can therefore never encounter an unbounded ray of solutions, which in general may
cause Lemke's algorithm to fail. The computed pivoting steps are unique by using
lexicographic degeneracy resolution. This proves that the algorithm terminates.

In (3.8), the positive components xi and yj of x and y describe which pure
strategies i and j , respectively, are played with higher probability than the minimum
probabilities piz0 and qjz0 as given by (p; q) and the current value of z0 . By the
complementarity condition (3.7), these are best responses to the current strategy
pair (x; y). Therefore, any point on the computed path is an equilibrium of the
restricted game where each pure strategy has at least the probability it has under
(p; q)�z0. Considering the �nal line segment of the computed path, one can therefore
show the following.

Theorem 3.4. (Van den Elzen and Talman, 1991.) Lemke's complementary piv-
oting algorithm applied to the augmented LCP (3.6), (3.7) terminates at a perfect
equilibrium if the starting point (p; q) is completely mixed.

As shown by van den Elzen and Talman (1995), their algorithm also emulates
the linear tracing procedure of Harsanyi and Selten (1988). The tracing procedure
is an adjustment process to arrive at an equilibrium of the game when starting
from a prior (p; q). It traces a pair of strategy pairs (x; y). Each such pair is an
equilibrium in a parameterized game where the prior is played with probability z0
and the currently used strategies with probability 1� z0 . Initially, z0 = 1 and the
players react against the prior. Then they simultaneously and gradually adjust their
expectations and react optimally against these revised expectations, until they reach
an equilibrium of the original game.
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4. Extensive form games

In a game in extensive form, successive moves of the players are represented by
edges of a tree. The standard way to �nd an equilibrium of such a game has been
to convert it to strategic form, where each combination of moves of a player is a
strategy. However, this typically increases the description of the game exponentially.
In order to reduce this complexity, Wilson (1972) and Koller and Megiddo (1996)
describe computations that use mixed strategies with small support. A di�erent
approach uses the sequence form of the game where pure strategies are replaced by
move sequences, which are small in number. We describe it following von Stengel
(1996a), and mention similar work by Romanovskii (1962), Selten (1988), Koller
and Megiddo (1992), and further developments.

4.1. Extensive form and reduced strategic form

The basic structure of an extensive game is a �nite tree. The nodes of the tree
represent game states. The game starts at the root (initial node) of the tree and
ends at a leaf (terminal node), where each player receives a payo�. The nonterminal
nodes are called decision nodes. The player's moves are assigned to the outgoing
edges of the decision node. The decision nodes are partitioned into information

sets, introduced by Kuhn (1953). All nodes in an information set belong to the
same player, and have the same moves. The interpretation is that when a player
makes a move, he only knows the information set but not the particular node he
is at. Some decision nodes may belong to chance where the next move is made
according to a known probability distribution.

We denote the set of information sets of player i by Hi, information sets by h,
and the set of moves at h by Ch. In the extensive game in Figure 4.1, moves are
marked by upper case letters for player 1 and by lower case letters for player 2.
Information sets are indicated by ovals. The two information sets of player 1 have
move sets fL;Rg and fS; Tg, and the information set of player 2 has move set fl; rg.

Equilibria of an extensive game can found recursively by considering subgames

�rst. A subgame is a subtree of the game tree that includes all information sets
containing a node of the subtree. In a game with perfect information, where every
information set is a singleton, every node is the root of a subgame, so that an equi-
librium can be found by backward induction. In games with imperfect information,
equilibria of subgames are sometimes easy to �nd. Figure 4.1, for example, has a
subgame starting at the decision node of player 2. It is equivalent to a 2� 2 game
and has a unique mixed equilibrium with probability 2=3 for the moves S and r,
respectively, and expected payo� 4 to player 1 and 2=3 to player 2. Preceded by
move L of player 1, this de�nes the unique subgame perfect equilibrium of the game.

In general, Nash equilibria of an extensive game (in particular one without
subgames) are de�ned as equilibria of its strategic form. There, a pure strategy
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Figure 4.1. Left: A game in extensive form. Its reduced strategic form is (2.30).
Right: The sequence form payo� matrices A and B . Rows and columns
correspond to the sequences of the players which are marked at the side.
Any sequence pair not leading to a leaf has matrix entry zero, which is
left blank.

of player i prescribes a deterministic move at each information set, so it is an
element of

Q
h2Hi

Ch. In Figure 4.1, the pure strategies of player 1 are the move
combinations hL; Si, hL; T i, hR; Si, and hR; T i. In the reduced strategic form,
moves at information sets that cannot be reached due to an earlier own move are
identi�ed. In Figure 4.1, this reduction yields the pure strategy (more precisely,
equivalence class of pure strategies) hR; �i, where � denotes an arbitrary move. The
two pure strategies of player 2 are her moves l and r. The reduced strategic form
(A;B) of this game is then as in (2.30). This game is degenerate even if the payo�s
in the extensive game are generic, because player 2 receives payo� 4 when player 1
chooses R (the bottom row of the bimatrix game) irrespective of her own move.
Furthermore, the game has an equilibrium which is not subgame perfect, where
player 1 chooses R and player 2 chooses l with probability at least 2=3.

A player may have parallel information sets that are not distinguished by own
earlier moves. In particular, these arise when a player receives information about
an earlier move by another player. Combinations of moves at parallel information
sets cannot be reduced (see von Stengel, 1996b, for further details). This causes
a multiplicative growth of the number of strategies even in the reduced strategic
form. In general, the reduced strategic form is therefore exponential in the size of
the game tree. Strategic form algorithms are then exceedingly slow except for very
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small game trees. Although extensive games are convenient modeling tools, their
use has partly been limited for this reason (Lucas, 1972).

Wilson (1972) applies the Lemke{Howson algorithm to the strategic form of
an extensive game while storing only those pure strategies that are actually played.
That is, only the positive mixed strategy probabilities are computed explicitly. These
correspond to basic variables x0i or y

0
j in Algorithm 2.9. The slack variables ri and

sj are merely known to be nonnegative. For the pivoting step, the leaving variable
is determined by a minimum ratio test which is performed indirectly for the tableau
rows corresponding to basic slack variables. If, for example, y0k enters the basis in
step 2.9(b), then the conditions y0j � 0 and ri � 0 for the basic variables yj and ri
determine the value of the entering variable by the minimum ratio test. In Wilson
(1972), this test is �rst performed by ignoring the constraints ri � 0, yielding a
new mixed strategy y0 of player 2. Against this strategy, a pure best response i
of player 1 is computed from the game tree by a subroutine, essentially backward
induction. If i has the same payo� as the currently used strategies of player 1, then

r � 0 and some component of y leaves the basis. Otherwise, the payo� for i is
higher and ri < 0. Then at least the inequality ri � 0 is violated, which is now
added for a new minimum ratio test. This determines a new, smaller value for the
entering variable and a corresponding mixed strategy y1. Against this strategy, a
best response is computed again. This process is repeated, computing a sequence of
mixed strategies y0; y1; : : : ; yt, until r � 0 holds and the correct leaving variable ri
is found.

Each pure strategy used in this method is stored explicitly as a tuple of moves.
Their number should stay small during the computation. In the description by
Wilson (1972) this is not guaranteed. However, the desired small support of the
computed mixed strategies can be achieved by maintaining an additional system of
linear equations for realization weights of the leaves of the game tree and with a

basis crashing subroutine, as shown by Koller and Megiddo (1996).

The best response subroutine in Wilson's (1972) algorithm requires that the
players have perfect recall , that is, all nodes in an information set of a player are
preceded by the same earlier moves of that player (Kuhn, 1953). For �nding all

equilibria, Koller and Megiddo (1996) show how to enumerate small supports in a
way that can also be applied to extensive games without perfect recall.

4.2. Sequence form

The use of pure strategies can be avoided altogether by using sequences of moves
instead. The unique path from the root to any node of the tree de�nes a sequence of
moves for player i. We assume player i has perfect recall. That is, any two nodes in
an information set h in Hi de�ne the same sequence for that player, which we denote
by �h . Let Si be the set of sequences of moves for player i. Then any � in Si is
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either the empty sequence ; or uniquely given by its last move c at the information
set h in Hi, that is, � = �hc. Hence, Si = f ; g [ f �hc j h 2 Hi; c 2 Ch g. So
player i does not have more sequences than the tree has nodes.

The sequence form of the extensive game, described in detail in von Stengel
(1996), is similar to the strategic form but uses sequences instead of pure strate-
gies, so it is a very compact description. Randomization over sequences is thereby
described as follows.

A behavior strategy � of player i is given by probabilities �(c) for his moves c
which ful�ll �(c) � 0 and

P
c2Ch

�(c) = 1 for all h in Hi. This de�nition of � can
be extended to the sequences � in Si by writing

�[�] =
Y

c in �

�(c): (4:1)

A pure strategy � of player i can be regarded as a behavior strategy with �(c) 2
f0; 1g for all moves c. Thus, �[�] 2 f0; 1g for all � in Si. The pure strategies �
with �[�] = 1 are those \agreeing" with � by prescribing all the moves in �, and
arbitrary moves at the information sets not touched by �.

A mixed strategy � of player i assigns a probability �(�) to every pure strat-
egy �. In the sequence form, a randomized strategy of player i is described by the
realization probabilities of playing the sequences � in Si. For a behavior strategy � ,
these are obviously �[�] as in (4.1). For a mixed strategy � of player i, they are
obtained by summing over all pure strategies � of player i, that is,

�[�] =
X
�

�(�)�[�] : (4:2)

For player 1, this de�nes a map x from S1 to IR by x(�) = �[�] for � in S1 which
we call the realization plan of � or a realization plan for player 1. A realization plan
for player 2, similarly de�ned on S2, is denoted y.

Theorem 4.1. (Koller and Megiddo, 1992; von Stengel, 1996.) For player 1, x is
the realization plan of a mixed strategy if and only if x(�) � 0 for all � 2 S1 and

x(;) = 1;X
c2Ch

x(�hc) = x(�h); h 2 H1:
(4:3)

A realization plan y of player 2 is characterized analogously.

Proof. Equations (4.3) hold for the realization probabilities x(�) = �[�] for a be-
havior strategy � and thus for every pure strategy �, and therefore for their convex
combinations in (4.2) with the probabilities �(�).
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To simplify notation, we write realization plans as vectors x = (x�)�2S1 and
y = (y�)�2S2 with sequences as subscripts. According to Theorem 4.1, these vectors
are characterized by

x � 0; Ex = e; y � 0; F y = f (4:4)

for suitable matrices E and F , and vectors e and f that are equal to (1; 0 : : : ; 0)>,
where E and e have 1 + jH1j rows and F and f have 1 + jH2j rows. In Figure 4.1,
the sets of sequences are S1 = f;; L; R; LS; LTg and S2 = f;; l; rg, and in (4.4),

E =

2
64 1
�1 1 1

�1 1 1

3
75 ; e =

2
64 10
0

3
75 ; F =

�
1

�1 1 1

�
; f =

�
1
0

�
:

The number of information sets and therefore the number of rows of E and F is at
most linear in the size of the game tree.

Mixed strategies of a player are called realization equivalent (Kuhn, 1953) if
they de�ne the same realization probabilities for all nodes of the tree, given any
strategy of the other player. For reaching a node, only the players' sequences matter,
which shows that the realization plan contains the strategically relevant information
for playing a mixed strategy:

Theorem 4.2. (Koller and Megiddo, 1992; von Stengel, 1996.) Two mixed strate-
gies � and �0 of player i are realization equivalent if and only if they have the same
realization plan, that is, �[�] = �0[�] for all � 2 Si.

Any realization plan x of player 1 (and similarly y for player 2) naturally de�nes
a behavior strategy � where the probability for move c is �(c) = x(�hc)=x(�h), and
arbitrary, for example, �(c) = 1=jChj, if x(�h) = 0 since then h cannot be reached.

Corollary 4.3. (Kuhn, 1953.) For a player with perfect recall, any mixed strategy
is realization equivalent to a behavior strategy.

In Theorem 4.2, a mixed strategy � is mapped to its realization plan by re-
garding (4.2) as a linear map with given coe�cients �[�] for the pure strategies �.
This maps the simplex of mixed strategies of a player to the polytope of realization
plans. These polytopes are characterized by (4.4) as asserted in Theorem 4.1. They
de�ne the player's strategy spaces in the sequence form, which we denote by X and
Y as in (2.7). The vertices of X and Y are the players' pure strategies up to real-
ization equivalence, which is the identi�cation of pure strategies used in the reduced
strategic form. However, the dimension and the number of facets of X and Y is
reduced from exponential to linear size.

Sequence form payo�s are de�ned for pairs of sequences whenever these lead to
a leaf, multiplied by the probabilities of chance moves on the path to the leaf. This
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de�nes two sparse matrices A and B of dimension jS1j�jS2j for player 1 and player 2,
respectively. For the game in Figure 2.1, A and B are shown in Figure 4.1 on the
right. When the players use the realization plans x and y, the expected payo�s are
x>Ay for player 1 and x>By for player 2. These terms represent the sum over all
leaves of the payo�s at leaves multiplied by their realization probabilities.

The formalism in Section 2.2 can be applied to the sequence form without
change. For zero-sum games, one obtains the analogous result to Theorem 2.3. It
was �rst proved by Romanovskii (1962). He constructs a constrained matrix game
(see Charnes, 1953) which is equivalent to the sequence form. The perfect recall
assumption is weakened by Yanovskaya (1970). Until recently, these publications
were overlooked in the English-speaking community.

Theorem 4.4. (Romanovskii, 1962; von Stengel, 1996.) The equilibria of a two-
person zero-sum game in extensive form with perfect recall are the solutions of the
LP (2.10) with sparse sequence form payo� matrix A and constraint matrices E
and F in (4.4) de�ned by Theorem 4.1. The size of this LP is linear in the size of
the game tree.

Selten (1988, pp. 226, 237�) de�nes sequence form strategy spaces and payo�s
to exploit their linearity, but not for computational purposes. Koller and Megiddo
(1992) describe the �rst polynomial-time algorithm for solving two-person zero-
sum games in extensive form, apart from Romanovskii's result. They de�ne the
constraints (4.3) for playing sequences � of a player with perfect recall. For the
other player, they still consider pure strategies. This leads to an LP with a linear
number of variables x� but possibly exponentially many inequalities. However,
these can be evaluated as needed, similar to Wilson (1972). This solves e�ciently
the \separation problem" when using the ellipsoid method for linear programming.

For non-zero-sum games, the sequence form de�nes an LCP analogous to The-
orem 2.4. Again, the point is that this LCP has the same size as the game tree.
The Lemke{Howson algorithm cannot be applied to this LCP, since the missing
label de�nes a single pure strategy, which would involve more than one sequence in
the sequence form. Koller, Megiddo, and von Stengel (1996) describe how to use
the more general complementary pivoting algorithm by Lemke (1965) for �nding a
solution to the LCP derived from the sequence form. This algorithm uses an ad-
ditional variable z0 and a corresponding column to augment the LCP. However,
that column is just some positive vector, which requires a very technical proof that
Lemke's algorithm terminates.

In von Stengel, van den Elzen, and Talman (1998), the augmented LCP (3.6),
(3.7) is applied to the sequence form. The column for z0 is derived from a starting
pair (p; q) of realization plans. The computation has the interpretation described in
Section 3.2. Similar to Theorem 3.4, the computed equilibrium can be shown to be
strategic-form perfect if the starting point is completely mixed.
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5. Computational issues

How long does it take to �nd an equilibrium of a bimatrix game? The Lemke{
Howson algorithm has exponential running time for some speci�cally constructed,
even zero-sum, games. However, this does not seem to be the typical case. In
practice, numerical stability is more important (Tomlin, 1978; Cottle et al., 1992).
Interior point methods that are provably polynomial as for linear programming
are not known for LCPs arising from games; for other LCPs see Kojima et al.
(1991). The computational complexity of �nding one equilibrium is unclear. By
Nash's theorem, an equilibrium exists, but the problem is to construct one. Megiddo
(1988), Megiddo and Papadimitriou (1989), and Papadimitriou (1994) study the
computational complexity of problems of this kind.

Gilboa and Zemel (1989) show that �nding an equilibrium of a bimatrix game
with maximum payo� sum is NP-hard, so for this problem no e�cient algorithm
is likely to exist. The same holds for other problems that amount essentially to
examining all equilibria, like �nding an equilibrium with maximum support. For
other game-theoretic aspects of computing see Linial (1994) and Koller, Megiddo,
and von Stengel (1994).

The usefulness of algorithms for solving games should be tested further in
practice. Many of the described methods are being implemented in the project
GAMBIT, accessible by internet, and reviewed in McKelvey and McLennan (1996).
The GALA system by Koller and Pfe�er (1997) allows to generate large game trees
automatically, and solves them according to Theorem 4.4. These program systems
are under development to become e�cient and easily usable tools for the applied
game theorist.
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