Approximation Bound Refinement of KLS

Luis E. Ortiz

1st December 2002

1 Overview

Below is the description of a refinement on Lemmas 3 and 4 of KLS, leading to a lower representation size and computation complexity. The resulting versions of those lemmas follow.

Lemma 1 Let the mixed strategies \vec{p} , \vec{q} for (G, \mathcal{M}) satisfy $|p_i - q_i| \leq \tau/2$ for all i. Then

$$|M_i(\vec{p}) - M_i(\vec{q})| \le ((1+\tau)^k - 1)/2.$$

Lemma 2 Let \vec{p} be a Nash equilibrium for (G, \mathcal{M}) and let \vec{q} be the nearest (in L_1 metric) mixed strategy on the τ -grid. Then, \vec{q} is a $((1+\tau)^k-1)$ -Nash equilibrium for (G, \mathcal{M}) .

2 Bound revision

Let us first introduce some notation. As in the original expression of the bound, let $k \equiv |N_G(i)|$. Let the mixed strategies \vec{p} and \vec{q} be such that $\forall i, p_i = q_i + \Delta_i$, and their largest coordinate-wise difference $\Delta \equiv \max_i |\Delta_i|$. Since we will concentrate on the neighborhood of player i, we index the players in the neighborhood by $j \in N_G(i)$. Also, denote the set of players for which \vec{p} and \vec{q} differ by $D \equiv \{i: \Delta_i \neq 0\}$, those set of players in the local neighborhood of i by $D_i \equiv N_G(i) \cap D$, and the number of differing local players by $k' \equiv |D_i|$. For any $s \in \{1, \ldots, k'\}$, we index the set of all subsets of size s in D_i by $J_s \in \{\{j_1, \ldots, j_s\} \subseteq D_i\}$ and denote its complement $J_s^c \equiv N_G(i) \setminus J_s$. We will also denote $(J_s, J_s^c) \equiv N_G(i)$ and $(\vec{x}^{J_s}, \vec{x}^{J_s^c}) \equiv \vec{x}$. Consider the expected payoff of player i under \vec{p}

$$\begin{split} M_i(\vec{p}) &= \sum_{\vec{x} \in \{0,1\}^k} \prod_j p_j^{x_j} (1-p_j)^{1-x_j} M_i(\vec{p}[N_G(i):\vec{x}]) \\ &= \sum_{\vec{x} \in \{0,1\}^k} \left[\prod_j \left(q_j^{x_j} (1-q_j)^{1-x_j} + (-1)^{1-x_j} \Delta_j \right) \right] M_i(\vec{p}[N_G(i):\vec{x}]) \end{split}$$

$$\begin{split} &= \sum_{\vec{x} \in \{0,1\}^k} \left| \prod_j q_j^{x_j} (1-q_j)^{1-x_j} + \right. \\ &= \sum_{s=1}^k \sum_{J_s} \left(\prod_{j' \in J_s} (-1)^{1-x_{j'}} \Delta_{j'} \right) \left(\prod_{j \in J_s^*} q_j^{x_j} (1-q_j)^{1-x_j} \right) \right| M_i(\vec{p}[N_G(i):\vec{x}]) \\ &= \sum_{\vec{x} \in \{0,1\}^k} \left(\prod_j q_j^{x_j} (1-q_j)^{1-x_j} \right) M_i(\vec{p}[N_G(i):\vec{x}]) + \\ &= \sum_{\vec{x} \in \{0,1\}^k} \sum_{s=1}^{k'} \sum_{J_s} \left(\prod_{j' \in J_s} (-1)^{1-x_{j'}} \Delta_{j'} \right) \left(\prod_{j \in J_s^*} q_j^{x_j} (1-q_j)^{1-x_j} \right) M_i(\vec{p}[N_G(i):\vec{x}]) \\ &= M_i(\vec{q}) + \sum_{s=1}^{k'} \sum_{J_s} \sum_{\vec{x}^{J_s} \in \{0,1\}^k} \left(\prod_{j' \in J_s} (-1)^{1-x_{j'}} \Delta_{j'} \right) \right. \\ &= M_i(\vec{q}) + \sum_{s=1}^{k'} \sum_{J_s} \sum_{\vec{x}^{J_s}} \left(\prod_{j' \in J_s} (-1)^{1-x_{j'}} \Delta_{j'} \right) M_i(\vec{p}[N_G(i):\vec{x}]) \\ &= M_i(\vec{q}) + \sum_{s=1}^{k'} \sum_{J_s} \left(\prod_{j' \in J_s} \Delta_{j'} \right) \\ &= M_i(\vec{q}) + \sum_{s=1}^{k'} \sum_{J_s} \left(\prod_{j' \in J_s} \Delta_{j'} \right) \\ &\leq M_i(\vec{q}) + \sum_{s=1}^{k'} \sum_{J_s} \left(\prod_{j' \in J_s} |\Delta_{j'}| \right) \\ &\leq M_i(\vec{q}) + 2^{-1} \sum_{s=1}^{k'} \left(k' \atop s \right) (2\Delta)^s \\ &= M_i(\vec{q}) + 2^{-1} (1+2\Delta)^{k'} - 1) \\ &\leq M_i(\vec{q}) + k' \Delta (1+2k'\Delta) \\ &< M_i(\vec{q}) + k' \Delta (1+2k'\Delta) \\ &< M_i(\vec{q}) + 2k'\Delta. \end{split}$$

The lower bound follows similarly. So we have, for any pair of mixed strategies \vec{p} and \vec{q} such that $\|\vec{p} - \vec{q}\|_1 \le \Delta$, $|M_i(\vec{p}) - M_i(\vec{q})| \le ((1 + 2\Delta)^{k'} - 1)/2$ (other simpler bounds are possible—see above).

Now consider a discretization scheme with τ -size grid. For any mixed strategy \vec{p} there exists a mixed strategy \vec{q} on the τ -grid at most $\tau/2$ away (in L_1 metric). In particular, if \vec{p} is a NE, then for the nearest (in L_1 metric) mixed strategy \vec{q}^* on the τ -grid is a $((1+\tau)^k-1)$ -NE for the game

$$\begin{split} M_i(\vec{q}^{\,*}) + & ((1+\tau)^k - 1)/2 & \geq & M_i(\vec{p}) \\ & = & \max_{a \in \{0,1\}} M_i(\vec{p}[i:a]) \\ & \geq & \max_{a \in \{0,1\}} M_i(\vec{q}^{\,*}[i:a]) - ((1+\tau)^{k-1} - 1)/2 \\ M_i(\vec{q}^{\,*}) & \geq & \max_{a \in \{0,1\}} M_i(\vec{q}^{\,*}[i:a]) - ((1+\tau)^k - 1). \end{split}$$

Therefore, for an ϵ -NE, we require $\tau \leq (1+\epsilon)^{1/k}-1 \leq \epsilon/(2k)$). Hence, the size of each (local) table is $\lceil 1/\tau \rceil^2 \leq (1/((1+\epsilon)^{1/k}-1)+1)^2 \leq (2k/\epsilon+1)^2$ and computation is $O((1/\tau)^{2k}) = O((1/((1+\epsilon)^{1/k}-1)+1)^{2k}) = O((2k/\epsilon+1)^{2k})$.