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Initial Ideas

• Analyze keyword markets related by use of
modifiers
– ‘lexus’ vs. ‘used lexus’
– ‘electrician’ vs. ‘chicago electrician’

• Develop better models for real-world bidding
behavior
– Not “uniformly at random from [a,b]”



Combined Approach

• Develop a parameterized model for bids on a
single query
– E.g., parameters are first bid and rate of falloff

• Collect bids for a wide array of
keyword/modifier pairs
– Fit the model to each bid viewer result

• Use model parameters as analysis quantities
– E.g., the ‘free’ modifier lowers the first bid and

decreases rate of falloff



Analysis

• Noise is an issue
– Consider keywords and modifiers in groups

• Generate matrices showing effect of each
modifier group on each base keyword group
– Preliminary results today

• So far, groups created by hand
– Can we automate this?  More later…
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1. Keywords and modifiers (Edi)
2. Initial results (Qian and Qiuye)
3. Ongoing work: Modeling bids (Kuzman)
4. Ongoing work: Modeling values (Jinsong)
5. Ongoing work: Automatic clustering (Alex)



Keyword Base Groups and Modifiers

 relevant, popular, diverse, and interesting
− what some people search for
− affected differently by modifiers
− differ in several aspects (spatial, temporal, expense)

 eight groups with ~600 keywords total
− one or two groups per person

 six modifier groups ~50 modifiers
− modeling phases of consumer interaction
− not necessarily applicable to all base keywords

 32K base-modifier pairs
− sparsity
− data collection (Tales from the (s)Crypt)



Base Keywords

 Cars (Alex)
− toyota camry, chevy, ford suv, porsche 911

 Drugs, medical (Edi)
− zoloft, cialis, psoriasis, sciatica, liposuction

 Electronics, software (Jinsong)
− xbox, mp3, pda, oracle, world of warcraft

 Travel (Kuzman)
− airfare, cruise, safari, sailing, vacation

 Local and non-local services (Qian)
− electrician, locksmith, ** insurance, ** loan

 Subscription services (Qiuye)
− cable tv, gym membership, magazine subscription



Keyword Modifiers

 INFO:
− info, information,
− specs, specifications,
− reviews, ratings,
− prices,
− coupon, rebate,
− guide, news

 QUALITY:
− best
− luxury
− favorite
− inclusive, exclusive
− preferred
− used, new

 LOCATION:
− 20 U.S. States
− 20 U.S. Cities

 PRICE:
− cheap, free
− bargain, discount, deal
− special, sale
− budget, affordable
− expensive

 ACTION:
− buy, sell, purchase
− lease, rent, hire

 POST:
− support
− parts
− repair
− mechanic
− manufacturer
− warranty



Base groups vs.
modifier groups

serviceservice

travelsubscriptionsoftwarenon-localmedicallocalelectronicsdrugs

0.8152190.76446330.6629734.66921.7420411.2645451.0261760.878548null

0.3237210.46929410.2978571.4092310.31250.4986670.665185-1action

0.3038830.24393550.2237931.3414881.0085420.4874160.2597210.285461info

0.7298710.58423310.2647922.8292791.6519341.585050.38551-1location

0.110.35295450.2335290.730417-10.7137840.385122-1post

0.7779720.46265520.1864861.6448480.5586360.5095290.554332-1price

0.7188750.37452830.2627781.389070.7630770.4545160.5226970.2425quality
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Base groups vs.
price modifier sub-groups

serviceservice

travelsubscriptionsoftwarenon-localmedicallocalelectronicsdrugs

0.8152190.76446330.6629734.66921.7420411.2645451.0261760.878548null

0.7230110.65057690.1666673.1252630.7818180.5897220.806774-1cheap

0.2350.30204080.141.1159090.2215380.46050.297895-1free

0.9646810.61118640.1322.510.680.5503030.833214-1discount

1.1193750.51382350.341.5723080.1850.3215380.6528-1deal

0.6188890.173-11-10.9085710.236667-1budget

0.8242860.37277780.151.10.10.3463640.213-1special

0.8968420.46363640.10.893846-10.2142860.314737-1bargain

0.4813330.3394737-12.1813330.873750.6820.414615-1affordable

0.5388890.34606060.25250.7956250.20.3952380.63037-1sale

0.1240.12-10.82-10.1150.155556-1expensive



Base groups vs.
location modifier sub-groups

serviceservice

travelsubscriptionsoftwarenon-localmedicallocalelectronicsdrugs

0.815220.764460.662974.66921.742041.264551.026180.87855null

0.776610.7102630.1885712.7672161.9615281.7185610.590606-1eastern

0.683050.5626960.2173912.7936311.6848471.6315140.344068-1central

0.6337660.5207690.5752.8507531.3766671.4498530.231905-1mountain

0.8750420.5538640.1793.0997171.4942481.4811580.365-1pacific
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Modeling Bidder Values
• The questions:

– What is the distribution of values (of all potential
bidders) for a random keyword?

– What is the distribution of values for a keyword from a
specific category?

– How does a modifier affects the distribution of value?
• In the current literature, such distributions are

often assumed to be uniformly distributed over
some interval [a,b]
– An oversimplification

• Our experiments set to answer these questions



Modeling bidder values
• The problem:

– bidder values are never directly observable
• Estimate bidder bi’s value with the

maximum bid ever observed during some
period of time

• Assumptions:
– 1. the Max bid is highly correlated with her

value (and positively).
– 2. the bid value of any bidder does not vary

too much over the period of time we observe



Experiment Setup
• 1. sample a set of keywords;
• 2. observe the bids over, say, a few weeks for each

keyword X;
• 3. record the max bid, max(bi,X) for each bidder bi
• 4. normalize these data according to some criteria

– e.g. by dividing by the highest max bid for X among all bidders
• max(bi,x)  max(bi,x)/maxj{ max(bj,x) }

– Or by further take into consideration nX, the avg num of bidders for
X

• max(bi,x)  [ (nX+1)/nX ] * [ max(bi,x)/maxj{ max(bj,x) } ]
– now each (keyword, bidder value) pair maps to a point in [0,1]

• 5. plot all such data points in [0,1] will give us a rough idea
of the "prior" distribution of bidder values for a random
keyword.

• 6. come up with some statistical model that fits the data
– Hopefully also come up with a theory explains it



Automatic Clustering

• Can we choose keyword/modifier groups
automatically?

• Idea: use data to guide clustering
– Modifiers that have similar effects should be

grouped together
– Base keywords that are effected similarly should

be grouped together

• Might rediscover original groups, or find
interesting new ones (or garbage)



Algorithmic Ideas

• Suppose l fixed base keyword groups
• Compute vector of length l per modifier

– ith dimension is average effect of modifier on
keyword group i

• Can run k-means (or something else…)
– Should produce clusters with desired property

• Now suppose k fixed modifer groups
– Can do the same thing for base keywords



Algorithmic Ideas

• Idea: alternate k/l-means steps for base
keywords and modifiers
– Recompute vectors at each step

Assign modifiers to clusters

Re-center modifier prototypes

Randomly initialize prototypes

Assign keywords to clusters

Re-center keyword prototypes


