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INEIREER

* Analyze keyword markets related by use of
modifiers

— ‘lexus’ vs. ‘used lexus’

— ‘electrician’ vs. ‘chicago electrician’

* Develop better models for real-world bidding
behavior

— Not “uniformly at random from [a,b]”



Combined Approach

* Develop a parameterized model for bids on a

single query
— E.g., parameters are first bid and rate of falloff

* Collect bids for a wide array of
keyword/modifier pairs

— Fit the model to each bid viewer result

* Use model parameters as analysis quantities

— E.g., the ‘free’ modifier lowers the first bid and
decreases rate of falloff



e Noise 1S an issue

— Consider keywords and modifiers in groups

* Generate matrices showing effect ot each
modifier group on each base keyword group

— Preliminary results today

* So far, groups created by hand

— Can we automate this? More later...



Keywords and moditiers (Edi)

oo o=

Initial results (Qian and Qiuye)
Ongoing work: Modeling bids (Kuzman)

Ongoing work: Modeling values (Jinsong)

Ongoing work: Automatic clustering (Alex)



Keyword Base Groups and Modifiers

relevant, popular, diverse, and interesting

- what some people search for

- affected differently by modifiers

- differ in several aspects (spatial, temporal, expense)
eight groups with ~600 keywords total

- one or two groups per person
six modifier groups ~50 modifiers

- modeling phases of consumer interaction

- not necessarily applicable to all base keywords
32K base-modifier pairs

- sparsity

- data collection (Tales from the (s)Crypt)



Base Keywords

Cars (Alex)

- toyota camry, chevy, ford suv, porsche 911
Drugs, medical (Edi)

- zoloft, cialis, psoriasis, sciatica, liposuction
Electronics, software (Jinsong)

- xXbox, mp3, pda, oracle, world of warcraft
Travel (Kuzman)

- airfare, cruise, safari, sailing, vacation
Local and non-local services (Qian)

- electrician, locksmith, ** insurance, ** loan
Subscription services (Qiuye)

- cable tv, gym membership, magazine subscription



Keyword Modifiers

INFO:
- info, information,

- specs, specifications,

- reviews, ratings,
- prices,
- coupon, rebate,
guide, news
QUALITY
- best
- luxury
- favorite
- inclusive, exclusive
- preferred
used, new
LOCATION
- 20 U.S. States
- 20 U.S. Cities

PRICE:

- cheap, free

- bargain, discount, deal
- special, sale

- budget, affordable
- expensive
ACTION:

- buy, sell, purchase
- lease, rent, hire
POST:

- support

- parts

- repair

- mechanic

- manufacturer

- warranty
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Number of Bids vs Top Price
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Number of Bids vs Mean Price
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e Prices In Travel
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Bid differences
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Bid Differences
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Normalized price differences
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Modeling Bidder Values

* The questions:

— What is the distribution of values (of all potential
bidders) for a random keyword?

— What is the distribution of values for a keyword from a
specific category?
— How does a modifier affects the distribution of value?
* |n the current literature, such distributions are
often assumed to be uniformly distributed over
some interval [a,b]
— An oversimplification

* Our experiments set to answer these questions



Modeling bidder values

* The problem:
— bidder values are never directly observable

» Estimate bidder b,’s value with the

maximum bid ever observed during some
period of time

* Assumptions:

— 1. the Max bid is highly correlated with her
value (and positively).

— 2. the bid value of any bidder does not vary
too much over the period of time we observe



Experiment Setup

1. sample a set of keywords;

2. observe the bids over, say, a few weeks for each
keyword X;

3. record the max bid, max(b,,X) for each bidder b,

4. normalize these data according to some criteria
— e.g. by dividing by the highest max bid for X among all bidders
* max(b;x) 2 max(b;,x)/max{ max(b;x) }

— Or by further take into consideration ny, the avg num of bidders for
X

* max(b,x) 2 [ (ny+1)/ny ] [ max(b;,x)/max{ max(b;x) } ]
— now each (keyword, bidder value) pair maps to a point in [0,1]
5. plot all such data points in [0,1] will give us a rough idea
of the "prior" distribution of bidder values for a random
keyword.

6. come up with some statistical model that fits the data
— Hopefully also come up with a theory explains it



Automatic Clustering

* Can we choose keyword/modifier groups

automatically?

* Idea: use data to guide clustering

— Modifiers that have similar effects should be
grouped together

— Base keywords that are effected similarly should
be grouped together
* Might rediscover original groups, or find
interesting new ones (or garbage)



Algorithmic ldeas

* Suppose | fixed base keyword groups

* Compute vector of length 1 per moditier

— i dimension is average effect of modifier on

keyword group 1
* Can run k-means (or something else...)

— Should produce clusters with desired property

* Now suppose k fixed modifer groups

— Can do the same thing for base keywords



Algorithmic ldeas

* Idea: alternate k/l-means steps for base
keywords and modifiers

— Recompute vectors at each step

Randomly initialize prototypes

Assign modifiers to clusters

Re-center modifier prototypes




