Sponsored Search Seminar Group Project: Approach and Initial Results

Edi Bice, Kuzman Ganchev, Alex Kulesza, Qian Liu, Jinsong Tan, Qiuye Zhao

Initial Ideas

- Analyze keyword markets related by use of modifiers
 - 'lexus' vs. 'used lexus'
 - 'electrician' vs. 'chicago electrician'
- Develop better models for real-world bidding behavior
 - Not "uniformly at random from [a,b]"

Combined Approach

- Develop a parameterized model for bids on a single query
 - E.g., parameters are first bid and rate of falloff
- Collect bids for a wide array of keyword/modifier pairs
 - Fit the model to each bid viewer result
- Use model parameters as analysis quantities
 - E.g., the 'free' modifier lowers the first bid and decreases rate of falloff

Analysis

- Noise is an issue
 - Consider keywords and modifiers in groups
- Generate matrices showing effect of each modifier group on each base keyword group

 Preliminary results today
- So far, groups created by hand
 - Can we automate this? More later...

Outline

- 1. Keywords and modifiers (Edi)
- 2. Initial results (Qian and Qiuye)
- 3. Ongoing work: Modeling bids (Kuzman)
- 4. Ongoing work: Modeling values (Jinsong)
- 5. Ongoing work: Automatic clustering (Alex)

Keyword Base Groups and Modifiers

- relevant, popular, diverse, and interesting
 - what some people search for
 - affected differently by modifiers
 - differ in several aspects (spatial, temporal, expense)
- eight groups with ~600 keywords total
 - one or two groups per person
- six modifier groups ~50 modifiers
 - modeling phases of consumer interaction
 - not necessarily applicable to all base keywords
- 32K base-modifier pairs
 - sparsity
 - data collection (Tales from the (s)Crypt)

Base Keywords

- Cars (Alex)
 - toyota camry, chevy, ford suv, porsche 911
- Drugs, medical (Edi)
 - zoloft, cialis, psoriasis, sciatica, liposuction
- Electronics, software (Jinsong)
 - xbox, mp3, pda, oracle, world of warcraft
- Travel (Kuzman)
 - airfare, cruise, safari, sailing, vacation
- Local and non-local services (Qian)
 - electrician, locksmith, ** insurance, ** loan
- Subscription services (Qiuye)
 - cable tv, gym membership, magazine subscription

Keyword Modifiers

• INFO:

- info, information,
- specs, specifications,
- reviews, ratings,
- prices,
- coupon, rebate,
- guide, news
- QUALITY:
 - best
 - luxury
 - favorite
 - inclusive, exclusive
 - preferred
 - used, new
- LOCATION:
 - 20 U.S. States
 - 20 U.S. Cities

- PRICE:
 - cheap, free
 - bargain, discount, deal
 - special, sale
 - budget, affordable
 - expensive
- ACTION:
 - buy, sell, purchase
 - lease, rent, hire
- POST:
 - support
 - parts
 - repair
 - mechanic
 - manufacturer
 - warranty

Base groups vs. modifier groups

quality	0.2425	0.522697	0.454516	0.763077	1.38907	0.262778	0.3745283	0.718875
price	-1	0.554332	0.509529	0.558636	1.644848	0.186486	0.4626552	0.777972
post	-1	0.385122	0.713784	-1	0.730417	0.233529	0.3529545	0.11
location	-1	0.38551	1.58505	1.651934	2.829279	0.264792	0.5842331	0.729871
info	0.285461	0.259721	0.487416	1.008542	1.341488	0.223793	0.2439355	0.303883
action	-1	0.665185	0.498667	0.3125	1.409231	0.297857	0.4692941	0.323721
null	0.878548	1.026176	1.264545	1.742041	4.6692	0.662973	0.7644633	0.815219
	drugs	electronics	local	medical	non-local	software	subscription	travel
			service		service			

Base groups vs. modifier groups

quality	0.2425	0.522697	0.454516	0.763077	1.38907	0.262778	0.3745283	0.718875
price	-1	0.554332	0.509529	0.558636	1.644848	0.186486	0.4626552	0.777972
post	-1	0.385122	0.713784	-1	0.730417	0.233529	0.3529545	0.11
location	-1	0.38551	1.58505	1.651934	2.829279	0.264792	0.5842331	0.729871
info	0.285461	0.259721	0.487416	1.008542	1.341488	0.223793	0.2439355	0.303883
action	-1	0.665185	0.498667	0.3125	1.409231	0.297857	0.4692941	0.323721
null	0.878548	1.026176	1.264545	1.742041	4.6692	0.662973	0.7644633	0.815219
	drugs	electronics	local	medical	non-local	software	subscription	travel
			service		service			

Base groups vs. price modifier sub-groups

expensive	-1	0.155556	0.115	-1	0.82	-1	0.12	0.124
sale	-1	0.63037	0.395238	0.2	0.795625	0.2525	0.3460606	0.538889
affordable	-1	0.414615	0.682	0.87375	2.181333	-1	0.3394737	0.481333
bargain	-1	0.314737	0.214286	-1	0.893846	0.1	0.4636364	0.896842
special	-1	0.213	0.346364	0.1	1.1	0.15	0.3727778	0.824286
budget	-1	0.236667	0.908571	-1	1	-1	0.173	0.618889
deal	-1	0.6528	0.321538	0.185	1.572308	0.34	0.5138235	1.119375
discount	-1	0.833214	0.550303	0.68	2.51	0.132	0.6111864	0.964681
free	-1	0.297895	0.4605	0.221538	1.115909	0.14	0.3020408	0.235
cheap	-1	0.806774	0.589722	0.781818	3.125263	0.166667	0.6505769	0.723011
null	0.878548	1.026176	1.264545	1.742041	4.6692	0.662973	0.7644633	0.815219
	drugs	electronics	local	medical	non-local	software	subscription	travel
			service		service			

Base groups vs. location modifier sub-groups

pacific	-1	0.365	1.481158	1.494248	3.099717	0.179	0.553864	0.875042
mountain	-1	0.231905	1.449853	1.376667	2.850753	0.575	0.520769	0.633766
central	-1	0.344068	1.631514	1.684847	2.793631	0.217391	0.562696	0.68305
eastern	-1	0.590606	1.718561	1.961528	2.767216	0.188571	0.710263	0.77661
null	0.87855	1.02618	1.26455	1.74204	4.6692	0.66297	0.76446	0.81522
	drugs	electronics	local	medical	non-local	software	subscription	travel
			service		service			

Number of Bids vs Top Price

Number of Bids vs Mean Price

< ロ > < 団 > < 三 > < 三 > < 三 > < ○

Mean Prices after normalization

Median Prices after normalization

Bid differences

Bid Price Analysis (Ganchev)

Bid Differences

Bid Price Analysis (Ganchev)

Normalized price differences

Modeling Bidder Values

- The questions:
 - What is the distribution of values (of all potential bidders) for a random keyword?
 - What is the distribution of values for a keyword from a specific category?
 - How does a modifier affects the distribution of value?
- In the current literature, such distributions are often assumed to be uniformly distributed over some interval [a,b]

– An oversimplification

• Our experiments set to answer these questions

Modeling bidder values

- The problem:
 - bidder values are *never* directly observable
- Estimate bidder b_i's value with the maximum bid ever observed during some period of time
- Assumptions:
 - 1. the Max bid is highly correlated with her value (and positively).
 - 2. the bid value of any bidder does not vary too much over the period of time we observe

Experiment Setup

- 1. sample a set of keywords;
- 2. observe the bids over, say, a few weeks for each keyword X;
- 3. record the max bid, *max*(b_i,X) for each bidder b_i
- 4. normalize these data according to some criteria
 - e.g. by dividing by the highest max bid for X among all bidders
 - $max(b_i,x) \rightarrow max(b_i,x)/max_j\{max(b_j,x)\}$
 - Or by further take into consideration n_X , the avg num of bidders for X
 - $\max(b_i,x) \rightarrow [(n_x+1)/n_x]^* [\max(b_i,x)/\max_j \{\max(b_j,x)\}]$
 - now each (keyword, bidder value) pair maps to a point in [0,1]
- 5. plot all such data points in [0,1] will give us a rough idea of the "prior" distribution of bidder values for a random keyword.
- 6. come up with some statistical model that fits the data
 - Hopefully also come up with a theory explains it

Automatic Clustering

- Can we choose keyword/modifier groups automatically?
- Idea: use data to guide clustering
 - Modifiers that have similar effects should be grouped together
 - Base keywords that are effected similarly should be grouped together
- Might rediscover original groups, or find interesting new ones (or garbage)

Algorithmic Ideas

- Suppose l fixed base keyword groups
- Compute vector of length l per modifier
 - ith dimension is average effect of modifier on keyword group i
- Can run k-means (or something else...)
 Should produce clusters with desired property
- Now suppose k fixed modifer groups
 - Can do the same thing for base keywords

Algorithmic Ideas

- Idea: alternate k/l-means steps for base keywords and modifiers
 - Recompute vectors at each step

Randomly initialize prototypes

Assign modifiers to clusters

Re-center keyword prototypes

Assign keywords to clusters

Re-center modifier prototypes