
CIS399: The Science of Data Ethics Lecture 9: Feb 14, 2019
Instructor: Michael Kearns & Ani Nenkova Scribes: Monica Vyavahare, Kerry
Hollis

1 Recap from last class

Let S = G1 ∪ G2, such that G1 and G2 are two groups that make up S, and G1 is smaller than
G2. Since G1 is smaller, the classifier may make more errors on G1. How do we trade accuracy for
fairness? Let H be a classifier trained on the full sample S, H1 be a classifier trained on G1, and
H2 be a classifier trained on G2. Hnew may be more accurate and fair than H, where Hnew ={

H1 if sample ∈ G1

H2 if sample ∈ G2

Hnew splits based on group, and uses a different classifier for each group. This may not be effective
if one group is particularly small.

2 Fairness Disparity

Recall that H is our class of models, P is the true distribution we are trying to learn, and S is the
sample data which we assume follows P iid. Supposed that S is data where gender is the feature
we are considering. u(h) is the false positive disparity. The false positive rate on its own can be
calculated by

FPR = Pr(h(x̄) = 1|y = 0)

i.e. the model predicts positive given that the response variable is truly negative. The disparity
can be calculated for any unfairness metric by giving the absolute value of the difference of the
metric with respect to different classes. For example, we can calculate the false positive disparity
with respect to gender by

u(h) = Pr(h(x̄) = 1|y = 0 and male)− Pr(h(x̄) = 1|y = 0 and female)

What if there are more than two classes? We can find the disparity for every pair and set u(h)
to the max value. This process can be applied to any metric of unfairness, not just false positive
disparity.
As with the metrics calculated before, the hat implies that the quantity is calculated from the
sample, so û(h) can be calculated the same as u(h) by taking the difference of the fraction of
false positive makes and false positive females from the sample. If we have enough data (”enough”
determined from the theorem from a few lectures ago), we can accurately measure the false positive
disparity. If some group is very underrepresented in the data, then our the result may not hold;
we need to assume that the sample is large such that each subgrouop is well represented. As such,
often the formula holds for gender, since there is usually a 50/50 split in most datasets. Even for
race, generally even minorities are represented enough for the formula to hold.
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2.1 Recap: Old Machine Learning Problem

Recall that we wanted to find
ĥ = argminh∈H ε̂(h)

i.e. the classifier that minimizes the error. The rationale was that if we have enough data, then
the sample is a proxy for the real world distribution. Thus, the classifier that minimizes error on
the sample will likely minimize actual error and generalize well. In the worst case dataset, this is
formally intractable, but seems to work well in practice. We may not find the global optimum,
but generally in practice a local optima is good enough. For example, logistic regression makes no
guarantees on global optimum and can get stuck in local minima instead, but generally works well
in practice.

2.2 New Problem: Fairness

Now we also want to consider fairness. We want to find the best predictive model under some
fairness constraint. How do we do this?

2.2.1 One Possibility

ĥ = argminh∈H û(h)

or choose the model that minimizes unfairness.
Is this also potentially intractable? Generally not. The nice property about fairness is that it can
be achieved with randomness. A policy with acts the same regardless of X will achieve û = 0 and
u = 0, so this is not computationally challenging.
But is this a good model? Probably not.

2.2.2 Better: Constrained Optimization Problem

Find the model ĥ ∈ H that minimizes ε̂(h) subject to û(h) being smaller than or equal to some γ,
for any fairness measure u.
This is also most likely intractable. The fairness consideration has not been studied as much as the
old problem, but from a cursory analysis, we can see that it is probably at least as hard as the old
problem.

In the figure to the left, the largest circle represents H, or the
class of models considered. h* is the optimal model which yields the optimal error. The smallest
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circle represents the models which satisfy û(h) ≤ γ where γ is small, such as 0.01, and the medium-
sized circle represents the models which satisfy û(h) ≤ γ where γ is slightly larger, such as 0.1. This
figure demonstrates that eventually when γ is relaxed and made large enough, you may select h*,
but as a result, a lot of unfairness will have to be tolerated, too. Often, there is a tradeoff between
the fairness and accuracy.

The image above demonstrates this tradeoff. The x-axis is ε̂, ranging from 0 to 1 inclusive, and
the y-axis is û, also ranging from 0 to 1 inclusive. Each point represents a potential model. We
can see a cloud of models, but none quite close to 0 error and 0 unfairness. In fact, these are
probably inversely correlated. We can draw a frontier connecting the models closest to (0,0), as
can be seen with the line in the graph. This frontier probably has the best models, because any
model not on the frontier can be switched to a model on the frontier that is strictly better on (at
least) one axis without affecting the other axis. By better, we mean that some model h dominates
h′ if ε̂(h) ≤ ε̂(h′) and û(h) ≤ û(h′) and at least one of the less than or equal to (≤) is actually a
strictly less than (<). The question then is where on the frontier do you want to be, depending on
whether you are prioritizing error or fairness first.
This concept applies to most models with two criteria; eg. stocks volatility (standard deviation of
returns) vs the returns. The curve represents the tradeoffes we face. Though, it may not always
look so pretty and convex. We define convex as if any two points are connected, the connecting
line will be above the curve.
We suppose that our class H is closed under mixtures. This means that if we take any two models
and create a new model from them then that third model is also in the class. That is, for any
h1, h2 ∈ H, define

h3(x̄) = αh1(x̄) + (1− α)h2(x̄)

for any α [0,1]. Then,
ˆε(h3) = α ˆε(h1) + (1− α) ˆε(h2)

ˆu(h3) = α ˆu(h1) + (1− α) ˆu(h2)

Then, we know that we can achieve any model on the curve with a probabilistic mixture of the
models on each side, assuming the sample size is big enough that we can make the model more
complex. Claim without proof from class: the increasing complexity resulting from probabalistic
mixtures is actually negligible to the amount of data needed.
Question: What are the ethical implications of ”coin flipping”, or selecting which model to use
based on probability α?.
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