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Instructors: Michael Kearns & Ani Nenkova Scribes: Adel Boyarsky & AJ Hallac

1 Introduction

In the first four lectures of this class, we have discussed class policies and introduced the concepts
of machine learning. Class policies can be found on our class page. The aim of these lecture notes
are to explore the machine learning concepts discussed in class more thoroughly and provide a
standard for the lecture notes we expect.

Before we dive into the notation, let’s briefly discuss some concepts of machine learning in-
formally. With modern technology, we can collect and store a variety of data and then use that
data to make future decisions. For instance, one could imagine that a potential borrower filling
out a loan application may have to answer many questions about salary, education level, and so
on. The lender could then store this data. A lender may also want to keep track of which past
successful loan applicants did pay their loan back and which borrowers defaulted (did not pay their
loan back). This information could be used to make ”smarter” lending decisions in the future.
By ”smarter”, we mean that with the use of machine learning techniques, we can learn from prior
data and results to make a prediction about the future. Imagine that instead of simply relying
on an individual borrowers information to make a decision about lending to them or not, we have
access to thousands and thousands of records of people who were granted loans and whether they
were successful in paying back them back. Machine learning techniques can allow us to capitalize
on the wealth of data available to make ”better” decisions. Banks can use the techniques we will
discuss in these lecture notes to learn the relationship between the information in the application
and the result of whether or not the person paid their loan back. The goal of the bank is to find a
relationship that can accurately predict if the person on the next loan application will pay it back.

Now that we have informally discussed machine learning and how it can be useful, in the next
sections we will formally define these notions.

2 The Data

We will start by defining the properties of the data used in machine learning problems in a super-
vised setting. We say that there is some unknown distribution, P , over all the data points. Each
point in P consists of a vector of features x and a corresponding label y. Each feature vector, X, is
a d−dimensional vector. The goal is to learn the relationship between the features and the label so
that given a new vector of features from the population we can accurately predict it’s label. How-
ever, we must do this only seeing the data in our sample, S = {(x1, y1), (x2, y2), . . . , (xm, ym)},
a set of m points from our distribution P . This can also be written as S = (X,y) where
X = (x1,x2, . . . ,xm) and y = (y1, y2, . . . , ym). Going back to the example of banks and loans, we
can think of S as the previous loans the bank has given out and the result of the loan. The bank
must make decisions based off of this sample as they don’t have access to all possible applications
and the outcome of the loan.

As we said earlier, our goal isn’t to predict the label for an x we have seen before, it is to
predict the label for vectors (applicants) that we have not seen before. These such predictions are
called out-of-sample predictions, or when we are predicting the label for a feature vector that
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was not used for training the model. For this reason, we want to be able to predict the accuracy of
out-of-sample predictions before using the model in practice. In order to achieve this, we split the
S into two sets, a train set and a test set. We use the train set to train the model and the test
set to estimate the accuracy of the model on out-of-sample predictions.

2.1 Assumptions about the data

There are many assumptions about the data that we must make moving forward. The first is that
the distribution P exists and that our samples are independently and identically distributed
(i.i.d.) from P . With this assumption in mind, we must be careful with how we collect our sample.
The banks, for example, only have the data for the loans they accepted, which means their data
may not be drawn i.i.d. from P . Remember, banks could not have tracked a result for a loan they
did not give (denied applicants).

Along with the assumptions above, some other assumptions that we should make about P are:

• There is some correlation between X and y, as this is the relationship we want to find.

• The distribution P is stationary, meaning it doesn’t change over time.

While we assume that such a P exists, we should limit the assumptions about what P is. Namely,
we shouldn’t assume that the features are dependent or independent from each other. We also
shouldn’t assume anything about the complexity of P .

2.2 Important Vocabulary

• (xi, yi): xi is a d-dimensional vector that represents the features and yi is the corresponding
label.

• P : The unknown distribution of all xi and their corresponding yi.

• S: The subset of the population that we have access to for training and evaluation.
S , {(x1, y1), (x2, y2), . . . , (xm, ym)}, or S , {(X,y)}

• In-sample predictions: predicting the label for a feature vector that was used for training
the model.

• Out-of-sample predictions: predicting the label for a feature vector that was not used for
training the model. The goal is to have good accuracy for out-of-sample predictions.

• Train set: The set of vectors and their labels from our sample S used in training the model.

• Test set: The set of vectors and their labels from our sample S used to evaluate the model
rather than training the model. In practice, this is normally 10% of the sample.

• Independently and identically distributed (iid): Each point in the sample share the
same probability distribution and are independently drawn.
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3 The Model

The next step of the process is to choose a model class, also known as a hypothesis class, H. This
model class defines the type of relationship you expect to find. Examples of model classes are linear
models, decision trees, neural nets, linear threshold functions, and SVMs. In these lectures, we will
focus on decision trees and linear threshold functions. A class, H, contains all possible models in
that class. Our goal, using these terms, is to learn the “best” h ∈ H. However, what do we mean
by the “best”?

3.1 Evaluating a model

We define ε(h) , Pr[h(x) 6= y] where (x, y) is drawn randomly from P . In other words, if we took
a (x, y) from P , ε(h) is the probability that we would make a mistake when labeling that point
with h as our function. We call this our true error. Our goal, then would be to find the function
in our model class with the lowest true error. We call this ideal function h∗ and it’s associated
error ε∗. Formally, those are defined as:

h∗ , argminh∈Hε(h)

ε∗ , ε(h∗)

However, it is impossible for us to calculate h∗ as we do not know the true distribution P . We
must do our best with our sample S. So, rather than seeking to find the best function over the true
distribution, let’s find the best function over our sample and hope that the errors are close, which
we will prove in Section 4. First, let’s define ε̂(h) to be the percentage of vectors in our sample
that h would label incorrectly. Similarly, we define ĥ∗ to be the function in our model class with
the lowest error in our sample and ε̂∗ to be the error of that function. Formally, these are:

ĥ , argminh∈H ε̂(h)

ε̂∗ , ε̂(ĥ)

To recap all this notation, we would like to achieve an error of ε∗. We approach this by finding
ĥ, which achieves a ε(ĥ) true error and a ε̂(ĥ) in in-sample error. We only know the value of ε̂(ĥ)
when evaluating our model, so ideally all three values will be close together. In Section 4, we will
show why this is the case.

3.2 Model complexity and overfitting

You might think that using more complex models allows you to recognize more complex relation-
ships and thus should be used more. However, there is an important trade-off to know. As your
model complexity increases, your lowest possible true error does decrease as you would expect but
at the same time, the difference between training error and true error may become larger. This
phenomenon is called overfitting the data. It occurs when our model is complex enough to simply
memorize the data rather than learn from it. We can see this relationship in the following graph.
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3.3 Important Vocabulary

• H: A class of models.

• ε(h) , Pr[h(x) 6= y] for (x, y) ∼ P . The true error of function h over the distribution P .

• h∗ , argminh∈Hε(h). The function in our model class that has the lowest true error.

• ε∗ , ε(h∗) = minh∈Hε(h). The lowest possible true error for a function in our model class.

• ε̂(h) , Pr[h(x) 6= y] for (x, y) ∼ S. The error of function h over the sample, S.

• ĥ , argminh∈H ε̂(h). The function in our model class that has the lowest error in our sample.

• Overfitting: The phenomenon when the relationship learned by the model is too specific to
the data in the sample, causing the model not to generalize well to the true population. This
often occurs when the model is too complex or when the data in the sample is bad.

4 Analysis of ε̂(ĥ)

As mentioned in Section 3.1, we will now take a closer look into the relationship between ε∗, ε(ĥ)
and ε̂(ĥ).

4.1 What do we expect?

First, let’s consider what we would expect the relationship between those three variables to be.
Focusing on only two at a time, we see:

1. ε∗ ≤ ε(ĥ): The true error for our model must at least as large as the best possible error for
our model class.

2. ε̂(ĥ) ≤ ε(ĥ): We expect that training error will be an under-estimate of true error. Therefore,
since we are are trying to minimize the training error, we expect the true error to be larger.
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3. ε∗?ε̂(ĥ): There is no consensus here. We could overfit the data such that there is no training
error, however generally this wouldn’t be the case.

4.2 What is the true relation

We will see that if H is sufficiently “simple” and m is sufficiently large, ε∗ ≈ ε(ĥ) ≈ ε̂(ĥ).

4.2.1 Showing ε(ĥ) ≈ ε̂(ĥ)

We are helped by a helpful by the following theorem: If H is finite then for almost every sample,
S, of size m and for every h ∈ H:

|ε̂(ĥ)− ε(ĥ)| <
√

log(|H|)
m

This means that the training error and the true error of ĥ are close to each other if the |H| (the
number of possible models in H) is “small” or if there is enough data. We did a thought experiment
about the proof of this theorem, however the formal proof uses math that is out of the scope of this
course. One interesting takeaway is that with infinite data, the difference would approach zero. In
addition, we note that this is fact is explored in Section 3.2.

4.2.2 Showing ε∗ ≈ ε(ĥ)

There are two cases to explore here. The first is if after training on our data, we have h∗ = ĥ. In
this case, we see that ε∗ = ε(ĥ) as they are both calculating the true error of the same function.
However, consider if we have h∗ 6= ĥ. This means that ε̂(ĥ) ≤ ε̂(h∗), or that the training error of ĥ
is less than or equal to the training error of our optimal model. Now, however, we can utilize the
bound from the Section 4.2.1 to show that the two values are still close together:

|ε(h∗)− ε(ĥ)| < 2×
√

log(|H|)
m

|ε∗ − ε(ĥ)| < 2×
√

log(|H|)
m

5 An Empirical Case Study

To see many of these concepts in a real-life example, review the following study which claims to
show that an algorithm is better at ”detecting sexual orientation from facial images” than a human
is.

Link:
Research Paper
Related Links:
Vox Article
Medium Article
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