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Motivation

The framework with prices ignores a number of issues that are important
for analysis of resource allocation in large-scale communication networks:

1 Centralized signals may be impractical or impossible

2 Prices are often set by multiple service providers with the objective of
maximizing revenue

We investigate the implications of profit maximizing pricing by multiple
decentralized service providers.

The model is of practical importance for a number of settings:

1 Transportation and communication networks

2 Markets in which there are snob effects
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Example

`1(x) = x2/3

`2(x) = (2/3)x

1 unit of traffic

1 The efficient allocation that minimizes the total delay cost
∑

i `i (xi )xi

is xopt
1 = 2/3 and xopt

2 = 1/3

2 The equilibrium allocation that equates delay on the two paths is
xeq
1 ≈ .73 and xeq

2 ≈ .27

The equilibrium of traffic assignment without prices can be inefficient.
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Example (Cont’d)

`1(x) = x2/3

`2(x) = (2/3)x

1 unit of traffic

1 Monopolist will set prices pm
1 = (2/3)3 and pm

2 = (2/32). The
resulting traffic in equilibrium will be xm

1 = 2/3 and xm
2 = 1/3

2 Duopoly situation results in pd
1 ≈ .61 and pd

2 ≈ .44. The resulting
traffic in equilibrium will be xd

1 ≈ .58 and xd
2 ≈ .42

Increasing competition can increase inefficiency
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Intuition for the Inefficiency of Duopoly

The inefficiency is related to a new source of monopoly power for each
duopolist, which they exploit by distorting the pattern of traffic:

1 Provider 1 charges higher price

2 Some traffic is pushed from route 1 to route 2

3 The congestion on route 2 is raised

4 The remaining traffic on route 1 become more “locked-in”
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Model

We are interested in the problem of routing d units of flow across I links.

1 I = {1, . . . , I}, set of links

2 x = [x1, . . . , xI ], where xj denotes total flow on link j

3 `j(xj), a convex, non-decreasing, and continuously differentiable
flow-dependent latency function for each link j in the network,
`j(0) = 0 for all j

4 pj , price per unit flow of link j

5 The cost per unit of traffic is the sum of price and latency `j + pj

6 We assume that this is the aggregate flow of many “small” users,
who have a homogeneous reservation utility R and decide not to send
their flow if the effective costs exceeds the reservation utility
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Wardrop Equilibrium

We adopt the Wardrop’s principle in characterizing the flow distribution on
the network. For a given price vector p ≥ 0, a vector xeq ∈ RI

+ is a
Wardrop equilibrium if

`i (xeq
i ) + pi = min

j
{`j(xeq

j ) + pj} , ∀i with xeq
i > 0 ,

`i (xeq
i ) + pi ≤ R , ∀i with xeq

i > 0 ,∑
i∈I

xeq
i ≤ d ,

with
∑

i∈I xeq
i = d if minj{`j(xeq

j ) + pj} < R. We denote the set of
equilibriums at a given price vector p by W (p).
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Wardrop Equilibrium – Monotonicity

Wardrop Equilibriums satisfy intuitive monotonicity properties:

Proposition

1 For some p̃j < pj , let x̃ ∈W (p̃j , p−j) and x ∈W (pj , p−j), then
x̃j ≥ xj and x̃i ≤ xi for all i 6= j .

2 For some Ĩ ⊆ I, suppose that p̃j < pj for all j ∈ Ĩ and p̃j = pj for all
j /∈ Ĩ, and x̃ ∈W (p̃) and x ∈W (p), then

∑
j∈Ĩ x̃j ≥

∑
j∈Ĩ xj .
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Social Optimum

A flow vector xopt is a social optimum if it is an optimal solution for the
social problem

max
x≥0,

P
i∈I xi≤d

∑
i∈I

(R − `i (xi ))xi .

1 When
∑

i∈I xi = d , the above social problem is equivalent as to
minimize

∑
i∈I `i (xi )xi . When

∑
i∈I xi < d , we charge a penalty of R

for each unit of undelivered traffic
2 The social problem maximizes the social surplus, i.e., the difference

between users’ willingness to pay and total latency

For a given vector x ≥ 0, we define the value of the objective function in
the social problem

S(x) =
∑
i∈I

(R − `i (xi ))xi .
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Social Optimum and Pricing

The social optimum solution xopt which maximizes
∑

i∈I(R − `i (xi ))xi

subject to x ≥ 0 and
∑

i∈I xi ≤ d shall satisfies that

∀xopt
i , xopt

j > 0, `i (xopt
i ) + `′i (xopt

i )xopt
i = `j(xopt

j ) + `′j(xopt
j )xopt

j .

So the pricing pi = `′i (xopt
i )xopt

i + c for any constant c achieves social
optimum solution.
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Monopoly Pricing and Equilibrium

The monopolist sets the prices to maximize his profit given by

Π(p, x) =
∑
i∈I

pixi , x ∈W (p) .

This is a two-stage dynamic pricing-congestion game:

1 The monopolist anticipates the demand of users, and sets the prices p

2 The users choose their flow vectors x according to the Wardrop
equilibrium given the prices p

Definition (Monopoly Equilibrium)

A pair (popt , xopt) is a monopoly equilibrium if xopt ∈W (popt) and

Π(popt , xopt) ≥ Π(p, x) , ∀p ≥ 0,∀x ∈W (p) .
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Wardrop Equilibrium – Uniqueness

Proposition (Uniqueness for Strictly Increasing Latencies)

Assume `i is strictly increasing for all i . For any price vector p ≥ 0, the set
of Wardrop Equilibriums, W (p), is a singleton.

Proposition (Weak Uniqueness for General Case)

For any price vector p ≥ 0, for any Wardrop Equilibriums x , x̂ ∈W (p),
Π(p, x) = Π(p, x̂).
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Monopoly Equilibrium and Subgame-Perfect Equilibrium

Definition

A pair (p∗, x∗) is a subgame-perfect equilibrium (SPE) of the pricing
congestion game if x∗ ∈W (p∗) and for all p ≥ 0, there exists x ∈W (p)
such that

Π(p∗, x∗) ≥ Π(p, x) .

The definition of the monopoly equilibrium is stronger than the definition
of subgame-perfect equilibrium. However, given the weak uniqueness
property, a pair (peq, xeq) is an monopoly equilibrium if and only if it is an
subgame-perfect equilibrium of the pricing congestion game.
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Monopoly Equilibrium and Social Optimum

Theorem (Acemoglu and Ozdaglar ’06)

The price-setting by monopolists achieves efficiency.

Proof Sketch.

Suppose p is the prices by monopolists. The corresponding x satisfies that

`i (xi ) + pi = min
j
{`j(xj) + pj} ≤ R,∀xi > 0 .

If `i (xi ) + pi < R for some xi > 0, then the monopolist could raise the all
prices by the same amount so that the set of equilibriums does not change
but the revenue is increased. So `i (xi ) + pi = R for all xi > 0. So

S(x) =
∑
i∈I

(R − `i (xi ))xi =
∑
i∈I

pixi .

coincides the monopolists’ objective function.
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Oligopoly Pricing and Equilibrium

1 There is a set S of S service providers

2 Each service provider s ∈ S owns a difference subset Is of the links

3 Service provider s charges a price pi per unit on link i ∈ Is
4 Given the vector of prices of links owned by other services providers

p−s , the payoff of service provider s is

Πs(ps , p−s , x) =
∑
i∈Is

pixi , ∀x ∈W (ps , p−s) .

We adopt the notion of Nash equilibrium and define a vector (peq, xeq) ≥ 0
to be a Oligopoly Equilibrium if for all s ∈ S, xeq ∈W (peq

s , peq
−s) and

Πs(peq
s , peq

−s , xeq) ≥ Πs(ps , peq
−s , x) , ∀ps ≥ 0, ∀x ∈W (ps , peq

−s) .

Z. Huang, C. Liu, and Q. Zhang (CIS) Game Theoretic Models December 8, 2009 15 / 20



Oligopoly Equilibrium and Subgame-Perfect Equilibrium

Definition

A pair (p∗, x∗) is a subgame-perfect equilibrium of the price competition
game if x∗ ∈W (p∗) and there exists a function x : RI

+ 7→ RI
+ such that

x(p) ∈W (p) for all p ≥ 0 and for all s ∈ S,

Πs(p∗s , p∗−s , x∗) ≥ Πs(ps , p∗−s , x(ps , p∗−s)) , ∀ps ≥ 0 .

Similar to the monopoly case, a pair (peq, xeq) is an oligopoly equilibrium
if and only if it is an subgame-perfect equilibrium of the price competition
game.
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Efficiency Metric

Given a price competition game with latency function {`i}i∈I , we define
the efficiency metric at some oligopoly equilibrium flow xeq as the ratio of
the social surplus in xeq to the social surplus in xopt :

S(xeq)

S(xopt)
.

This efficiency metric coincides the notion of the “price of anarchy” by
[Koutsoupias and Papadimitriou ’99].
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Tight Bound on the Efficiency Metric

Theorem (Acemoglu and Ozdaglar ’07)

Consider a general parallel link network with I ≥ 2 links and S service
providers, where provider s owns a set of links Is ⊂ I. Then, for all price
competition games with pure strategy equilibrium flow xeq, we have

S(xeq)

S(xopt)
≥ 5

6
,

and the bound is tight.
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Upper Bound Example

1 A network with I links, each is owned by a different provider

2 The total flow is d = 1

3 The reservation utility is R = 1

4 The latency functions are given by

`1(x) = 0 , `i (x) =
3

2
(I − 1)x , i = 2, . . . , I .

The unique social optimum for this example is xopt = [1, 0, . . . , 0]. The
oligopoly equilibrium is peq = [1, 1

2 , . . . , 1
2 ], xeq = [2

3 , 1
3(I−1) , . . . ,

1
3(I−1) ].

Hence, the efficiency metric for this example is 5
6 .
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Summary

We investigate a model with simple network structure, where there are a
single source and a single destination and each route is a single edge
between the source and the destination. Here is a few take-home points:

1 The equilibrium of traffic assignment without prices can be inefficient

2 Increasing competition can increase inefficiency

3 The extent of inefficiency in the presence of oligopoly competition is
bounded by 5

6

Z. Huang, C. Liu, and Q. Zhang (CIS) Game Theoretic Models December 8, 2009 20 / 20


