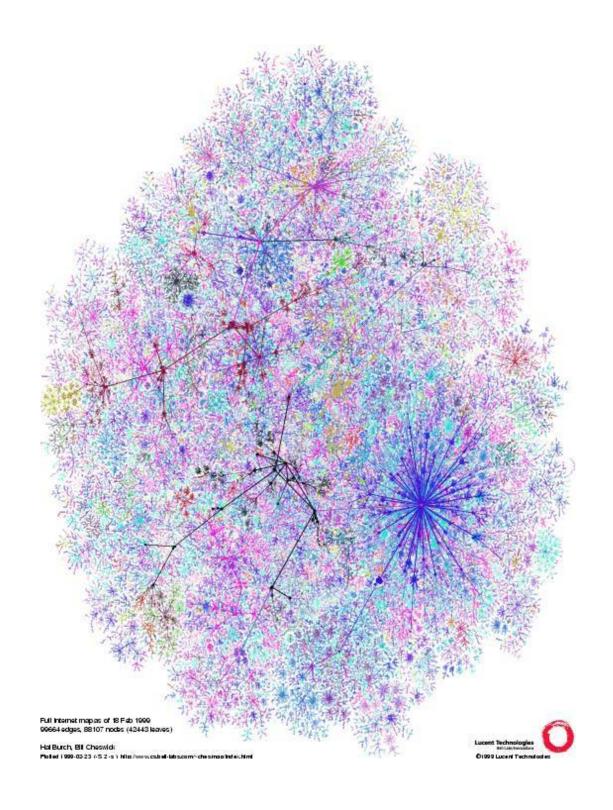
Internet Economics

Networked Life
NETS 112
Fall 2017
Prof. Michael Kearns

The Internet is an Economic System (whether we like it or not)

- Highly decentralized and diverse
 - allocation of scarce resources; conflicting incentives
- Disparate network administrators operate by local incentives
 - network growth; peering agreements and SLAs
- Users may subvert/improvise for their own purposes
 - free-riding for shared resources (e.g. in peer-to-peer services)
 - spam and DDoS as economic problems
- Regulatory environments for networking technology
 - for privacy and security concerns in the Internet
 - need more "knobs" for society-technology interface

Can Economic Principles Provide Guidance?


- Game theory and economics, competitive and cooperative
 - strategic behavior and the management of competing incentives
- Markets for the exchange of standardized resources
 - goods & services
 - efficiency and equilibrium notions for performance measurement
- Learning and adaptation in economic systems
- Certain nontraditional topics in economic thought
 - behavioral and agent-based approaches
- Active research at the CS-economics boundary

The Internet: What is It?

- A massive network of connected but decentralized computers
- Began as an experimental research NW of the DoD (ARPAnet), 1970s
 - note: Web appeared considerably later
- All aspects evolved over many years
 - protocols, services, hardware, software
- Many individuals and organizations contributed
- Designed to be open, flexible, and general from the start
 - "layered" architecture with progressively strong guarantees/functionality
 - layers highly modular, promotes clean interfaces and progressive complexity
 - highly agnostic as to what services are provided
- Completely unlike prior centralized, managed NWs
 - e.g. the AT&T telephone switching network

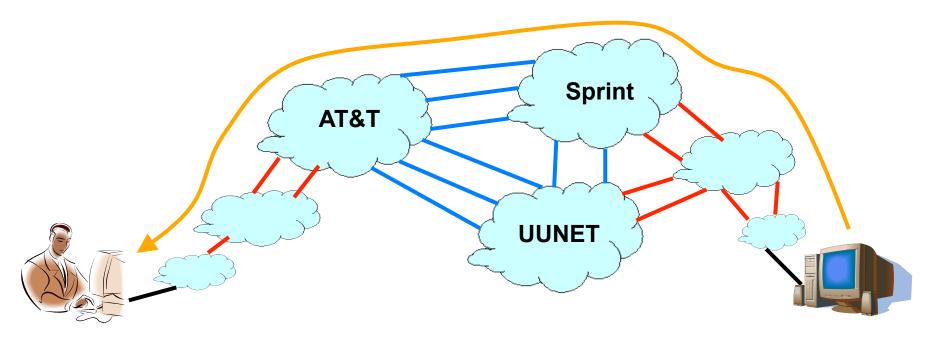
Internet Basics

- Can divide all computers on the Internet into two types:
 - computers and devices at the "edge"
 - your desktop and laptop machines
 - big compute servers like Eniac
 - your web-browsing cell phone, your Internet-enabled toaster, etc.
 - computers in the "core"
 - these are called routers
 - they are very fast and highly specialized; basically are big switches
- Every machine has a unique Internet (IP) address
 - IP = Internet Protocol
 - like phone numbers and physical addresses, IP addresses of "nearby" computers are often very similar
 - your IP address may vary with your location, but it's still unique
- IP addresses are how everything finds everything else!
- Note: the Internet and the Web are not the same!
 - the Web is one of many services that run on the Internet

Internet Packet Routing

- At the lowest level, all data is transmitted as packets
 - small units of data with addressing and other important info
 - if you have large amounts of data to send (e.g. a web page with lots of graphics), it must be broken into many small packets
 - somebody/thing will have to reassemble them at the other end
- All routers do is receive and forward packets
 - forward packet to the "next" router on path to destination
 - they only forward to routers they are physically connected to
 - how do they know which neighboring router is "next"?
- Routing tables:
 - giant look-up tables
 - for each possible IP address, indicates which router is "next"
 - e.g. route addresses of form 128.8.*.* to neighbor router A
 - route 128.7.2.* to neighbor router B, etc.
 - need to make use of *subnet addressing* (similar to zip codes)
 - distributed maintenance of table consistency is complex
 - must avoid (e.g.) cycles in routing
 - requires distributed communication/coordination among routers
- Handy programs: ipconfig, traceroute, ping and nslookup

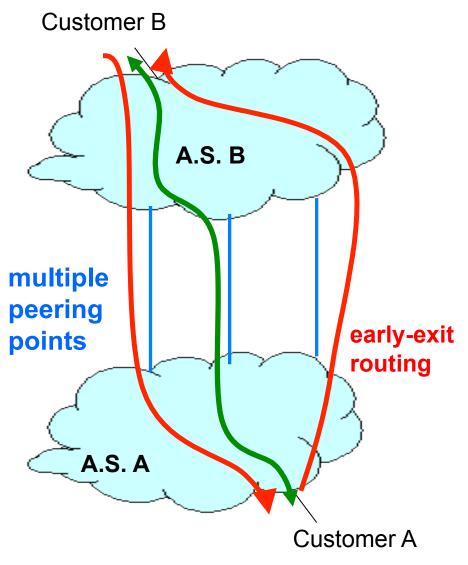
The IP (Internet Protocol)


- There are many possible conventions or protocols routers could use to address issues such as:
 - what to do if a router is down?
 - who worries about lost packets?
 - what if someone wants their packets to move faster?
- However, they all use a single, simple protocol: IP
- IP offers only one service: "best effort" packet delivery
 - with *no* guarantee of delivery
 - with no levels of service
 - with no notification of lost or delayed packets
 - knows nothing about the applications generating/receiving packets
 - this simplicity is its great strength: provides robustness and speed
- Higher-level protocols are layered on top of IP:
 - TCP: for building connections, resending lost packets, etc.
 - http: for the sending and receiving of web pages
 - ssh: for secure remote access to edge computers
 - etc. etc. etc.

Autonomous Systems (ASes)

- Q: So who owns and maintains all these routers?
- A: Networking companies/orgs called "Autonomous Systems"
- ASes come in several different flavors:
 - large, long-haul "backbone" network providers (AT&T, UUNET, Sprint)
 - consumer-facing Internet Service Providers (ISPs) (Comcast, Earthlink)
 - companies/organizations needing to provide Internet access to members (Penn)
- The path of a "typical" packet would usually travel through many ASes
 - email, web page request, Skype call,...
- Q: How do the ASes make money?
- A: Some do, some don't
 - consumers and organizations near the edge pay their ISP/upstream provider
 - ISPs may in turn pay backbone providers
 - backbone providers typically have "peering agreements"
- Let's revisit traceroute...
- Q: How do the ASes coordinate the movement/handoff of traffic?
- A: It's complicated... we'll return to this shortly.

Commercial Relationships in Internet Routing

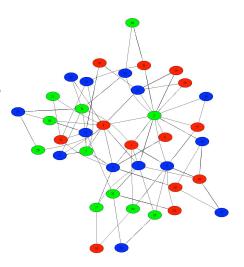

- Customer-Provider
 - customer pays to send and receive traffic
 - provider transits traffic to the rest of Internet
- Peer-peer
 - settlement free, under near-even traffic exchanges
 - transit traffic to and from their respective customers
- These are existing economic realities
- They create specific economic incentives that must co-exist with technology, routing protocols, etc.

Border Gateway Protocol (BGP)

- Within its own network, an AS may choose to route traffic as it likes
 - typically might follow a shortest path between the entry router and the exit router
- Interfaces between ASes are formed by special border routers
 - these are the routers where a packet travels from one AS to the "next"
- Communication at border routers governed by the Border Gateway Protocol:
 - border routers "announce" paths to neighboring ASes
 - e.g. "I have a 13-hop path through my AS to <u>www.cis.upenn.edu</u>"
 - ASes use neighboring announcements to decide where to forward traffic & determine own paths
 - paths actually specify complete list of ASes: e.g. 13-hop path Comcast → AT&T → UUNET → Penn
- Fair amount of trust and honesty expected for effective operation of BGP
- What are the incentives to cheat or deviate from expected behavior?
 - announce false paths to get more traffic
 - announce false paths to omit
 - deliberately avoid shortest announced path (UUNET is my competitor, don't give them traffic)
- Very recent research: try to make announced paths truthful
 - crypto/security approach: monitor/measure announced vs. actual paths
 - very difficult, high overhead
 - alternative approach: game theory
 - establish conditions under which "rational" ASes will announce truthful paths
 - rational: use announced paths which give best route to outbound traffic; announce paths which will maximize revenue

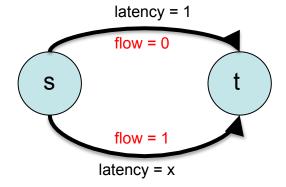
Economic Incentives for Peering

How to select peers?

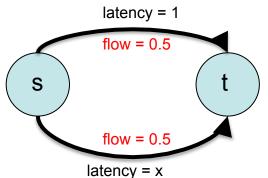

- need to reach some other part of the Internet
- improve end-to-end customer performance
- avoid payments to upstream providers

How to route the traffic?

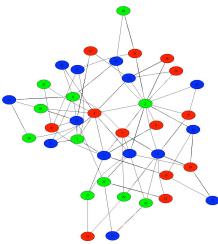
- today: early-exit routing to use less bandwidth
- tomorrow: negotiate for lower total resource usage?


Game Theory of Internet Routing

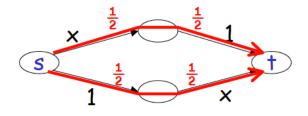
- Strong analogy between routing and driving on a network of roads
 - each driver has their own starting (source) point and ending (destination) points
 - each driver (packet flow) wants to minimize their own latency
 - each driver chooses their sequence of roads ("source" vs. default routing)
 - delays on each road depend on how much traffic they carry
- Very similar to navigation problem in social networks, but now:
 - network is technological instead of social
 - many source/destination pairs instead of one
 - flows are selfish
- Formalize as a game on a network:
 - network: network of roads or routers
 - players: individual drivers or traffic flows
 - payoff for a player: negative of their total driving time
 - assume delay on each road proportional to traffic
- Huge number of players; huge number of possible actions
 - actions: all possible routes from source to destination
 - still, we know there is a Nash equilibrium...
- What could we hope to say?



Routing Equilibrium Example


- Suppose we have only two roads/connections in the network:
 - "normal" road: delay/latency is equal to the amount of traffic x
 - "mountain" road: delay/latency is 1 unit no matter how much traffic
- Imagine 1 fully divisible unit of traffic that wants to travel from s to t:

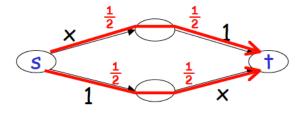
At equilibrium, all traffic takes the normal road and everyone has latency = 1



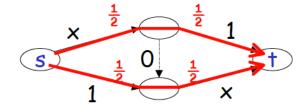
A better collective solution: half the population has latency 0.5, half has latency 1... But upper flow is envious

Braess's Paradox

Initial Network:



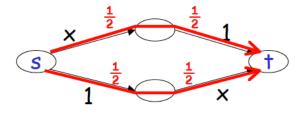
Delay = 1.5


Braess's Paradox

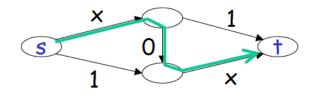
Initial Network:

Augmented Network:

Delay = 1.5

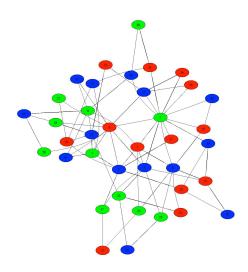


Now what?


Braess's Paradox

Initial Network:

Augmented Network:

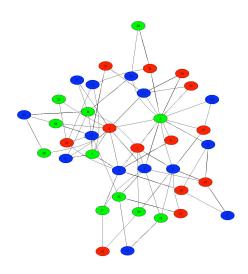

Delay = 1.5

Delay = 2

The Price of Anarchy

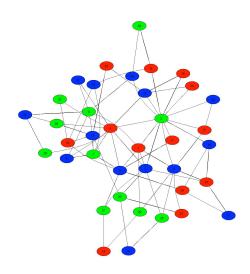
- In principle (only), could imagine computing a centralized solution
 - "Centralized Traffic Authority" assigns each driver/flow their route
 - does so to minimize total population latency; may not be optimal for individuals
 - "maximum social welfare" solution; game-theoretic equilibrium can only be worse
- Surprising result: total latency of Nash equilibrium only 33% worse!
 - no matter how big or complex the network
 - "Price of Anarchy" (selfish, distributed behavior) is relatively small
 - compare to Prisoner's Dilemma
 - network structure irrelevant; contrast earlier results (e.g. networked trading)
 - can be worse than 33% for more complex latency assumptions

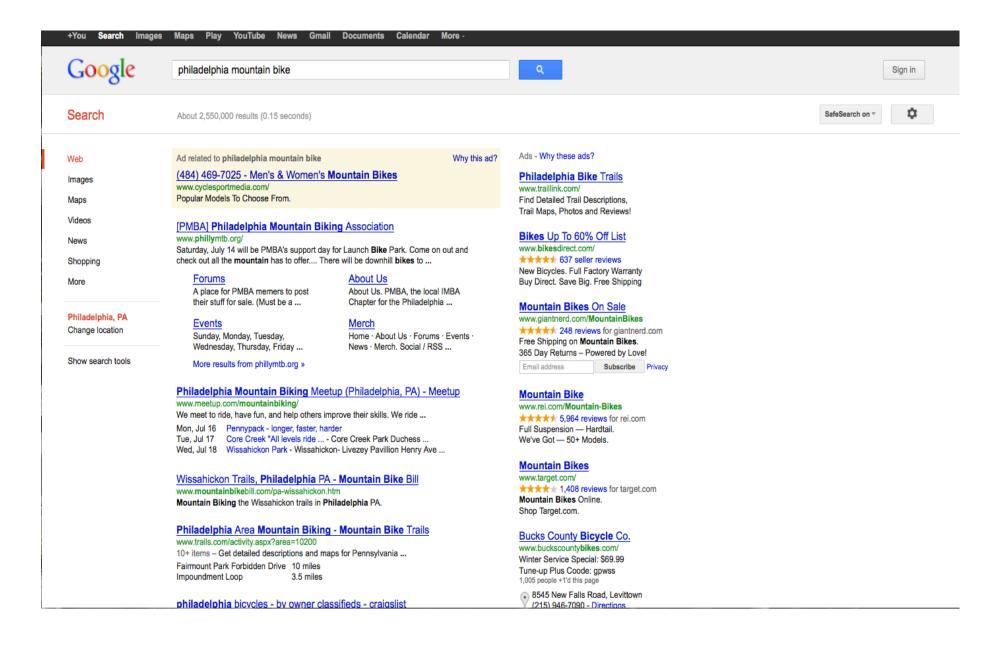
Case Study: QoS


- QoS = Quality of Service
 - many varying services and demands on the Internet
 - email: real-time delivery not critical
 - chat: near real-time delivery critical; low-bandwidth
 - voice over IP: real-time delivery critical; low-bandwidth
 - teleconferencing/streaming video: real-time critical; high-bandwidth
 - varying QoS guarantees required
 - email: not much more than IP required; must retransmit lost packets
 - chat/VoIP: two-way connection required
 - telecon/streaming: high-bandwidth two-way connections
- Must somehow be built on top of IP
- Whose going to pay for all of this? How much?
 - presumably companies offering the services
 - costs passed on to their customers
- What should the protocols/mechanism look like?
- There are many elaborate answers to these questions...

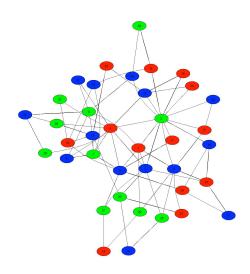
QoS and the Paris Metro

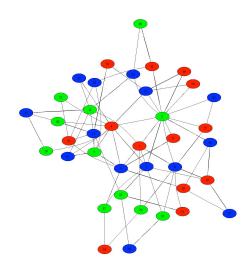
- Paris Metro (until recently)
 - two classes of service: first (expensive) and coach (cheaper)
 - exact same cars, speed, destinations, etc.
 - people pay for first class:
 - · because it is less crowded
 - because the type of person willing/able to pay first class is there
 - etc.
 - self-regulating:
 - if too many people are in first class, it will be come less attractive
- Andrew Odlyzko's protocol for QoS:
 - divide the Internet into a small number of identical virtual NWs
 - simply charge different prices for each
 - an entirely economic solution
 - California toll roads

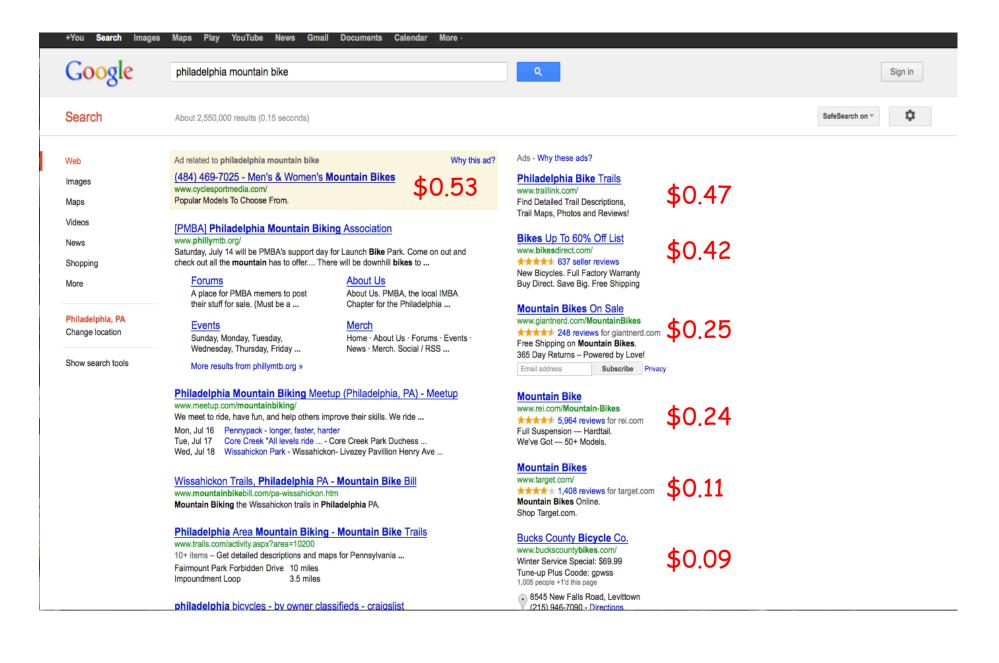

Case Study: Sponsored Search


- Organic vs. sponsored web search
- Generalized second price auctions
- Two-sided networked markets

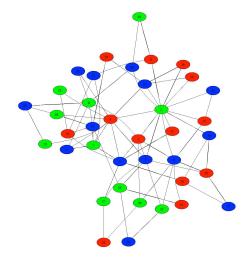
Organic vs. Sponsored Web Search

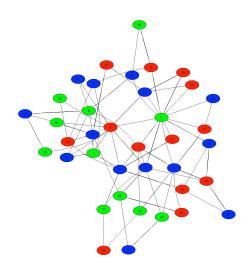

- Already (briefly) studied organic web search:
 - use words in user's query and web sites to rank results
 - other, non-language features also important
 - our emphasis: PageRank algorithm for web site importance
- Sponsored web search: a market/auction for ad placement
 - user query may signal "purchasing intent"
 - advertisers bid/compete for attention
- Rules of auction broadly similar across search engines
 - Google, Bing, Yahoo!
- We'll describe these auctions and their properties


How Does It Work?

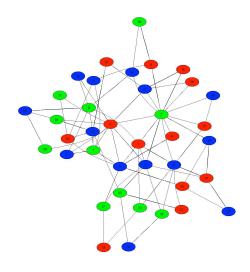

- Interested advertisers submit their bids for a query
 - \$0.25 for "philadelphia mountain bike", \$0.17 for "philadelphia discount mountain bike"
- Search engine gathers all the bids and determines advertiser ranking
- Advertisers only pay if a user clicks on their ad
 - "price per click" (PPC)
 - distinguishes from display advertising
- They may pay less than what they bid

Generalized Second Price Auctions

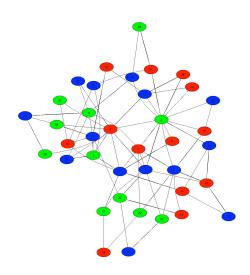

- Multiple bidders for a single item
 - each bidder i has a private valuation v(i) for the item
 - each bidder i privately submits a bid b(i) <= v(i) for the item
- If you give the item to the highest bidder at their bid, everyone will bid less than their valuation
 - bid "shaving"
- If you give the item to the highest bidder, but only make them pay the second highest bid, the optimal strategy is to be "truthful"
 - all b(i) = v(i)
- Search engines rank advertisers by their bids
- Advertiser's PPC is the bid below them.


Other Details

- Actually order advertisers by combination of bids and "quality scores"
 - e.g. incorporate click-through rates (CTRs); higher CTRs boosted in ranking
 - prevents display of high bidders who never receive clicks
 - reduces irrelevant advertisers
- Search engines sometimes employ reserve prices
 - e.g. minimum bid for "philadelphia mountain bike" is \$0.05
 - balancing revenue with ad clutter
- Exact match vs. broad match
 - "philadelphia mountain bike" vs. "mountain bike" vs. "bike" vs. "philadelphia"
- Permit advertisers to condition bid on other information about user
 - e.g. geotargeting using user location
- Running a sponsored search advertising campaign is complex
 - all these decisions for a large portfolio of search phrases
- Associated industries/services:
 - Search Engine Optimization (SEO): improve organic ranking
 - e.g. optimize landing page, improve PageRank
 - Search Engine Marketing (SEM): improved sponsored ranking
 - e.g. optimize phrases, bids, quality score


Where's the Network?

- Market is a two-sided network:
 - users and their various interests determine which advertisers they will click on
 - advertisers and their products/services determine which users they want to reach
 - bipartite network with overlapping neighbor sets
 - cosmetically similar to our networked trading model
- Rich Get Richer aspects of two-sided markets:
 - advertisers most want to be on that search engine with the most users
 - users want to be on that search engine with the best search results
 - the more advertisers and users a search engine has, the more data
 - better estimates of advertiser quality, CTRs, good results for rare queries
- The "long tail of search"


Case Study: FCC Incentive Auction

- Problem: Repurpose broadcast TV spectrum for mobile communications
- "Reverse" auction: pay (some) broadcasters to go off the air
- "Forward" auction: mobile carriers purchase vacated spectrum
- Closing condition: forward revenues must cover reverse expenditures
- Many conceptual and technical challenges:
 - "repacking" constraints on remaining broadcasters: network of forbidden adjacencies
 - computing set of repackable broadcasters with highest bids is intractable
 - must keep auction rules as simple as possible for broadcasters
 - some carriers want national footprint → exposure problems

Summary

- Internet: distributed, self-interested behavior; competing incentives
- Leads to economic/game-theoretic situations:
 - routing, sponsored search, Quality of Service, spam, peer-to-peer systems
- Can seek economic as well as technological solutions:
 - auction rules in sponsored search; pricing schemes for QoS, spam, etc.
 - payments could be real or virtual
- Sometimes the game-theoretic behavior may not be an issue
 - Price of Anarchy for routing

