Models of Network Formation

Networked Life
NETS 112
Fall 2019
Prof. Michael Kearns
Roadmap

• Recently: typical large-scale social and other networks exhibit:
 – giant component with small diameter
 – sparsity
 – heavy-tailed degree distributions
 – high clustering coefficient

• These are empirical phenomena

• What could “explain” them?

• One form of explanation: simple models for network formation or growth that give rise to these structural properties

• Next several lectures:
 – Erdös-Renyi (random graph) model
 – “Small Worlds” models
 – Preferential Attachment

• Discussion of structure exhibited (or not) by each
Models of Network Formation

I. The Erdös-Renyi (Random Graph) Model
The Erdös-Renyi (Random Graph) Model

- Really a randomized algorithm for generating networks
- Begin with N isolated vertices, no edges
- Add edges gradually, one at a time
- Randomly select two vertices not already neighbors, add edge
- So edges are added in a random, unbiased fashion
- About the simplest (dumbest?) formation model possible
- But what can it already explain?
The Erdös-Renyi (Random Graph) Model

- After adding E edges, edge density is
 \[p = \frac{E}{N(N - 1)/2} \]

- As E increases, p goes from 0 to 1
- Q: What are the likely structural properties at density p?
 - e.g. as $p = 0 \rightarrow 1$, small diameter occurs; single connected component
- At what values of p do “natural” structures emerge?
- We will see:
 - many natural and interesting properties arise at rather “small” p
 - furthermore, they arise very suddenly (tipping/threshold)
- Let’s examine the Erdös-Renyi simulator
Why Can’t There Be Two Large Components?

\[\frac{N}{2} \]
densely connected

\[\frac{N^2}{4} \]
missing edges

\[\frac{N}{2} \]
densely connected

Diagram showing two groups of \(\frac{N}{2} \) nodes each, with \(\frac{N^2}{4} \) missing edges between them.
Threshold Phenomena in Erdös-Renyi

- Theorem: In Erdös-Renyi, as N becomes large:
 - If \(p < 1/N \), probability of a giant component (e.g. 50% of vertices) goes to 0
 - If \(p > 1/N \), probability of a giant component goes to 1, and all other components will have size at most \(\log(N) \)
- Note: at edge density \(p \), expected/average degree is \(p(N-1) \sim pN \)
- So at \(p \sim 1/N \), average degree is \(\sim 1 \): incredibly sparse
- So model “explains” giant components in real networks
- General “tipping point” at edge density \(q \) (may depend on \(N \)):
 - If \(p < q \), probability of property goes to 0 as \(N \) becomes large
 - If \(p > q \), probability of property goes to 1 as \(N \) becomes large
- For example, could examine property “diameter 6 or less”
Threshold Phenomena in Erdös-Renyi

• Theorem: In Erdös-Renyi, as N becomes large:
 – Threshold at

\[p \sim \frac{\log(N)}{N^{5/6}} \]

 – for diameter 6.
 – Note: degrees growing (slightly) with N
 – If N = 300M (U.S. population) then average degree pN \sim 500
 – If N = 7BN (world population) then average degree pN \sim 1000
 – Not unreasonable figures…

• At p not too far from 1/N, get strong connectivity
• Very efficient use of edges
Threshold Phenomena in Erdös-Renyi

- In fact: Any *monotone property* of networks exhibits a threshold phenomenon in Erdös-Renyi
 - monotone: property continues to hold if you add edges to the networks
 - e.g. network has a group of K vertices with at least 71% neighbors
 - e.g. network has a cycle of at least K vertices
- Tipping is the rule, not the exception
What Doesn’t the Model Explain?

• Erdös-Renyi explains giant component and small diameter

• But:
 – degree distribution not heavy-tailed; exponential decay from mean (Poisson)
 – clustering coefficient is *exactly* p

• To explain these, we’ll need richer models with greater realism
Models of Network Formation
II. Clustering Models
Roadmap

• So far:
 – Erdős-Renyi exhibits small diameter, giant connected component
 – Does not exhibit high edge clustering or heavy-tailed degree distributions

• Next: network formation models yielding high clustering
 – Will also get small diameter “for free”

• Two different approaches:
 – “program” or “bake” high clustering into the model
 – balance “local” or “geographic” connectivity with long-distance edges
“Programming” Clustering

• Erdös-Renyi:
 – global/background edge density p
 – all edges appear independently with probability p
 – no bias towards connecting friends of friends (distance 2) \Rightarrow no high clustering

• But in real networks, such biases often exist:
 – people introduce their friends to each other
 – people with common friends may share interests (homophily)

• So natural to consider a model in which:
 – the more common neighbors two vertices share, the more likely they are to connect
 – still some “background” probability of connecting
 – still selecting edges randomly, but now with a bias towards friends of friends
Making it More Precise: the a-model

$y = \text{probability of connecting } u \& v$

$y \sim p + (x/N)^a$

"default" probability p

$x = \text{number of current common neighbors of } u \& v$

network size N
From D. Watts, "Small Worlds"
Clustering Coefficient Example 2

- Network: simple cycle + edges to vertices 2 hops away on cycle
- By symmetry, all vertices have the same clustering coefficient
- Clustering coefficient of a vertex v:
 - Degree of v is 4, so the number of possible edges between pairs of neighbors of v is $4 \times \frac{3}{2} = 6$
 - How many pairs of v’s neighbors actually are connected? 3 --- the two clockwise neighbors, the two counterclockwise, and the immediate cycle neighbors
 - So the c.c. of v is $\frac{3}{6} = \frac{1}{2}$

- Compare to overall edge density:
 - Total number of edges = $2N$
 - Edge density $p = \frac{2N}{N(N-1)/2} \sim \frac{4}{N}$
 - As N becomes large, $\frac{1}{2} \gg \frac{4}{N}$
 - So this cyclical network is highly clustered
An Alternative Model

- A different model:
 - start with all vertices arranged on a ring or cycle (or a grid)
 - connect each vertex to all others that are within k cycle steps
 - with probability q, rewrite each local connection to a random vertex
- Initial cyclical structure models “local” or “geographic” connectivity
- Long-distance rewiring models “long-distance” connectivity
- $q=0$: high clustering, high diameter
- $q=1$: low clustering, low diameter (~ Erdös-Renyi)
- Again is a “magic range” of q where we get both high clustering and low diameter
- Let’s look at this demo
Summary

- Two rather different ways of getting high clustering, low diameter:
 - bias connectivity towards shared friendships
 - mix local and long-distance connectivity
- Both models require proper “tuning” to achieve simultaneously
- Both a bit more realistic than Erdös-Renyi
- Neither model exhibits heavy-tailed degree distributions
Models of Network Formation
III. Preferential Attachment
Rich-Get-Richer Processes

• Processes in which the more someone has of something, the more likely they are to get more of it

• Examples:
 – the more friends you have, the easier it is to make more
 – the more business a firm has, the easier it is to win more
 – the more people there are at a nightclub, the more who want to go

• Such processes will amplify inequality

• One simple and general model: if you have amount x of something, the probability you get more is proportional to x
 – so if you have twice as much as me, you’re twice as likely to get more

• Generally leads to heavy-tailed distributions (power laws)

• Let’s look at a simple “nightclub” demo…
Preferential Attachment

- Start with two vertices connected by an edge
- At each step, add one *new* vertex v with one edge back to *previous* vertices
- Probability a previously added vertex u receives the new edge from v is proportional to the (current) degree of u
 - more precisely, probability u gets the edge $= \frac{\text{(current degree of } u)}{\text{(sum of all current degrees)}}$
- Vertices with high degree are likely to get *even more* links!
 - ...just like the crowded nightclub
- *Generates a power law distribution of degrees*
- Variation: each new vertex initially gets k edges
- Here’s another [demo](#)
Summary

• Now have provided network formation models exhibiting each of the universal structure arising in real-world networks
• Often got more than one property at a time:
 – Erdös-Renyi: giant component, small diameter
 – \(\alpha \) model, local+long-distance: high clustering, small diameter
 – Preferential Attachment: heavy-tailed degree distribution, small diameter
• Can we achieve all of them simultaneously?
• Probably: mix together aspects of all the models
• Won’t be as simple and appealing, though