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Roadmap 
•  Recently: typical large-scale social and other networks exhibit: 

–  giant component with small diameter 
–  sparsity 
–  heavy-tailed degree distributions 
–  high clustering coefficient 

•  These are empirical phenomena 
•  What could “explain” them? 
•  One form of explanation: simple models for network formation or growth 

that give rise to these structural properties 
•  Next several lectures: 

–  Erdös-Renyi (random graph) model 
–  “Small Worlds” models 
–  Preferential Attachment 

•  Discussion of structure exhibited (or not) by each 



Models of Network Formation 
I. The Erdös-Renyi (Random Graph) Model 



The Erdös-Renyi (Random Graph) Model 
•  Really a randomized algorithm for generating networks 
•  Begin with N isolated vertices, no edges 
•  Add edges gradually, one at a time 
•  Randomly select two vertices not already neighbors, add edge 
•  So edges are added in a random, unbiased fashion 
•  About the simplest (dumbest?) formation model possible 
•  But what can it already explain? 



The Erdös-Renyi (Random Graph) Model 
•  After adding E edges, edge density is  

•  As E increases, p goes from 0 to 1 
•  Q: What are the likely structural properties at density p? 

–  e.g. as p = 0 ! 1, small diameter occurs; single connected component 
•  At what values of p do “natural” structures emerge? 
•  We will see: 

–  many natural and interesting properties arise at rather “small” p 
–  furthermore, they arise very suddenly (tipping/threshold) 

•  Let’s examine the Erdös-Renyi simulator  
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Why Can’t There Be Two Large Components? 
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Threshold Phenomena in Erdös-Renyi 
•  Theorem: In Erdös-Renyi, as N becomes large: 

–  If p < 1/N, probability of a giant component (e.g. 50% of vertices) goes to 0 
–  If p > 1/N, probability of a giant component goes to 1, and all other components will 

have size at most log(N) 
•  Note: at edge density p, expected/average degree is p(N-1) ~ pN 
•  So at p ~ 1/N, average degree is ~ 1: incredibly sparse 
•  So model “explains” giant components in real networks 
•  General “tipping point” at edge density q (may depend on N): 

–  If p < q, probability of property goes to 0 as N becomes large 
–  If p > q, probability of property goes to 1 as N becomes large 

•  For example, could examine property “diameter 6 or less” 



Threshold Phenomena in Erdös-Renyi 
•  Theorem: In Erdös-Renyi, as N becomes large: 

–  Threshold at  

–  for diameter 6. 
–  Note: degrees growing (slightly) with N 
–  If N = 300M (U.S. population) then average degree pN ~ 500 
–  If N = 7BN (world population) then average degree pN ~ 1000 
–  Not unreasonable figures… 

•  At p not too far from 1/N, get strong connectivity 
•  Very efficient use of edges 

€ 

p ~ log(N) /N 5 / 6



Threshold Phenomena in Erdös-Renyi 
•  In fact: Any monotone property of networks exhibits a threshold 

phenomenon in Erdös-Renyi 
–  monotone: property continues to hold if you add edges to the networks 
–  e.g. network has a group of K vertices with at least 71% neighbors 
–  e.g. network has a cycle of at least K vertices 

•  Tipping is the rule, not the exception 



What Doesn’t the Model Explain? 
•  Erdös-Renyi explains giant component and small diameter 

•  But: 
–  degree distribution not heavy-tailed; exponential decay from mean (Poisson) 
–  clustering coefficient is *exactly* p 

•  To explain these, we’ll need richer models with greater realism 



Models of Network Formation 
II. Clustering Models 



Roadmap 
•  So far:  

–  Erdös-Renyi exhibits small diameter, giant connected component 
–  Does not exhibit high edge clustering or heavy-tailed degree distributions 

•  Next: network formation models yielding high clustering 
–  Will also get small diameter “for free” 

•  Two different approaches: 
–  “program” or “bake” high clustering into the model 
–  balance “local” or “geographic” connectivity with long-distance edges 



“Programming” Clustering 
•  Erdös-Renyi:  

–  global/background edge density p 
–  all edges appear independently with probability p 
–  no bias towards connecting friends of friends (distance 2) ! no high clustering 

•  But in real networks, such biases often exist: 
–  people introduce their friends to each other 
–  people with common friends may share interests (homophily) 

•  So natural to consider a model in which: 
–  the more common neighbors two vertices share, the more likely they are to connect 
–  still some “background” probability of connecting 
–  still selecting edges randomly, but now with a bias towards friends of friends 
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connecting u & v 
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common neighbors of u & v 
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Making it More Precise: the a-model 
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y ~ p + (x /N)α



From D. Watts, “Small Worlds” 



Clustering Coefficient Example 2 
•  Network: simple cycle + edges to vertices 2 hops away on cycle 
•  By symmetry, all vertices have the same clustering coefficient 
•  Clustering coefficient of a vertex v: 

–  Degree of v is 4, so the number of possible edges between pairs of neighbors of v is 4 x 
3/2 = 6 

–  How many pairs of v’s neighbors actually are connected? 3 --- the two clockwise 
neighbors, the two counterclockwise, and the immediate cycle neighbors 

–  So the c.c. of v is 3/6 = ½ 
•  Compare to overall edge density: 

–  Total number of edges = 2N 
–  Edge density p = 2N/(N(N-1)/2) ~ 4/N 
–  As N becomes large, ½ >> 4/N 
–  So this cyclical network is highly clustered 



An Alternative Model 
•  A different model: 

–  start with all vertices arranged on a ring or cycle (or a grid) 
–  connect each vertex to all others that are within k cycle steps 
–  with probability q, rewire each local connection to a random vertex 

•  Initial cyclical structure models “local” or “geographic” connectivity 
•  Long-distance rewiring models “long-distance” connectivity 
•  q=0: high clustering, high diameter 
•  q=1: low clustering, low diameter (~ Erdös-Renyi) 
•  Again is a “magic range” of q where we get 

 both high clustering and low diameter 
•  Let’s look at this demo 



Summary 
•  Two rather different ways of getting high clustering, low diameter: 

–  bias connectivity towards shared friendships 
–  mix local and long-distance connectivity 

•  Both models require proper “tuning” to achieve simultaneously 
•  Both a bit more realistic than Erdös-Renyi 
•  Neither model exhibits heavy-tailed degree distributions 



Models of Network Formation 
III. Preferential Attachment 



Rich-Get-Richer Processes 
•  Processes in which the more someone has of something, the more likely 

they are to get more of it 
•  Examples: 

–  the more friends you have, the easier it is to make more 
–  the more business a firm has, the easier it is to win more 
–  the more people there are at a nightclub, the more who want to go 

•  Such processes will amplify inequality 
•  One simple and general model: if you have amount x of something, the 

probability you get more is proportional to x 
–  so if you have twice as much as me, you’re twice as likely to get more 

•  Generally leads to heavy-tailed distributions (power laws) 
•  Let’s look at a simple “nightclub” demo…  



Preferential Attachment 
•  Start with two vertices connected by an edge 
•  At each step, add one new vertex v with one edge back to previous vertices 
•  Probability a previously added vertex u receives the new edge from v is 

proportional to the (current) degree of u 
–  more precisely, probability u gets the edge = (current degree of u)/(sum of all current degrees) 

•  Vertices with high degree are likely to get even more links! 
–  …just like the crowded nightclub 

•  Generates a power law distribution of degrees 
•  Variation: each new vertex initially gets k edges 
•  Here’s another demo 



Summary 
•  Now have provided network formation models exhibiting each of the 

universal structure arising in real-world networks 
•  Often got more than one property at a time: 

–  Erdös-Renyi: giant component, small diameter 
–  α model, local+long-distance: high clustering, small diameter 
–  Preferential Attachment: heavy-tailed degree distribution, small diameter 

•  Can we achieve all of them simultaneously? 
•  Probably: mix together aspects of all the models 
•  Won’t be as simple and appealing, though 


