How Do “Real” Networks Look?

Networked Life
NETS 112
Fall 2017
Prof. Michael Kearns




Roadmap

Next several lectures: “universal” structural properties of networks

Each large-scale network is unique microscopically, but with appropriate
definitions, striking macroscopic commonalities emerge

Main claim: “typical” large-scale network exhibits:

heavy-tailed degree distributions = “hubs” or “connectors”

existence of giant component: vast majority of vertices in same component

small diameter (of giant component) : generalization of the “six degrees of separation”
high clustering of connectivity: friends of friends are friends

For each property:

LE 1

define more precisely; say what “heavy”, “small” and “high” mean
look at empirical support for the claims

First up: heavy-tailed degree distributions




How Do “Real” Networks Look?
|. Heavy-Tailed Degree Distributions
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What Do We Mean By Not “Heavy-Tailed”?

Mathematical model of a typical "bell-shaped” distribution:

- the Normal or Gaussian distribution over some quantity x
Good for modeling many real-world quantities... but not degree distributions
if mean/average is [ then probability of value x is:

probability(x) « e " 2

main point: exponentially fast decay as x moves away from (4
if we take the logarithm:

log( probability(x)) o —(x — )’

Claim: if we plot log(x) vs log(probability(x)), will get strong curva’rur'e

Let's look at some (artificial) sample data... \
- (Poisson better than Normal for degrees, but same story holds) ’% '® o
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What Do We Mean By “Heavy-Tailed”?

« One mathematical model of a typical “heavy-tailed” distribution:
— the Power Law distribution with exponent

probability(x) o« 1/x"

— main point: inverse polynomial decay as x increases
— if we take the logarithm:

log( probability(x)) « —flog(x)

« Claim: if we plot log(x) vs log(probability(x)), will get a straight line!
« Let's look at (artificial) some sample data...
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Figures 1 and 2: In-degree and out-degree distributions subscribe to the power law. The law
also holds if only off-site (or "remote-only") edges are considered.

Degree Distribution of the Web Graph [Broder et al.]
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FIG. 1. The distribution function of connectivities for various large networks. (A) Actor col-
laboration graph with N = 212,250 vertices and average connectivity (k) = 28.78; (B) World wide
web, N = 325,729, (k) = 5.46 (6); (C) Powergrid data, N = 4,941, (k) = 2.67. The dashed lines

have slopes (A) Yactor = 2.3, (B) Ywww = 2.1 and (C) Ypower = 4.

Actor Collaborations;, Web, Power Grid [Barabasi and Albert]
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FIG. 2. Histograms of the number of papers written by
scientists in four of the databases. As with Fig. m, the solid
lines are least-squares fits to Eq. (@l)

Scientific Productivity (Newman)



Zipf’s Law

Look at the frequency of English words:
— “the” is the most common, followed by “of”, “to”, etc.
— claim: frequency of the n-th most common ~ 1/n (power law, a ~ 1)

General theme:
— rank events by their frequency of occurrence
— resulting distribution often is a power law!

Other examples:
— North America city sizes
— personal income
— file sizes
— genus sizes (number of species)
— the “long tail of search” (on which more later...)
— let’s look at log-log plots of these
People seem to dither over exact form of these distributions
— e.g.valueof a
— but not over heavy tails
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Summary

Power law distribution is a good mathematical model for
heavy tails; Normal/bell-shaped is not

Statistical signature of power law and heavy tails: linear on a
log-log scale

Many social and other networks exhibit this signature
Next “universal”. small diameter



How Do “Real” Networks Look?
Il. Small Diameter




What Do We Mean By “Small Diameter”?

« First let’s recall the definition of diameter:
— assumes network has a single connected component (or examine “giant” component)
— for every pair of vertices u and v, compute shortest-path distance d(u,v)
— then (average-case) diameter of entire network or graph G with N vertices is

diameter(G) =2 /(N(N 1)) ¥, d(u,v)

— equivalent: pick a random pair of vertices (u,v); what do we expect d(u,v) to be?

 What's the smallest/largest diameter(G) could be?

— smallest: 1 (complete network, all N(N-1)/2 edges present); independent of N
— largest: linear in N (chain or line network)

« “Small” diameter:
— no precise definition, but certainly << N
— Travers and Milgram: ~5; any fixed network has fixed diameter
— may want to allow diameter to grow slowly with N (?)
— e.g.log(N) or log(log(N))




Empirical Support

Travers and Milgram, 19609:

— diameter ~ 5-6, N ~ 200M
Columbia Small Worlds, 2003:

— diameter ~4-7, N ~ web population?
Lescovec and Horvitz, 2008:

— Microsoft Messenger network
— Diameter ~6.5, N ~ 180M

Backstrom et al., 2012:

— Facebook social graph
— diameter ~5, N ~ 721M




Summary

« So far: naturally occuring, large-scale networks exhibit:
— heavy-tailed degree distributions
— small diameter

* Next up: clustering of connectivity




How Do “Real” Networks Look?
lll. Clustering of Connectivity




The Clustering Coefficient of a Network
* Intuition: a measure of how “bunched up” edges are

* The clustering coefficient of vertex u:
— let k = degree of u = number of neighbors of u
— k(k-1)/2 = max possible # of edges between neighbors of u
— ¢(u) = (actual # of edges between neighbors of u)/[k(k-1)/2]
— fraction of pairs of friends that are also friends
— 0 <=c(u) <= 1; measure of cliquishness of u’s neighborhood

» Clustering coefficient of a graph G:
— CC(G) = average of c(u) over all vertices u in G

k=4
k(k-1)/2 =6
c(u) = 4/6 = 0.666...




What Do We Mean By “High” Clustering?

 CC(G) measures how likely vertices with a common neighbor
are to be neighbors themselves

« Should be compared to how likely random pairs of vertices are
to be neighbors

» Let p be the edge density of network/graph G:
p=E/NN-=1)/2)

« Here E = total number of edges in G

» |If we picked a pair of vertices at random in G, probability they
are connected is exactly p

« So we will say clustering is high if CC(G) >> p



Clustering Coefficient Example 1

142 x 1/2) = 1

2/(3x 2/2) = 2/3 3(4x3/2)=1/2

2/(3x 2/2) = 2/3 /2x1/2) =1

CC.=(1+r2+1+2/3+2/3)/6=0.7666...
p=7/(6x4/2) =0.7
Not highly clustered



Clustering Coefficient Example 2

Network: simple cycle + edges to vertices 2 hops away on cycle
By symmetry, all vertices have the same clustering coefficient

Clustering coefficient of a vertex v:
— Degree of v is 4, so the number of possible edges between pairs of neighbors of v is 4 x
3/2=06
— How many pairs of v's neighbors actually are connected? 3 --- the two clockwise
neighbors, the two counterclockwise, and the immediate cycle neighbors

— Sothec.c.ofvis 3/6 =
Compare to overall edge density:
— Total number of edges = 2N
— Edge density p = 2N/(N(N-1)/2) ~ 4/N
— As N becomes large, 72 >> 4/N
— So this cyclical network is highly clustered




Clustering Coefficient Example 3

Divide N vertices into sqrt(N) groups of size sqrt(N) (here N = 25)

Add all connections within each group (cliques), connect “leaders” in a cycle

N — sqrt(N) non-leaders have C.C. = 1, so network C.C. - 1 as N becomes large
Edge density is p ~ 1/sqrt(N)



 TABLE 3.2 STATISTICS OF SMALL WORLD NETWORKS |
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- L=Path Length; C=Clustering Coefficient.



