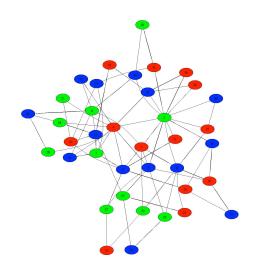
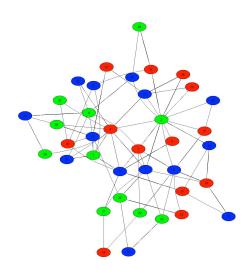
How Do "Real" Networks Look?

Networked Life
NETS 112
Fall 2013
Prof. Michael Kearns

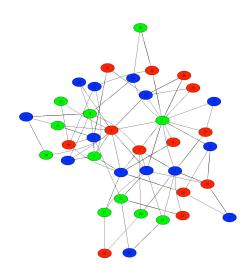


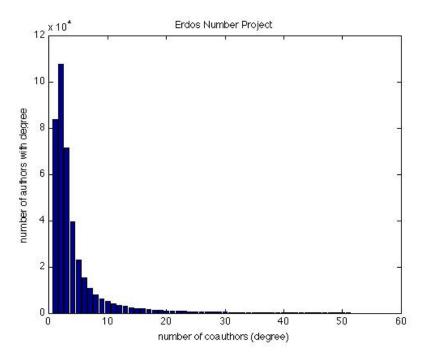
Roadmap

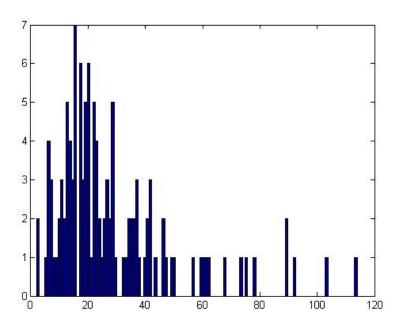
- · Next several lectures: "universal" structural properties of networks
- Each large-scale network is unique microscopically, but with appropriate definitions, striking macroscopic commonalities emerge
- Main claim: "typical" large-scale network exhibits:
 - heavy-tailed degree distributions → "hubs" or "connectors"
 - existence of giant component: vast majority of vertices in same component
 - small diameter (of giant component): generalization of the "six degrees of separation"
 - high clustering of connectivity: friends of friends are friends
- For each property:
 - define more precisely; say what "heavy", "small" and "high" mean
 - look at empirical support for the claims
- · First up: heavy-tailed degree distributions

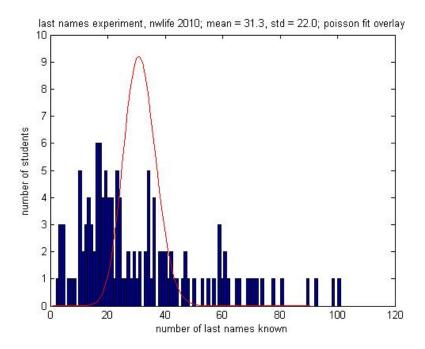


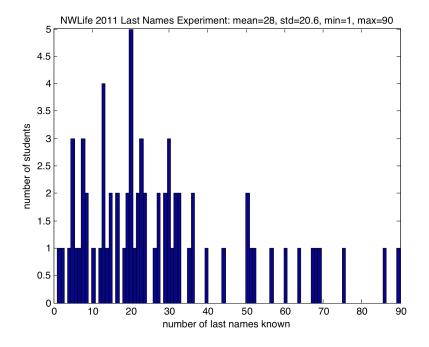
How Do "Real" Networks Look? I. Heavy-Tailed Degree Distributions











What Do We Mean By Not "Heavy-Tailed"?

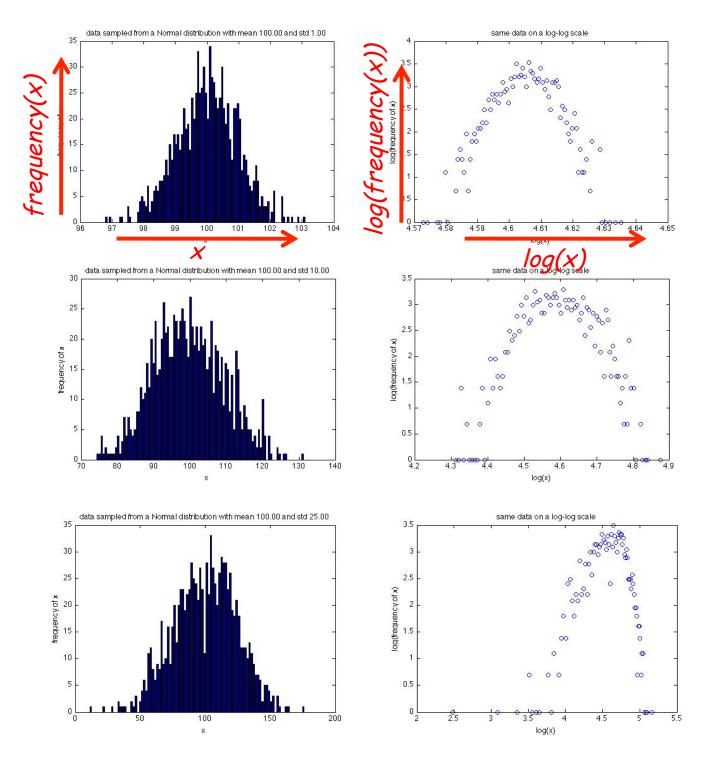
- Mathematical model of a typical "bell-shaped" distribution:
 - the Normal or Gaussian distribution over some quantity x
 - Good for modeling many real-world quantities... but not degree distributions
 - if mean/average is μ then probability of value x is:

$$probability(x) \propto e^{-(x-\mu)^2}$$

- main point: exponentially fast decay as imes moves away from $\,\mu$
- if we take the logarithm:

$$\log(probability(x)) \propto -(x - \mu)^2$$

- Claim: if we plot log(x) vs log(probability(x)), will get strong curvature
- · Let's look at some (artificial) sample data...
 - (Poisson better than Normal for degrees, but same story holds)



What Do We Mean By "Heavy-Tailed"?

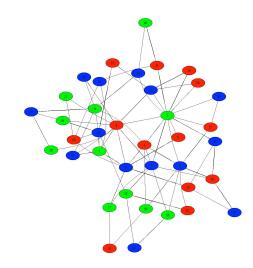
- One mathematical model of a typical "heavy-tailed" distribution:
 - the Power Law distribution with exponent eta

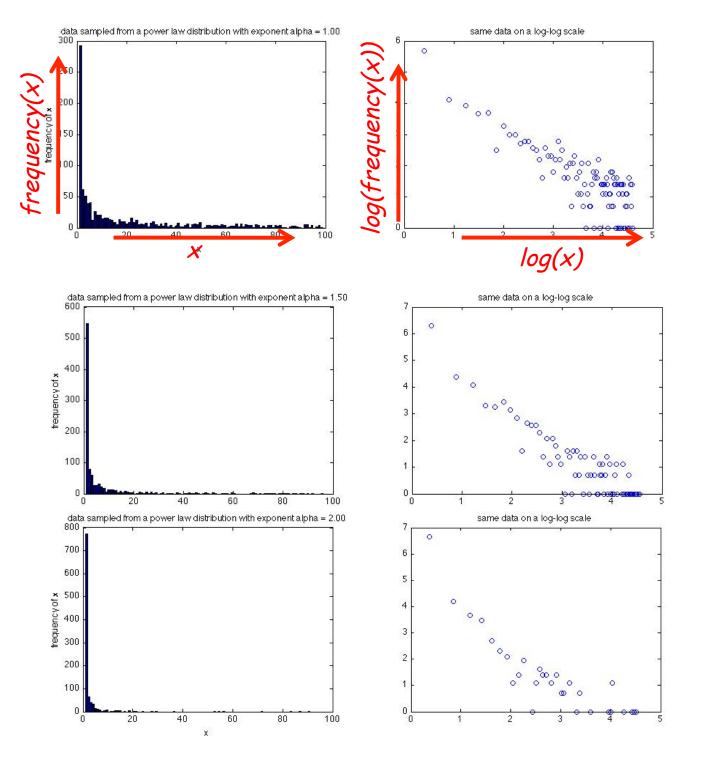
$$probability(x) \propto 1/x^{\beta}$$

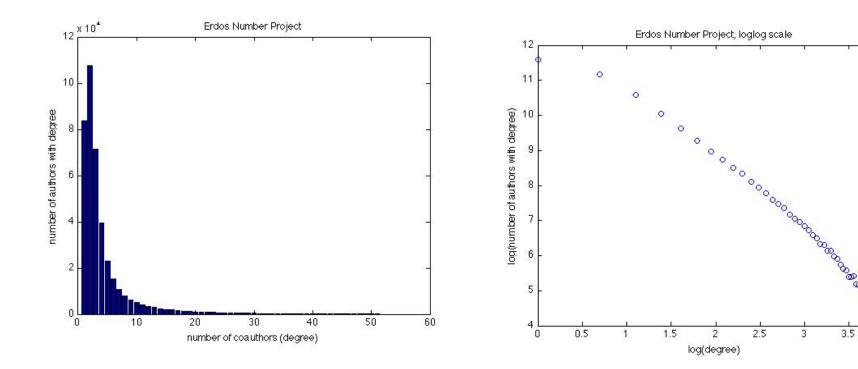
- main point: inverse polynomial decay as x increases
- if we take the logarithm:

$$\log(probability(x)) \propto -\beta \log(x)$$

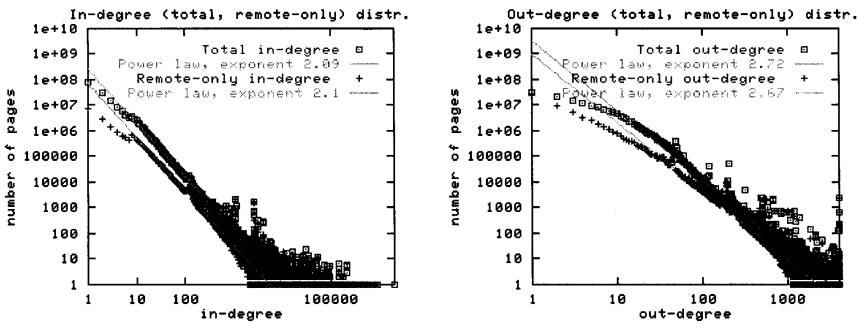
- Claim: if we plot log(x) vs log(probability(x)), will get a straight line!
- Let's look at (artificial) some sample data...







Erdos Number Project Revisited



Figures 1 and 2: In-degree and out-degree distributions subscribe to the power law. The law also holds if only off-site (or "remote-only") edges are considered.

Degree Distribution of the Web Graph [Broder et al.]

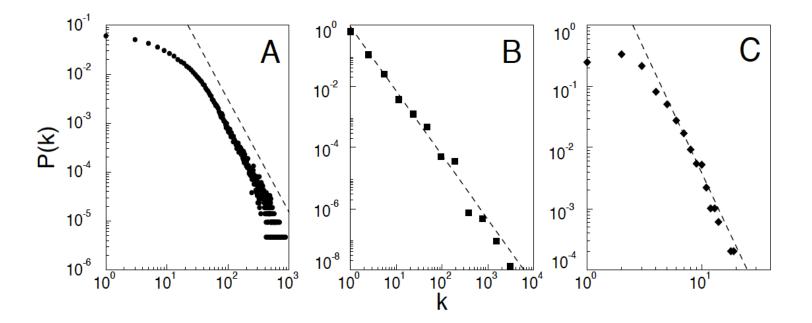


FIG. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration graph with N=212,250 vertices and average connectivity $\langle k \rangle = 28.78$; (B) World wide web, N=325,729, $\langle k \rangle = 5.46$ (6); (C) Powergrid data, N=4,941, $\langle k \rangle = 2.67$. The dashed lines have slopes (A) $\gamma_{actor}=2.3$, (B) $\gamma_{www}=2.1$ and (C) $\gamma_{power}=4$.

Actor Collaborations; Web; Power Grid [Barabasi and Albert]

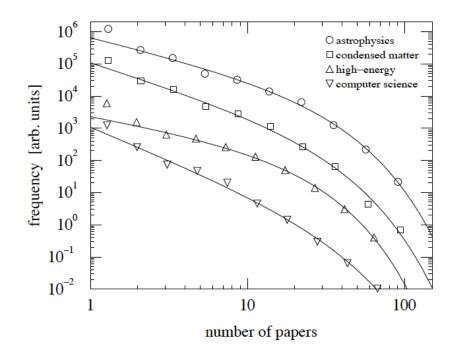
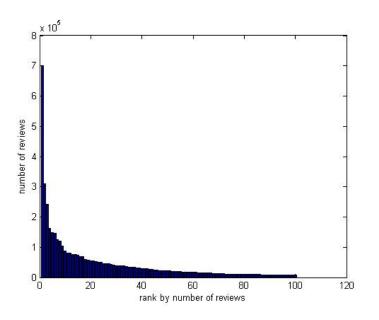


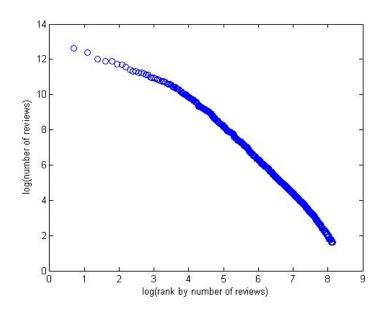
FIG. 2. Histograms of the number of papers written by scientists in four of the databases. As with Fig. $\boxed{1}$, the solid lines are least-squares fits to Eq. $(\boxed{1})$.

Scientific Productivity (Newman)

Zipf's Law

- Look at the frequency of English words:
 - "the" is the most common, followed by "of", "to", etc.
 - claim: frequency of the n-th most common ~ 1/n (power law, α ~ 1)
- General theme:
 - rank events by their frequency of occurrence
 - resulting distribution often is a power law!
- Other examples:
 - North America city sizes
 - personal income
 - file sizes
 - genus sizes (number of species)
 - the "long tail of search" (on which more later...)
 - let's look at <u>log-log plots</u> of these
- People seem to dither over exact form of these distributions
 - e.g. value of α
 - but not over heavy tails



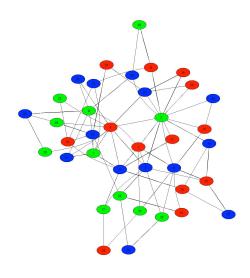


iPhone App Popularity

Summary

- Power law distribution is a good mathematical model for heavy tails; Normal/bell-shaped is not
- Statistical signature of power law and heavy tails: linear on a log-log scale
- Many social and other networks exhibit this signature
- · Next "universal": small diameter

How Do "Real" Networks Look? II. Small Diameter

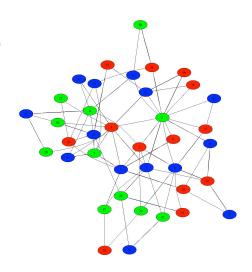


What Do We Mean By "Small Diameter"?

- First let's recall the definition of diameter:
 - assumes network has a single connected component (or examine "giant" component)
 - for every pair of vertices u and v, compute shortest-path distance d(u,v)
 - then (average-case) diameter of entire network or graph G with N vertices is

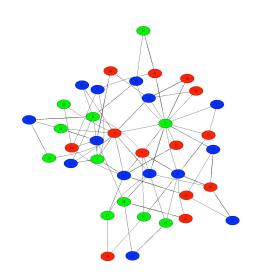
$$diameter(G) = 2/(N(N-1))\sum_{u,v} d(u,v)$$

- equivalent: pick a random pair of vertices (u,v); what do we expect d(u,v) to be?
- What's the smallest/largest diameter(G) could be?
 - smallest: 1 (complete network, all N(N-1)/2 edges present); independent of N
 - largest: linear in N (chain or line network)
- "Small" diameter:
 - no precise definition, but certainly « N
 - Travers and Milgram: ~5; any fixed network has fixed diameter
 - may want to allow diameter to grow slowly with N (?)
 - e.g. log(N) or log(log(N))



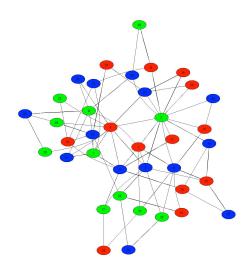
Empirical Support

- Travers and Milgram, 1969:
 - diameter $\sim 5-6$, N ~ 200 M
- Columbia Small Worlds, 2003:
 - diameter ~4-7, N ~ web population?
- Lescovec and Horvitz, 2008:
 - Microsoft Messenger network
 - Diameter ~6.5, N ~ 180M
- Backstrom et al., 2012:
 - Facebook social graph
 - diameter ~5, N ~ 721M

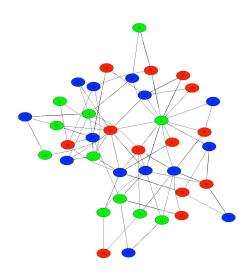


Summary

- So far: naturally occuring, large-scale networks exhibit:
 - heavy-tailed degree distributions
 - small diameter
- · Next up: clustering of connectivity

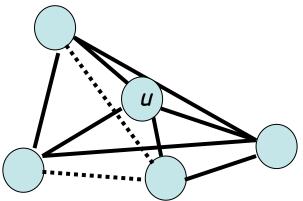


How Do "Real" Networks Look? III. Clustering of Connectivity



The Clustering Coefficient of a Network

- · Intuition: a measure of how "bunched up" edges are
- The clustering coefficient of vertex u:
 - let k = degree of u = number of neighbors of u
 - k(k-1)/2 = max possible # of edges between neighbors of u
 - c(u) = (actual # of edges between neighbors of u)/[k(k-1)/2]
 - fraction of pairs of friends that are also friends
 - 0 <= c(u) <= 1; measure of *cliquishness* of u's neighborhood
- Clustering coefficient of a graph G:
 - CC(G) = average of c(u) over all vertices u in G



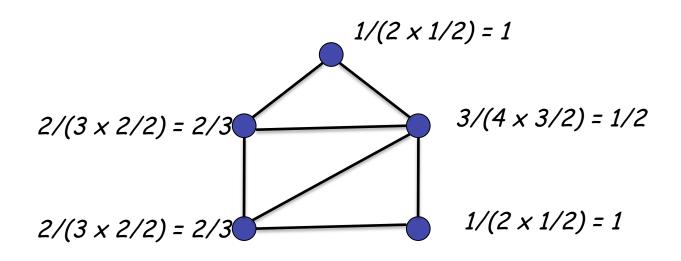
What Do We Mean By "High" Clustering?

- CC(G) measures how likely vertices with a common neighbor are to be neighbors themselves
- Should be compared to how likely random pairs of vertices are to be neighbors
- Let p be the edge density of network/graph G:

$$p = E/(N(N-1)/2)$$

- Here E = total number of edges in G
- If we picked a pair of vertices at random in G, probability they are connected is exactly p
- So we will say clustering is high if CC(G) >> p

Clustering Coefficient Example 1

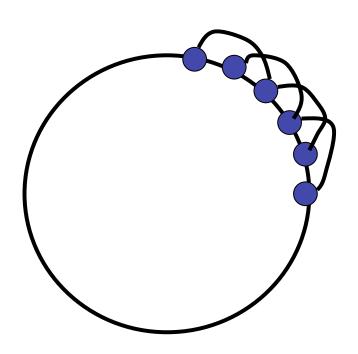


C.C. =
$$(1 + \frac{1}{2} + 1 + 2/3 + 2/3)/5 = 0.7666...$$

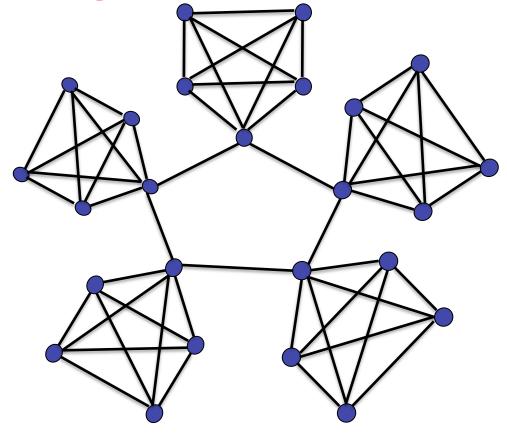
 $p = 7/(5 \times 4/2) = 0.7$
Not highly clustered

Clustering Coefficient Example 2

- Network: simple cycle + edges to vertices 2 hops away on cycle
- · By symmetry, all vertices have the same clustering coefficient
- Clustering coefficient of a vertex v:
 - Degree of v is 4, so the number of *possible* edges between pairs of neighbors of v is $4 \times 3/2 = 6$
 - How many pairs of v's neighbors actually *are* connected? 3 --- the two clockwise neighbors, the two counterclockwise, and the immediate cycle neighbors
 - So the c.c. of v is $3/6 = \frac{1}{2}$
- Compare to overall edge density:
 - Total number of edges = 2N
 - Edge density $p = 2N/(N(N-1)/2) \sim 4/N$
 - As N becomes large, $\frac{1}{2} \gg 4/N$
 - So this cyclical network is highly clustered



Clustering Coefficient Example 3



Divide N vertices into sqrt(N) groups of size sqrt(N) (here N = 25) Add all connections within each group (cliques), connect "leaders" in a cycle N - sqrt(N) non-leaders have C.C. = 1, so network C.C. \rightarrow 1 as N becomes large Edge density is p ~ 1/sqrt(N)

TABLE 3.2 STATISTICS OF SMALL WORLD NETWORKS

	LACTUAL	LRANDOM	CACTUAL	CRANDOM
MOVIE ACTORS	3.65	2.99	0.79	0.00027
POWER GRID	18.7	12.4	0.080	0.005
C. ELEGANS	2.65	2.25	0.28	0.05