
Cryptographic Hardness of Distribution-specific Learning

Michael Kharitonov *

Abstract

We investigate cryptographic lower bounds on the learn-

ability of Boolean formulas and constant depth circuits on
the {niform distribution and other specifi; distributions.
We first show that weakly learning Boolean formulas and

constant depth threshold circuits with membership queries
on the uniform distribution in polynomial time is as hard
as factoring Blum integers (or inverting RSA, or deciding

1?
quadratic residuosity . We formalize the notion of a triv-
ially learnable distri ution and extend these hardness re-

sults to all non-trivial distributions. Moreover, we show
that under appropriate assumptions on the hardness of fac-
toring, the learnability of Boolean formulas and constant

depth threshold circuits on any distribution is characterized
by the distribution’s Renyi entropy. Furthermore, we show
that a sub-exponential lower bound for factoring implies a

Q(2’Og@ ‘‘) lower bound (for some constant ~) for learn-
ing Boolean circuits of depth d on the uniform distribution
(with membership queries), which matches the upper bound

of Linial, M ansour, and Nisan [19]. From this we conclude
that, assuming such a lower bou-nd for factoring, there is

no O(npOLy 10gn) algorithm to learn all of ACO on the uni-
form distribution. We observe that, under cryptographic
assumptions, all our bounds can be used to establish trade-

~trs between the running time and the number of samples

necessary to learn.

1 Introduction

Cryptographic tools and assumptions have been used

heavily to show non-learnability results in the unre-

stricted hypothesis representation model of machine

learning. Valiant pointed out in [251 that a pseudo-

random function generator of Goldr~ich, Goldwasser,

and Micali [11] can be used to show that, if one-way

functions exist, arbitrary Boolean circuits are not pre-

dictable (the formal presentation of this argument can

be found in [221). A modified construction of a pseudo-

random fun~ti& generator was used by A. Blum [6]

*Department of Computer Science, Stanford University, Stan-

ford, CA 943o5. Supported by a Fannie and John Hertz Fellow-

ship and by NSF Presidential Young Investigator Grant CCR-
8858097 with matching funds from AT&T and DE(7. Present ad-

dress: D. E. Shaw & Co., 120 West 45 St, New York, NY 10036

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial edvantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing

Machinery. To OOPY otherwise, or to republish, requires a fee
and/or specific permission.
25th ACM STOC ‘93-51931CA,USA
e 1993 ACM 0-89791 -591 -71931000510372 ...S1 .50

to separate the PAC learning model from the absolute

mist ake-bound model of learning. Kearns and Valiant

[15] used specific public key encryption schemes to prove

the unpredictability of NCl circuits (which are equiv-

alent to Boolean formulas); using prediction preserving

reductions of Pitt and Warmuth [22] they proved the un-

predictability of deterministic finite acceptors and sev-

eral other important classes. Angluin and Kharitonov

[4] used chosen ciphertext secure public key encryp-

tion and secure digital signatures to prove similar re-

sults for prediction with membership queries. While

these recent results were important in proving hardness

of distribution-free learning, their common drawback

is that distributions of examples used for this purpose

were cryptographically orient ed and unnatural. The

possibility of using “malicious” distributions to show

non-learnability highlighted the fact that the distribu-

tion independence requirement makes PAC learning of

relatively simple concepts very difficult.

At the same time, significant progress has been

achieved in constructing learning algorithms that work

well on specific distributions. This is especially true for

the uniform distribution. Linial, Mansour, and Nisan

[19] used Fourier analysis to construct a 0(2’Og” d‘) al-

gorithm (for some constant a) to learn Boolean circuits

of depth d on the uniform distribution. Several im-

provements and extensions of this result followed, in

some cases reducing both sample and time complexity

and extending it to product distributions, though the

running time of resulting algorithms remained super-

polynomial. Very recently Mansour [21] used Fourier

analysis to obtain a O(nlOg 10gn) algorithm for learning

DNF Boolean formulas with membership queries on the

uniform distribution.

These successful efforts to construct learning algo-

rithms that perform relatively well on the uniform dis-

tribution motivated our investigation of the crypto-

graphic limitations on learning on specific distributions.

Until recently, the only hardness result for the uni-

form (or any other “natural”) distribution was the orig-

inal observation of Valiant [25] ~ which applied to unre-

stricted Boolean circuits. Recently, it was shown in [16]

that, under the assumption that the subset sum prob-

lem of certain dimensions is hard, circuits of logarithmic

depth are not learnable on the uniform distribution.

In this paper, much stronger results are proved. First,

very general hardness results are proved for the Boolean

372

formulas and constant depth threshold circuits. We

start by showing that, assuming factoring Blum integers

is hard, Boolean formulas and constant depth thresh-

old circuits are not predictable on the uniform distri-

bution. A notion of a trivially learnable distribution is

formalized. Then it is shown that, essentially, predict-

ing Boolean formulas or constant depth threshold cir-

cuits on any non-trivial distribution is as hard as factor-

ing. The result holds even when membership queries are

allowed. The cryptographic assumption used, namely

that factoring Blum integers is hard, is probably the

most widely accepted cryptographic assumption. We

observe that our results can also be shown assuming the

security of RSA encryption or the hardness of deciding

quadratic residuosity modulo a Blum integer.

Second, under a stronger, but very realistic assump-

tion on the hardness of factoring, tight lower bounds are

obtained for the learnability of constant depth Boolean

circuits on the uniform distribution. This is the first

hardness result for prediction of constant depth Boolean

circuits, an important and natural class whose learnabil-

ity was studied in several recent papers [19, 10]. Our

lower bounds show that any significant improvement in

either time or sample complexity of the algorithm in

[19] is highly unlikely.

Throughout this paper we will use the Boolean circuit

model of computation. All the circuits will be assumed

to be over the standard Boolean basis A, V, I and of size

polynomial in the length of their inputs (the number of

Boolean inputs). Unless specified otherwise, all circuit

families are assumed to be non-unform. We will discuss

polynomial size circuits of unrestricted fan-in and cir-

cuits of fan-in two, and of various bounded depth. Let n

denote the number of Boolean inputs to a circuit. Fol-

lowing the standard notation we will denote by NCi the

class of fan-in two circuits whose size is polynomial in

n and whose depth is O(logi n). We will denote by AGi

the class circuits with unrestricted fan-in whose size is

polynomial in n and whose depth is O(logi n). Clearly

NC’i ~ AC’i ~ NCi+l. Recall that the class NCl has

the same expressive power as the class of polynomial

size Boolean formulas.

We will use the parameter n as the security parame-

ter. Unless specified otherwise, the lengths of in-

puts and the running times of efficient algorithms are

bounded by polynomials in n, and the assumptions (and

thus the theorems derived from them) are assumed to

hold for all sufficiently large values of n. To be precise,

all the statements involving the parameter n in any way

should be quantified with “for all n sufficiently large”.

Without any loss of generality, we assume n (and some

other parameters) to be a power of 2 whenever neces-

sary to avoid dealing with fractional logarithms.

2 The Learning Model

In this section we review the model of concept represen-

tation and efficient prediction with membership queries

on specific distributions. The definitions are mc)stly

from [22, 4, 16].

2. I Representations of concepts

For simplicity we will use a binary alphabet. Let X

denote {O, 1}*; binary strings will represent both exam-

ples and concept names. If z is a string, lx I denotes

its length. For any natural number n, xI”] = {z E X :

1x1 < n}.

A representation of concepts C is any subset of X x X.

We interpret an element (u, x) of X x X as consisting

of a concept name (or concept representation) u and an

ezample z. The example z is a member of the concept

u if and only if (u, Z) cC.

Define the concept represented by u as

Kc(u) = {z : (U, X) GC}.

The set of concepts represented by C is

{Kc(u) : Ucx}.

If a set A of binary strings is a concept represented in C,

then we define sizec (A) to be the length of the shortest

string u such that Kc(u) = A.

For example, the class of Boolean formulas is repre-

sented as follows. We fix a straightforward binary en-

coding of general Boolean formulas over the variables

X1, X2,... and the basis AND (A), OR (V), and N“OT

(-I). Then (u, c) is an element of CBF if and only if u

represents a positive integer n and a Boolean formula 4

over the variables Xl, X. such that 1x1 = n and the

assignment Xi = w for i = 1, ..., n satisfies the formula

4.

Boolean circuits are represented in a similar way. .Any

Boolean circuit N on n inputs Xl, X~ is represented

by{ (u, x)} where u represents the positive integer n and

the encoding of l+, Iz I = n and the assignment Xi := xi

fori=l , n causes the output of ?4 to be 1. The class

CP/POtv of polynomial size Boolean circuits is specified

analogously to Boolean formulas: (u, z) is an element

of Cp/POly if and only if u represents a positive integer

n and a Boolean circuit C over the inputs Xl, X~,

and IzI = n and the assignment Xi = xi for i = 1, n

causes the output of C to be 1.

When we say that a binary string u encodes or repre-

sents an object (such as a Boolean formula or a circuit

of some type), we assume that a certain fixed and rea-

sonable encoding scheme is used. With respect to any

such scheme we can assume that all binary strings rep-

resent concepts by assigning an empty set to all binary

strings that do not form a valid encoding of an object.

Unless stated otherwise, all numbers are represented in

binary.

2.2 Prediction with queries

A prediction with membership queries algorithm, or

pwm-aigorithm, is a possibly randomized algorithm A

that takes as input a bound s on the size of the target

concept representation, a bound n on the length of ex-

amples, and an accuracy bound c. It may make three

different kinds of oracle calls, the responses to which

are determined by the unknown target concept c and

the specified distribution D on Xinl, as follows.

1.

2.

3.

A membership query takes a string z c X as input

and returns 1 if x E c and O otherwise.

A request for a random classified example takes no

input and returns a pair (z, b) where z is a string

chosen independently according to D and b = 1 if

z E c and b = O otherwise, and

A request for an element to predict takes no in-

put and returns a string x chosen independently

according to D.

A may make any number of membership queries or re-

quests for random classified examples. However, A must

eventually make one and only one request for an element

to predict, and then eventually halt with an output of

1 or O without making any further oracle calls. The

output is interpreted as A’s guess of how the target

concept classifies the element returned by the request

for an element to predict. A runs in polynomial time if

its running time (counting one step per oracle call) is

bounded by a polynomial in s, n, and I/c.

We say that A successfully predicts a representation

of concepts C on a distribution D if and only if for all

positive integers s and n, for all positive rationals c, for

all concept names u G X[sl, when A is run with inputs

s, n, and e, and oracles determined by c = Kc(u) and

D, A asks membership queries that are in X and the

probability is at most E that the output of A is not equal

to the correct classification of z by Kc(u), where z is the

string returned by the (unique) request for an element

to predict. Recall that if c = ~ – ~ for some constant

c >0 we say that A wealdy predicts C ([15]).

A representation of concepts C is polynomially pre-

dictable with membership queries on a distribution D

if and only if there is a pwm-algorithm A that runs in

polynomial time and successfully predicts C on D.

In particular we will focus on the case where D is

the uniform distribution on X[nl. Recall that a weak

learning algorithm that is successful on a specific dis-

tribution does not necessarily imply the existence of a

strong learning algorithm that is successful on the same

distribution. (Unlike in the distribution independent

model, where weak and strong learning were shown to

be equivalent [24].) Thus it is even more desirable to

show the hardness of weak prediction.

3 The X2 mod N Generator

A pseudo-random generator is a polynomial time com-

putable function f : {O, l}n + {O, l}~(n), where l(n) >

n, such that on a random input it produces an output

that no polynomial time statistical test T can distin-

guish with non-negligible probability of success from a

truly random sequence of the same length. More for-

mally, we require that for any polynomial time com-

putable function T : {O, I}[(n) + {O, 1} (i.e. the ex-

pected running time of a (randomized) algorithm com-

puting T is polynomial in the size of its inputs) and for

all c, the success probability

f~(n) = lPrzEiO,ll~ [T(f(z)) = 1]

— ~rv~io,lpf.) [T(Y) = 111<~

where z G {O, l}n and y c {O, l}t(n) are chosen uni-

formly at random. We call l(n) the stretch factor of the

pseudo-random generator.

We describe the pseudo-random generator of Blum,

Blum, and Shub [7] and show that, with pre-processing,

any bit of the output sequence of this generator can be

computed in NCl (or TC’O).

3.1 Background

Let us outline some of the results presented in [7]. For

the background in number theory as it relates to cryp-

tography we refer the reader to [2, 17].

Let n denote the security parameter, which means

that the length of inputs and (expected) running times

of efficient computations are bounded by polynomials

in n. Let P and Q range over all primes such that

1’ E Q E 3 (mod 4) and let

N={ NIN=P. Q, P#Q,lPl=lQl}

be the set of parameter values. For a given N c N

(such a number is called a B/urn integer), let XN =

{X2 mod NIx c Z;} be the set of quadratic residues

mod N. Let the disjoint union X = (J~eN XN be

the seed domain. Let x’ = {(N,z)lN E N, INI =

n, x E XN} be the set of seeds of length n. Define the

distribution pn on X“ to be pn(N, X) = un(N). ?JN(%),

where u. is the uniform distribution on {N ~ N] IN I =

n} and vN is the uniform distribution on XN. Then

p. is samplable in time polynomial in n. Thus we can

assume that the input to the pseudo-random generator

374

comes from pn, rather than the uniform distribution on

{o, I}n.

The X2 mod N generator works as follows. Let

(N, ZO) be chosen according to pn. For all values of

i ~ O, define inductively Zi+l = x? mod N and let

bi = lsb(~i) be the parity bit (i.e. the least signif-

icant bit) of xi. When the particular seed (N, z) is

not clear from the context, we will denote the ith bit

generated from this seed by bi(N, z). Let the out-

put of the generator be the infinite periodic sequence

bob1b2 Let J denote the Carmicael’s function. Note

that A(P . Q) = lcm[(P – 1), (Q – l)]. An important

property of the Z2 mod N generator described in [7] is

that it is possible to efficiently access an arbitrary bit

of its output sequence. Given any integer i > 0 we can

compute bi by computing Zi = ZO2’mOd~(N) mod N. We

can assume O < i < A(J(N)) because in [7] it is shown

that the period of the sequence X., xl, . . . is a divisor of

A(,4(N)), and can always be made equal to A(A(N)) by

a more discriminating choice of the seed.

Assuming that recognizing quadratic residues modulo

a Blum integer is hard, Blum, Blum, and Shub proved

in [7] the following theorem:

Theorem 1 (Blum, Blum, and Shub) For any

polynomial l(n), the X2 mod N generator that outputs

bobl . . . bl(~)_l is a secure pseudo-random generator.

Subsequently, Alexi, Chor, Goldreich, and Schnorr [1]

and Vazirani and Vazirani [26] strengthened the security

of the generator by showing that the Theorem 1 holds

assuming that factoring Blum integers is hard. This

assumption, which is probably the most widely accepted

cryptographic assumption of all, will be used for all our

results. We observe that all of our results hold under

the quadratic residuosity assumption or assuming the

security of RSA encryption (the first due to results in

[7], the second due to results in [1]).

3.2 Super-efficient Random Access

The following theorem shows that a random bit from

the output sequence of the X2 mod N pseudo-random

generator can be computed extremely fast in parallel,

provided that a certain amount of pre-processing is done

at the time of seed selection. This fact allows us to con-

struct shallow circuits that compute functions which are

hard to learn on the uniform distribution. Let TC~(~,

denote the class of threshold circuits on n variables with

depth bounded by a fixed constant d and size bounded

by some fixed polynomial p(n).

Theorem 2 With pre-processing, an arbitrary output

bit of the X2 mod N pseudo-random generator can be

computed by NC’l or TC’~~~) circuits.

Proofi Omitted.

Theorem 2 shows that with pre-processing, each

pseudo-random bit can be computed in parallel in time

O(log n), which is sufficient for our purposes. But the

Z2 mod N pseudo-random generator is even more effi-

cient. It was shown in [1, 26] that up to log n least sig-

nificant bits of each xi can be output by the generator

without any loss of security. Therefore, in parallel, the

X2 mod N pseudo-random generator works in constant

amortized time per bit.

4 Main Hardness Results

We can use the X2 mod N pseudo-random generator to

show that Boolean formulas and constant depth thresh-

old circuits are not polynomial time predictable on spe-

cific non-trivial distributions, assuming that factoring

Blum integers is hard. We first show this for the uni-

form distribution and then extend the hardness results

to all non-trivial distributions.

4.1 The Uniform Distribution

We want to define a representation class of Boolean fior-

mulas such that a successful learning algorithm for this

class could be used to perform a statistical test on an

output sequence of the X2 mod N pseudo-random gen-

erator. Since we showed in Section 3.2 that an arbitrary

bit of this sequence can be computed by a NC’~ circuit,

and thus by a Boolean formula, the natural candidi~te

for a hard concept class is the (parameterized) class

Z. = {{i e {O, l}n[O s i < A(~(N)),

bi(N, z) = 1} I(N, z) G Xn}

represented by Boolean formulas. Each seed for the

Z2 mod N pseudo-random generator defines a concept

in this class which consists of those positions in the out-

put sequence (within the A(J(N)) bit long prefix) that

contain the bit 1. However, even if we could insure (by

a discriminating choice of a seed) that the period of the

output sequence is exactly A(J(N)), we would not be

able to show that In is hard to learn. The reason for

this is that there is no proof that a string consisting of

a polynomial number of non-consecutive bits from the

out put sequence of the x 2 mod N pseudo-random gen-

erator is pseudo-random. We only know, assuming that

factoring Blum integers is hard, that any polynomiaJly

long prefix (or contiguous substring) of this sequence is

pseudo-random.

We overcome this obstacle by introducing a new ar-

gument with a resemblance to the diagonalization tech-

nique used to show undecidability. Previous hardness

results in computational learning theory were shown

’27C

by constructing representation classes which are “uni-

formly” hard, in the sense that for each polynomial time

learning algorithm all but a small fraction of concepts in

such a class are hard [15, 4]. In this section, on the other

hand, we construct a concept class ~n, represented by

Boolean formulas, such that for each constant b >0 and

for each learning algorithm with running time bounded

by nb, a small fraction of representations in Gn is hard,

even though these representations are easy to learn by

an algorithm with running time O(ndb) for some fixed

constant d. The formal development follows.

Given a number i expressed in binary, recall that

i mod 2k is equal to the number represented by the k

least significant bits of i. Define the (parameterized)

concept class

& = {{i c {O, l}nlbimOd2~(N, z) = 1}

[(N, z) Ex”,l<k <n}

In other words, each seed (N, Zo) E X“ and each num-

ber 1 ~ k ~ n together define a concept gIN,cOJ,k. A

string i E {O, 1 }“ is in the concept g(~,=O),k if and only

if b~mo~zk (N, xo) = 1.

Lemma 1 There exist a (jixed) polynomial p such that

the concept class L7n can be represented by a class of

Boolean formulas of size bounded by p(n).

Proof Omitted.

Lemma 2 There exist a constant d and a (fixed) poly-

nomial p such that the concept class ~n can be repre-

sented by a class of TC~(~, circuits.

Proof Omitted.

Now we must show that, assuming factoring is hard,

no polynomial time learning algorithm can successfully

weakly predict ~n. We do this by showing how to con-

vert such a learning algorithm into a successful statis-

tical test for the Z2 mod N pseudo-random generator,

and thus into an algorithm for factoring.

Lemma 3 Assuming that factoring Blum integers is

hard, the concept class ~n (represented by Boolean for-

mulas or TCO1d~(n) circuits or any other representation of

polynomial size) is not weak[y predictable with member-

ship queries on the uniform distribution in polynomial

time.

Proof: Assume to the contrary that there exists a poly-

nomial time learning algorithm A that weakly predicts

(with membership queries) Gn on the uniform distri-

bution. Since all the target representations are of size

bounded by n’ for some constant s, there exists a con-

stant b >0 such that the running time of A is bounded

by n“. (When A is run with inputs n’ (bounding the

size of the target concept) and n (bounding the length

of examples) and with labeled examples and prediction

challenge chosen according to the uniform distribution.)

Assume that A has success probability at least ~ + ~

for some constant c >0.

We now use A to construct a statistical test T for the

X2 mod N pseudo-random generator with stretch na+c.

Given a string z of length n“+’, the test T assumes that

it is the output of the X2 mod N pseudo-random genera-

tor on some unknown seed (N, Xo). Let k = (a+c) log n.

Then T simulates the learning algorithm A with inputs

ns and n on the target concept g(~,=O),k from ~n. The

oracle queries of A are answered as follows.

1.

2.

3.

When A makes a membership query with string i,

if Iil = n, then T returns z~mod~~ (i.e. the (i mod

2k)th bit of z). If Iil # n, T returns O. (This just

means that i must be padded with leading zeroes

by A.)

When A requests a random classified example, T

chooses an example i uniformly at random from

{O, l}n and returns (i, z~modz~) back to A.

When A requests an element to predict, T chooses

j uniformly-at random from {O, i }“ and returns it

to A as prediction challenge.

If within n“ steps A makes a prediction b on a chal-

lenge j, T outputs 1 if b = z ~~mod2k and O otherwise. If
within na steps A fails to make a prediction (or request

a challenge), T outputs 1 with probability 1/2 and O

with probability 1/2.

If the string z is indeed the output of the X2 mod N

pseudo-random generator on some seed (N, Xo), then

the example and membership queries of A are evalu-

ated according to the concept g(~,mO), ~. Hence from

correctness of A itfollows that with probability at least

~ + ~ the algorithm outputs correct prediction within

n“ steps and the test T outputs 1.

If, on the other hand, z is a random na+c bit long

string, we have to consider two possibilities. Since the

running time of A is bounded by na, the number of la-

beled samples it obtains (via example or membership

queries) is also bounded by n=. Therefore, since the

prediction challenge j is chosen uniformly at random

from {O, l}n, the probability that for some previously

seen sample i we have j mod 2k = i mod 2k is at most

~. In this case we assume that A always outputs a cor-

rect prediction. In the case where for all previously seen

samples i we have j mod 2k # i mod 2k, the truly ran-

dom bit zj mod2k is never seen by the learning algorithm

A, hence the probability that A predicts it correctly is

exactlY ~. Therefore, when z is truly random, T outputs

1 with probability at most ~ + (1 – ~) . ~ = ~ + ~.

376

Therefore the success probability of T is

D;+&; –&=j&

Clearly T runs in time O(na+c), hence T is a suc-

cessful statistical test for the X2 mod N pseudo-random

generator. By results reviewed in Section 3, such a test

can be used to construct a (randomized) polynomial

time algorithm for factoring Blum integers, which con-

tradicts our assumption. 1

From Lemmas 1 and 3 we immediately conclude that

learning Boolean formulas on the uniform distribution

is as hard as factoring Blum integers.

Theorem 3 Assurnmg that factoring Blum integers is

hard, there exists no prediction with membership queries

algorithm that weakly predicts Boolean formulas on the

uniform distribution.

From Lemmas 2 and 3 we immediately conclude that

there exist a constant d and a polynomial p such that

learning TC~(~, circuits on the uniform distribution is

as hard as factoring Blum integers.

Theorem 4 Assuming that factoring Blum integers is

hard, there exist a constant d and a polynomial p such

that there exists no prediction with membership queries

a/gOrithm that weakly predtcts TC~(~l circuits on the

uniform distribution.

As was mentioned at the end of Section 3.1, Theo-

rems 3 and 4 also hold under the quadratic residuosity

assumption or assuming the security of RSA encryption.

4.2 Other Distributions

After showing hardness of prediction on the uniform dis-

tribution, it is natural to consider other specific distri-

butions. Clearly, some distributions are trivial to learn

on by simply taking a sufficient number of samples and

predicting via table lookup. We must first find a use-

ful characterization of such “trivial” distributions. The

definitions in this section are from [20]:

Definition 1 Let V be a probability distribution on

{O, l}n and /et X En {O, l}n and Y c~ {O, I}n be in-

dependent random variables. Dejine the Renyi entropy

of ‘D as

Re(D) = – log (Prx,y [X = Y])

Dejine the minimum entropy of D as

Me(D) = rein{– log(Prx [X = z]) IZ c {O, 1}”}

The Renyi entropy of a probability distribution allows

us to compute the probability of prediction challenge

being equal to a labeled example seen during the learn-

ing stage. The minimum entropy allows us to bound

the same probability for membership queries. It is easy

to see that for any distribution D

Re(V)
— ~ Me(’D) ~ Re(D)

2

The following theorem shows that all concept classes

are trivially weakly learnable on distributions with

small Renyi entropy.

Theorem 5 Let C be any concept class over the domain

{O, l}n and let D be any distribution on {O, l}n. Then

there exists a trivial algorithm to predict G on D w~th

success probability ~ + ~Re(i)+l -

Proof The algorithm simply requests a single labeled

example and then the prediction challenge. By defini-

tion of Renyi entropy, the probability that the predic-

t ion challenge is equal to the labeled example is &v,

and in this case the algorithm always predicts correctly.

If the prediction challenge is not equal to the labeled

example, the learning algorithm outputs 1 with proba-

bility ~ and O also with probability ~, thus predicting

correctly with probability ~. Therefore, the total suc-

cess probability is ~ + ~~.(i)+l . i

Note that the complexity and the success probability

of the algorithm in the proof of Theorem 5 does not

depend on the size or any other property of the target

representation, just on the Renyi entropy of the sam-

ple distribution. From Theorem 5 it follows that all

concept classes are efficiently weakly predictable on all

distributions with Renyi entropy O(log n). We will call

such distributions trivial. Assuming that factoring is

hard, we will show that Boolean formulas and TC~/~,

circuits are not weakly predictable on all non-trivial dis-

tributions; by Theorem 5 this is the strongest possible

statement of this type.

If we want to focus on strong rather than weak learn-

ing, we must place additional restrictions on the dis-

tribution V for it to be trivially learnable. Namely,

for D to be trivially learnable with success probability

1 – ~, the learner must be able to compile (through la-

beled samples or membership queries) a table of labeled

examples whose probability under D is at least 1 – 2~.

Since our main goal is to prove hardness results, we ccm-

centrate on weak learning. All our results for non-trivial

distributions can be modified in a straight-forward way

to hold in the strong learning model.

Before we proceed, we need to define universal hash

functions (introduced in [8]).

31/

Definition 2 Let h : {O, I}n x {O, l}~(n) ~ {O, I}m(nl

be a function; let Y be a random variable distributed

uniformly on {O, l}~fn). We say that h(z, y) 2s a (’pa2r-

wise independent) universal hash function ii for all

Z,Z’ c {O, l}n such that x # z’, and for all a,a’ E

{o, 1}’@),

Pry [(h(z, Y) = a) A (h(z’, Y) = a’)] = *

For a fixed y E {O, l}~(n), we view h(x, y) as a function

hv(z) of z which “hashes” n bits to m(n) bits. Intu-

itively, a universal hash function hv (z) has the prop-

ert y that, for a randomly chosen Y, every two distinct

elements z and x’ are mapped randomly and indepen-

dently of each other by hy. In all our applications we

have n ~ m(n) ~ 1. Several constructions of universal

hash functions are described in [8, 20] and elsewhere.

For our purposes, it is only important to know that for

all 1 s m(n) s n there exist universal hash functions

that can be computed by NCl or TC~(~, circuits.

We now use universal hash functions to concentrate

the Renyi entropy of a probability distribution. The

following lemma is analogous to the Smoothing Entropy

Theorem of [14] (also see [20]).

Lemma 4 Let D be a probability distribution on {O, 1}”

such that the Renyi entropy of ‘D is at least m(n). Let

h(x, y) be a universal hash function such that [z[= n,

]y/ = l(n), Ih(z, Y) I = m(n). Let Y @ {O, l}~(n). Then

EY [Re (hY (D))] > m(n) – 1

Proofi Omitted.

We will use Lemma 4 in two ways. First, we can

say that for any distribution 0 on {O, 1}” such that

Re(D) ~ m(n), there exists y’ ~ {O, l}~(n) such that hy,

preserves Renyi entropy, i.e. Re (hV, (D)) > m(n) – 1.

Second, we can claim that if y is chosen uniformly at

random from {0, l}~(n), then with high probability y hv

preserves enough Renyi entropy.

We can now use the Renyi entropy preserving hash

functions to specify which output bits of the X2 mod N

pseudo-random generator determine the concepts of a

class. For each number 1 < k < n, let

hk : {o, l}n x {o, l}l(n’~) + {o, 1}~

be a universal hash function. Define the (parametri-

zed) concept class

G’n = {{i c {O, l}nlb~~[i)(N, z) = 1}

I(N, z) e Xn, 1 s k < n, y c {O, l}~[’”k)
}

In other words, each seed (N, Zo) E Xn, each number

1 ~ k < n, and each string y E {O, l}~(n’k) together

define a concept g(~,=,),k,y. A string i c {O, 1}” is in

the concept g(~,CO),~,Y if and only if bh$(i) (N, ZO) = 1.

Lemma 5 There exist a (fixed) polynomial p such that

the concept class ~’n can be represented by a class of

Boolean formulas of size bounded by p(n).

Proof Omitted.

Lemma 6 There exist a constant d and a (fixed) poly-

nomial p such that the concept class 17~ can be repre-

sented by a class of TC~(~, circuits.

Proof Omitted.

Let ‘D be any non-trivial probability distribution on

{O, 1}”. We want to show that no polynomial time

learning algorithm can successfully weakly predict G’n

on D. Recall that the only property of the uniform dis-

tribution used in the proof of Lemma 3 was that the

probability that k least significant bits of the prediction

challenge y are equal to k least significant bits of some

previously seen labeled sample was low. By Lemma 4,

we can achieve the same effect with any non-trivial dis-

tribution by hashing the whole sample into k+ 1 bits, in-

stead of simply taking k least significant bits. To handle

arbitrary distributions, we must assume that factoring

is hard for non-uniform adversaries.

Lemma ? Assuming that factoring Blum integers is

hard for polynomial size circuits, the concept class !7n

(represented by Boolean formulas or TC$’(:, circuits

or any other representation of polynomial size) is not

weakly predictable with membership queries on any non-

trivial distribution in polynomial time.

Proof Omitted (similar to the proof of Lemma 3).

If we restrict our attention to example distributions D

that are uniform polynomial time samplable (i.e. there

exist a randomized uniform Turing machine that gen-

erates V for all values of n), the test T no longer needs

the oracle for sampling from D. Then we can make T

(and the resulting factoring algorithm) to be uniform by

setting Izl = n4(a+c), k = 4(a + c) logn, and choosing ~

uniformly at random from {O, 1 }~(n).

From Lemmas 5 and 7 we immediately conclude that

learning Boolean formulas on any non-trivial distribu-

tion is as hard as factoring Blum integers.

Theorem 6 Assuming that factoring Blum integers is

hard, there exists no prediction with membership queries

algorithm that weakly predicts Boolean formulas on any

non-trivial distribution.

From Lemmas 6 and 7 we immediately conclude that

there exist a constant d and a polynomial p such that

learning TC~(~, circuits on any non-trivial distribution

is as hard as factoring Blum integers.

378

Theorem 7 Assuming that factoring Blum integers is

hard, there exist a constant d and a polynomial p such

that there exists no prediction with membership queries

a[gorithm that weakly predicts TC~(~, circuits on any

non-trivial distribution.

Once again, Theorems 6 and 7 also hold under the

quadratic residuosity assumption or assuming the secu-

rity of RSA encryption.

5 Characterizations of Learn-

ability

The results of the previous sections were shown under

the assumption that no randomized polynomial time

algorithm for factoring exists. Factoring is one of the

most studied computational problems. The current

state of the art algorithms for factoring can factor a n

bit number N in expected time o(etl+”(ll)=), un-

der certain unproven assumptions on the distribution of

primes. Thus it is realistic to assume an explicit super-

polynomial lower bound on the hardness of factoring.

In this section we prove even stronger hardness results

for learning under such an assumption.

5.1 A Stronger Assumption

When we said in earlier sections that we assume “factor-

ing Blum integers is hard” we meant that no polynomial

time randomized algorithm (or, in some cases, polyno-

mial size non-uniform circuit) can factor a random Blum

integer. This assumption allowed us to prove impossi-

bility of polynomial time learning. If we want to prove

stronger hardness results for learning, we have to make

a stronger assumption on the hardness of factoring.

The discussion of general (not necessarily polynomial

time) assumptions and adversaries can be facilitated by

the use of achievement ratio, suggested by Leonid Levin.

Most of the definitions and proofs of facts stated in this

section can be found in [20]. In the following discussion

an adversary can be any type of algorithm. A primitive

can be a hard problem, such as factoring, or a crypto-

graphic primitive, such as a pseudo-random generator.

Definition 3 The achievement ratio of an adversary

A for a primitive f is defined as ~, where t(n) is the

time bound of A and b(n) is the success probability of

A for f, and n is the security parameter. An adversary

A is R(n) -breaking for a primitive f if the achievement

ratio of A for f satisfies ~ ~ R(n) (for all n sufi-

cientiy large). The primitive f is (1– R(n)) -secure if

there exists no R(n) -breaking adversary for f.

Thus, O-secure means totally insecure, while l-secure

means totally secure. Traditional security with respect

to polynomial time adversaries means (1 – &)-secure

for all constants c > 0. Note, for example, that since

for any function defined on n-bit strings there exists an

inverting algorithm that runs in 2n time, there can be

no (1 — ~)-secure one-way function.

We will modify slightly the Z2 mod N pseudo-random

generator <by using the hidden bit of Goldreich amd

Levin [12] instead of the parity bit to output a pseudo-

random sequence. If x and y are two n-bit binary

strings, define z o y to be the inner product mod 2

of x and y, i.e. ~ 0 Y = ~~=1 ziyi mod 2. For a

given value of the security parameter n, the seed space

will be Yn = Xn x {O, l}n with seed distribution

v(n)(N, X, R) = p(n)(N, X) . wn(R), where pn is the

original seed distribution and Wn is the uniform clis-

tribution on {O, l}n. In other words, the new seed

cent ains an additional random n bit string. Given a

seed (N, Z., r) chosen according to v(n), define ss ear-

lier Zi+l = z? mod N, but let bi = Zi @ r (instead of

bi = lsb(~i)).

First consider a pseudo-random generator with

stretch n + 1 that, given a seed (N, Z., r), outputs

b., xl, N, r. Using the new result on the hardness of the

inner product bit (due to Levin [18]), it easy to show

that, assuming factoring Blum integers is (1 – R(n))-

secure, this pseudo-random generator is (1 – naR(n))-

secure for some constant a > 0. (We require at least

polynomial security for factoring, i.e. R(n) < ~ for

all constants c.) Now, for any desired stretch fac-

tor s(n) < R(n), consider the pseudo-random gener-

ator that outputs the first s(n) bits bo, b$(n)-l of

the modified X2 mod N generator. By the results of

[11], it follows that this pseudo-random generator is

(1 - nas(n)R(n))-secure, which means that no statis-

tical test for this generator can have achievement ratio

of at least nas(n)R(n).

5.2 Arbitrary Distributions Revisited

We can use a stronger assumption on the hardness of

factoring to dispense with the diagonalization argument

and prove explicit super-polynomial hardness results.

In particular, we can show that the Renyi entropy of a

distribution D, under the matching assumption on the

hardness of factoring, determines a lower bound on the

complexity of any weak learning algorithm that predicts

Boolean formulas and TC~(~, circuits on V. This lower

bound is fairly close to the upper bound of Theorem 5.

Intuitively, a stronger assumption on the hardness

of factoring allows us to claim that a longer, super-

polynomial prefix of the output sequence of the X2 mod

N generator is pseudo-random with respect to all tests

with similarly bounded running time. Because we ig-

379

nore polynomial factors and in general can be much

more “sloppy”, the diagonalization argument is no

longer needed. Once again, we concentrate on the non-

uniform case. The formal development follows.

Theorem 8 Let D be a distribution on {O, I}n with

Renyi entropy log n < Re(’D) < ~. Assume that fac-

toring Blum integers is (1 – n-c2-2RetVJ)-secure for all

constants c > 0, Then for any 1 < g(n) < Re(D) there

exist no weak prediction algorithm for Boolean formu-

las (or TC~(~, circuits) on the distribution D with run-

ning time bounded by 2RetVj–9(nj and success probability
1

++-.

Proof Omitted.

We observe that the proof can be modified to al-

low membership queries; the assumption on the hard-

ness of factoring must be increased to accommodate the

change. Also, tighter bounds can be achieved with a

more accurate analysis.

5.3 Tight Bounds for ACO functions

Perhaps the most interesting consequence of a stronger

assumption on the hardness of factoring is that it al-

lows us to show surprisingly strong hardness results for

the learnability of constant depth Boolean circuits on

the uniform distribution. Let AC~~~, denote the class

of Boolean circuits (over the standard basis) on n vari-

ables with depth bounded by a fixed constant d and size

bounded by some fixed polynomial p(n). Linial, Man-

sour, and Nisan [19] constructed an algorithm that, for

any value of d, learns At7~(~ ~ on the uniform distribution

in time O(nl”g”””) for some constant a. In this section

we prove a mat thing lower bound. Specifically, assum-

ing that factoring is (1 – ~)-hard for some c > 0, we

show that the sample/time complexity of weakly learn-

ing AC~(~l circuits (for all sufficiently large constants

d) is fl(n[”gp”’) for some constant ~ >0 (D depends

on c, but not directly on d).

The main idea behind the argument is that the strong

assumption on the hardness of factoring allows us to use

a shorter seed for the X2 mod N pseudo-random gener-

ator while preserving reasonable security. The smaller

size of the seed allows us to implement the generator

with a ACO1d~(n) circuit, where d depends on the desired

stretch and security of the generator. The formal de-

velopment follows.

Assume that factoring n bit long Blum integers is

(1 – 2-n’)-hard for some (>0. Fix any sufficiently

large constant y and let m = log: n. Then factoring m

bit long Blum integers is (1 – 2– ‘“g’ ‘)-hard. Thus we

can use an m bit long Blum integer and an m bit long

-

quadratic residue as a seed for the generalized X2 mod

N pseudo-random generator described in Section 5.1.

Define the (parameterized) concept class

g“~ = {{i E {O, l}nl~~~Odz~(N,~,r) = 1}

l(N,$,r)CYm,l~k<m}

Except for the size of the seed and the use of inner

product to compute the output bits, g“~ is identical to

Gn .

Lemma 8 There exist a (fixed) polynomial p and a

constant d such that the concept class G“n can be rep-

resented by a class of AC~(~, circuits.

Proofi Omitted.

Recall that y was an arbitrary constant. We can thus

achieve our goal by proving that successful weak predic-

tion of G“. requires more than 2*0g2 n time (and number

of samples).

Lemma 9 Assuming that factoring Blum integers is

(1 – ~)-hard, the concept class ~“n is not weakly pre-

dictable with membership queries on the uniform distri-

bution in time 2’0g2 n.

Proot Omitted.

From Lemmas 8 and 9 we immediately conclude that,

assuming factoring Blum integers is (1 – ~)-hard,

learning AC~~~, circuits on the uniform distribution re-

quires C2(n]ogpd’) time (number of samples).

Theorem 9 Assuming that factoring Blum integers is

(1– ~)-hard, there exist a constant/? such that no pre-

diction with membership queries algorithm weakly pre-

dicts ACOtd~(n) circuits on the uniform distribution in time

o(nlog~’ n) with fewer than f2(n10g@d’) labeled samples.

Thus, in particular, there can be no quasi-polynomial

time algorithm with a polynomial number of samples

that weakly predicts AC~/~, circuits.

Let ACO = Ud,P AC~(~). Then, by applying a

diagonalization-type argument, it is easy to see that

(under the same assumption on the hardness of factor-

ing) there can be no O(nf’O~Y ‘“gn) algorithm to weakly

predict ACO.

6 Additional Remarks

In this paper we showed that predicting Boolean formu-

las and TC&~J circuits on any non-trivial distribution is

as hard as factoring Blum integers, even if membership

queries are allowed. This fact can be combined with

380

some of the prediction with membership queries pre-

serving reductions of [4] to show other representation

classes to be similarly hard. Only the reductions that

preserve example distributions can be used. For exam-

ple, it follows from a reduction in [4] that two-way de-

terministic finite acceptors (2 DFAs) are not predictable

with membership queries on any non-trivial distribu-

tion. This contrasts sharply with one-way DFAs, which

are exactly learnable with membership and equivalence

queries [3], and thus PAC learnable with membership

queries on any distribution.

The technique used in Section 4.2 to generalize the

hardness results from the uniform to arbitrary distribu-

tions is quite general. In particular, it can be used to

extend the results of [16] to all non-trivial distributions.

The results for AC~(~, circuits can presently be gener-

alized to some, but not all non-trivial distributions.

We observe that the lower bounds we prove are

bounds on both the running time and the number of

samples needed for successful prediction. In a way, they

can be interpreted as a tradeoff between the running

time and the number of samples - a prediction algo-

rithm may be able to succeed with a small number of

samples by using an amount of time sufficient to break

the underlying pseudo-random generator (e.g. by fac-

toring large Blum integers).

Finally, the learnability of DNF and CNF formulas

remains open, though the O(nlOg ‘“gn) prediction with

membership queries algorithm for the uniform distri-

bution (see [21]) is “almost” polynomial time. We are

currently attempting to use a combination of our diago-

nalization method and techniques used to prove circuit

lower bounds, such as random restrictions and Hastad’s

switching lemma [13], to extend our results for AC~(~,

circuits to DNF and CNF formulas.

Acknowledgements

I wish to thank Farid Alizadeh, Avrim Blum, Andrew

Goldberg, David Haussler, Michael Kearns, Mike Luby,

Rajeev Motwani, Moni Naor, Madhu Sudan, Umesh

Vazirani, Manfred Warmuth, and Moti Yung for use-

ful comments and conversations. Extra thanks to Mike

Luby for writing an excellent monograph on Pseudo-

randomness [20]. I am grateful to the International

Computer Science Institute, Berkeley, where part of this

work was done.

References

[1]

[2]

W. Alexi, B. Chor, O. Goldreich, and C. Schnorr. RSA and
Rabin functions: certain parts areas hard as the whole. SIAM

J. on Computing, 17:194–209, 1988.

D. Angluin. Lecture notes on the complexity of some prob-

lems in number theory. Technical report, Yale University,

Report No. TR-243, 1982.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

D. Angluin. Learning regular sets from queries and coun-

terex-pies. Information and Computation, 75:87--106,

1987.

D. Angluin and M. Kharitonov. When Won’t Membership

Queries Help? In P70c. of the .Md STO C, pages 444-454.

ACM, 1991.

P. W. Beame, S. A. Cook, and H. J. Hoover. Log depth cir-

cuits for division and related problems. SIAM J. on Com-

puting, 15:994–1003, 1986.

A. Blum. Separating Distribution-Free and Mistake-

Bounded Learning Models over the Boolean Domain In Proc.

oj the 31st FOCS, pages 211–218. IEEE, 1990.

L. Bhun, M. Bhun, and M. Shub. A simple unpre-

dictable pseudo-random number generator. SIAM J. Com-

Put., 15:364-383, 1986.

J. L. Carter and M. N. Wegman. Universal Classes of Hash

Functions. JCSS, 18:143-154, 1979.

A. K. Chandra, L. J. Stockmeyer, U. Vishkin. Constant

depth reducibility. SIAM J. on Computing, 13:423-432,

1984.

M. Furst, J. Jackson, and S. Smith. hnproved learning of

ACO functions. In PTOL oj the Jth COLT, pages 317–.325.

Morgan Kaufmann, 1991.

0. Goldreich, S. Goldwasser, and S. Micali. How to construct

random functions. J. ACM, 33:792–807, 1986.

0. Goldreich and L. Levin. A hard-core predicate for all

one–way functions. In PTOC. oj the 21st STO C, pages 25--32.

ACM, 1989.

J. Hastad. Computational limitations joT small depth cir-

cuits. MIT Press, 1986. Ph.D. thesis.

R. Impagliazzo, L. Levin, and M. Luby. Pseudo-random

Number Generation from Any One-way Function. In Proc.

21st STOC, pages 12-24. ACM, 1989.

M. Kearns and L. Valiant. Cryptographic limitations on

learning Boolean formulae and tide automata. In PTOC.

21st STO C, pages 433–444. ACM, 1989.

M. Kharitonov. Cryptographic Lower Bounds for Learnabil-

ity of Boolean Functions on the Uniform Distribution fn

PYOC. oj the 5th COLT. Morgan Kaufmann, 1992.

W. LeVeque. Fimdamentals of Number Theory. Addison–

Wesley, 1977.

L. Levin. Manuscript.

N. Linial, Y. Mansour, and N. Nisan. Constant depth cir-

cuits, Fourier transform, and learnability y. In P~oc. of the

30th FO CS, pages 574-579. IEEE, 1989.

M. Luby. Pseudo-randomness and Applications. Princeton

University Press, to appear.

Y. Mansour. An O(nlOg 10s”) Learning Algorithm for DNF

under the uniform distribution. fn Proc. oj the 5th CO.LT.

Morgan Kaufmann, 1992.

L. Pitt and M. Warmuth. Prediction-preserving reducibility.

JCSS, 41:430-467,1990.

J. Reif. On threshold circuits and polynomial computation.

In PTOC. oj the 2d IEEE Stmctures, pages 118–123. IEEE,

1987.

R. E. Schapire. The strength of weak learnability. In Proc.

oj the 30th FOGS, pages 28–33. IEEE, 1989.

L. G. Va3iant. A theory of the learnable. C. A CM, 27:11:34–

1142, 1984.

U. V. Vazirani and V. V. Vazirani. Efficient and secure
pseudo-random number generation. In Proc. oj the 25th

FO CS, pages 458-463. IEEE, 1984.

381

