5)

Learning in the Presence of Noise

In order to obtain a clean and simple starting point for a theoretical
study of learning, many unrealistic assumptions were made in defining
the PAC model. One of the most unjustified of these assumptions is that
learning algorithms have access to a noise-free oracle for examples of the
target concept. In reality, we need learning algorithms with at least some
tolerance for the occasional mislabeled example.

In this chapter we investigate a generalization of the PAC model in
which the examples received by the learning algorithm are corrupted
with classification noise. This is random and essentially “white” noise
affecting only the label of each example. (Learning in the presence of this
type of noise implies learning in some slightly more realistic models, and
more adversarial error models have also been examined in the literature;
see the Bibliographic Notes at the end of the chapter.) In this setting
we will see that much of the theory developed so far is preserved even in
the presence of such noise. For instance, all of the classes we have shown
to be efficiently PAC learnable remain so even with a classification noise
rate approaching the information-theoretic barrier of 1/2.

To show this, we will actually introduce another new model, called
learning from statistical queries. This model is a specialization of the
PAC model in which we restrict the learning algorithm to form its hy-
pothesis solely on the basis of estimates of probabilities. We will then



104 Chapter 5

give a theorem stating that any class efficiently learnable from statistical
queries can be efficiently learned in the presence of classification noise.
While we show that conjunctions of literals can be efficiently learned
from statistical queries (and thus in the presence of classification noise),
we leave it to the reader (in the exercises) to verify that all of the other
efficient PAC learning algorithms we have given have efficient statistical
query analogues.

5.1 The Classification Noise Model

In the classification noise model, a PAC learning algorithm will now
be given access to a modified and noisy oracle for examples, denoted
EXly(c,D). Here ¢ € C and D are the target concept and distribu-
tion, and 0 < < 1/2 is a new parameter called the classification
noise rate. This new oracle behaves in the following manner: as with
EX(c,D), arandom input z € X is drawn according to the distribution
D. Then with probability 1 —7, the labeled example (z, ¢(z)) is returned
to the learning algorithm, but with probability 7, the (incorrectly) la-
beled example (z, —c(z)) is returned, where —¢(z) is the complement of
the binary value ¢(z). Despite the classification noise in the examples
received, the goal of the learner remains that of finding a good approx-
imation h to the target concept ¢ with respect to the distribution D.
Thus, on inputs € and é and given access to EXTy(c, D), the learning
algorithm is said to succeed if with probability at least 1 — § it outputs
a hypothesis h satisfying error(h) = Pryepc(z) # h(z)] <e.

Although the criterion for success remains unchanged in the noisy
model, we do need to modify the definition of efficient learning. Note
that if we allow the noise rate 5 to equal 1/2, then PAC learning becomes
impossible in any amount of computation time, because every label seen
by the algorithm is the outcome of an unbiased coin flip, and conveys
no information about the target concept. Similarly, as the noise rate
approaches 1/2, the labels provided by the noisy oracle are providing



Learning in the Presence of Noise 105

less and less information about the target concept. Thus we see there
is a need to allow the learning algorithm more oracle calls and more
computation time as the noise rate approaches 1/2.

We also need to specify what knowledge the learning algorithm has, if
any, about the value of the noise rate 5. For simplicity we will assume that
the learning algorithm is provided with an upper bound 1/2 > 5y > 5
on the noise rate. (This assumption can in fact be removed; see Exercise
5.4.) The new notion of efficiency can then be formalized by allowing the
learning algorithm’s running time to depend on the quantify 1/(1 — 2n,),
which increases as the upper bound 7o approaches 1/2. (Making rigorous
the informal arguments used here to argue that this dependence is needed
is the topic of Exercise 5.5.)

Definition 13 (PAC Learning in the Presence of Classification Noise)
Let C be a concept class and let H be a representation class over X. We
say that C is PAC learnable using H in the presence of classifi-
cation noise if there exists an algorithm L with the following property:
for any concept ¢ € C, any distribution D on X, any 0 <n < 1/2, and
any 0 < e<1,0<éd <1, and no (where n < mo < 1/2), if L is given
access to EX %y (¢, D) and inputs €, 6 and 1o, then with probability at least
1—46, L outputs a hypothesis concept h € H satisfying error(h) < €. This
probability is taken over the randomization in the calls to EXy(c, D),
and any internal randomization of L.

If L runs in time polynomial in n, 1/¢, 1/6 and 1/(1 — 2no) we say
that C 1s efficiently PAC learnable using H in the presence of
classification noise.

Before proceeding further, let us convince ourselves with some con-
crete examples that learning in this apparently more difficult model really
does require some new ideas. Recall that one of the first PAC learning
algorithms we gave in Chapter 1 was for the class of boolean conjunctions
of literals. The algorithm initializes the hypothesis to be the conjunc-
tion of all 2n literals over i, ..., z,, and deletes any literal that appears



106 Chapter 5

negated in a positive example of the target conjunction (the negative
examples received are ignored). The problem with using this same algo-
rithm in the classification noise setting is obvious and fatal. With the
noisy oracle, the algorithm may actually be given a negative example
of the target conjunction as a positively labeled example, resulting in
unwarranted and costly deletions of literals. For instance, suppose that
the target conjunction ¢ contains at least one unnegated literal, say z;.
Then the vector of all 0’s is a negative example of the target. However,
if this single vector has significant weight under D, say weight +, then
there is probability yn that the learning algorithm will receive the vector
of all 0’s as a negatively labeled example from EX7y(c, D), causing the
deletion of all unnegated literals from the hypothesis.

Similarly, consider our algorithm from Chapter 1 for PAC learning
axis-aligned rectangles in the real plane. This algorithm takes a suf-
ficiently large sample of random examples of the target rectangle, and
chooses as its hypothesis the most specific (smallest area) rectangle that
includes all of the positive examples but none of the negative examples.
But such a rectangle may not even exist for a sample from the noisy

oracle EXy (¢, D).

5.2 An Algorithm for Learning
Conjunctions from Statistics

Intuitively, the problem with our conjunctions learning algorithm in the
classification noise setting is that the algorithm will make drastic and irre-
versible changes to the hypothesis on the basis of a single example. In the
noisy setting, where every individual example received from EX 3y (c, D)
is suspect since its label could be the result of an error, it seems natu-
ral to seek algorithms that instead form their hypotheses based on the
properties of large samples, or that learn from statistics.

As an example, consider the following rather different algorithm for



Learning in the Presence of Noise 107

PAC learning boolean conjunctions (still in the original noise-free set-
ting). For each literal z over the boolean input variables zi,...,zn,
denote by po(z) the probability that z is set to 0 in a random instance
drawn according to the distribution D. If po(z) is extremely small, then
we can intuitively “ignore” z, since it is almost always set to 1 (satisfied)
with respect to D. We define pg;(2) to be the probability that a random
instance from D fails to satisfy z, but does satisfy (that is, is a positive
example of) the target conjunction ¢. Note that for any literal appearing
in ¢, po1(z) = 0. If po1(2) is large, then we would like to avoid including z
in our hypothesis conjunction, since there is a reasonable chance of draw-
ing a positive example of ¢ in which z is 0. We say that z is significant
if po(2) > €/8n and harmful if po;(z) > €/8n. Note that since we always
have po1(2) < po(2), any harmful literal is also significant.

We now argue that if h is the conjunction of all the significant literals
that are not harmful, then h has error less than e with respect to ¢
and D. First we consider Pryeplc(a) = 0 A h(a) = 1]. Note that the
event ¢(a) = 0 A h(a) = 1 occurs only when there is some literal z
appearing in ¢ that does not appear in h, and z is set to 0 in a. Since h
contains all the significant literals that are not harmful, and ¢ contains
no harmful literals, any such literal z must not be significant. Then we
have that Pr,ecplc(a) = 0 A h(a) = 1] is at most the probability that
some insignificant literal is 0 in a, which by the union bound is at most
2n(e/8n) = ¢/4. To bound Pr,cp[c(a) = 1AR(a) = 0], we simply observe
that the event ¢(a) = 1 A h(a) = 0 occurs only when there is some literal
z not appearing in ¢ but appearing in h, and z is set to 0 in a. Since h
contains no harmful literals, we have that Pr,cp[c(a) = 1 A h(a) = 0] is
bounded by the probability that some harmful literal is set to 0 in a but
¢(a) = 1, which by the union bound is at most 2n(e/8n) = ¢/4. Thus
error(h) < e/4 + €/4 = €/2.

The above analysis immediately suggests an efficient algorithm for
PAC learning conjunctions (in our original noise-free model). The proba-
bilities po(z) for each literal z can be estimated using EX (¢, D) by draw-
ing a sufficiently large set of examples and computing the fraction of



108 Chapter 5

inputs on which z is set to 0. Similarly, the probabilities po;(z) can be
estimated by drawing a sufficiently large set of examples and computing
the fraction on which z is set to 0 and the label is 1. Note that while
we cannot exactly determine which literals are harmful and which are
significant (since we can only estimate the po(z) and po1(z)), we have
left enough room to maneuver in the preceding analysis that accurate
estimates are sufficient. For instance, it can be verified using Chernoff
bounds (see the Appendix in Chapter 9) that if our algorithm takes a suf-
ficiently large (but still only polynomial in n, 1/¢ and 1/6) sample for its
estimates, and chooses as its hypothesis A the conjunction of all literals
z such that the resulting estimate po(z) for po(z) satifies po(z) > €/8n,
but the estimate po1(z) for po1(z) satifies po1(2) < €/2n, and the sample
size is sufficient to make our estimates po(z) and po;(2z) within an addi-
tive error of €/8n of their true values, then with probability 1 — 4, h will
satisfy error(h) < e.

A nice property of this new algorithm is that it forms its hypothesis
solely on the basis of estimates of a small number of probabilities (namely,
the po(z) and po1(2)). Of course, at this point all we have shown is another
efficient algorithm for PAC learning conjunctions. The feeling that this
algorithm is somehow more robust to classification noise than our original
algorithm is nothing more than an intuition. We now generalize and
formalize the notion of PAC learning solely on the basis of probability
estimates. This is most easily done by introducing yet another model
of learning. We then proceed to verify our intuition by showing that
efficient learning in the new model automatically implies efficient PAC
learning in the presence of classification noise.

5.3 The Statistical Query Learning
Model

Our new learning model can be viewed as placing a restriction on the
way in which a PAC learning algorithm can use the random examples



Learning in the Presence of Noise 109

it receives from the oracle EX(c,D). Let C be a concept class over X.
In the statistical query model, if ¢ € C is the target concept and D is
the target distribution, then we replace the usual PAC oracle EX (¢, D)
with an oracle STAT (¢, D) that accepts statistical queries of the form
(x,7). Here x is a mapping x : X x {0,1} — {0,1} and 0 < 7 < 1.
We think of x as a function that maps a labeled example (z,c(z)) of
the target concept to 0 or 1, indicating either the presence or absence
of some property in (z,c(z)). For instance, in our new algorithm for
PAC learning conjunctions we took a large random sample, and for each
(a,c(a)) in the sample we computed the predicate x,(a, c(a)) that is 1 if
and only if the literal z is 0 in @ but ¢(a) = 0. This predicate corresponds
to the probability po;(z), that is, po1(2) = Preen[x:(a,c(a)) = 1].

In general, for a fixed target concept ¢ € C and distribution D, let us
define

Py = Proep[x(2, c(z)) = 1].

We interpret a statistical query (x,7) as a request for the value P,.
However, on input (x,7) the oracle STAT (¢, D) will not return exactly
P, , but only an approximation. More precisely, the output of STAT (¢, D)
on input query (x, ) is allowed to be any value IE’X satisfying P, — 7 <
Px < P, + 7. Thus, the output of STAT (¢, D) is simply any estimate of
P, that is accurate within additive error 7. We assume that each query

to STAT (¢, D) takes unit time.

We call 7 the tolerance of the statistical query, and the choice of
both x and 7 are left to the learning algorithm (modulo some important
restrictions discussed momentarily). For instance, in our conjunctions ex-
ample, recall that by the analysis of the last section it suffices to estimate
the probabilities po;(2) = P,, to within tolerance 7 = ¢/8n.

At this point, it should be clear that given access to the oracle EX (¢, D),
it is a simple matter to simulate the behavior of the oracle STAT (¢, D) on
a query (x, 7) with probability at least 1—4§. We just draw from EX (¢, D)
a sufficient number of random labeled examples (z,c(z)), and use the
fraction of the examples for which x(z,c(z)) = 1 as our estimate IE’X of



110 Chapter 5

P,. Now by Chernoff bounds, the number of calls to EX (¢, D) required
will be polynomial in 1/7 and log(1/4), and the time required will be
polynomial in the time required to evaluate x, and in 1/7 and log(1/4).
To ensure that efficient algorithms for learning using STAT(¢,D) can
be efficiently simulated using EX (¢, D), we must place some natural re-
strictions on 7 (namely, that it is an inverse polynomial in the learning
problem parameters) and on x (namely, that it can be evaluated in poly-
nomial time). Thus we require that algorithms only ask STAT (¢, D) for
estimates of sufficiently “simple” probabilities, with sufficiently coarse
tolerance. This is done in the following definition, which formalizes the
model of learning from statistical queries. The intuition that algorithms
with access to STAT (¢, D) can be efficiently simulated given access to
EX(c,D) is then formalized in greater detail as Theorem 5.1 below.

Definition 14 (The Statistical Query Model) Let C be a concept class
and let H be a representation class over X. We say that C is efficiently
learnable from statistical queries using H if there exists a learning
algorithm L and polynomials p(-,-,-), q(-,-,) and (-, -, -) with the follow-
ing property: for any ¢ € C, for any distribution D over X, and for any
0<e<1/2, if L is given access to STAT (¢, D) and input €, then

e For every query (x,7) made by L, the predicate x can be evaluated
in time q(1/¢€,n, size(c)), and 1/7 is bounded by r(1/¢,n, size(c)).

o L will halt in time bounded by p(1/¢,n, size(c)).

o L will output a hypothesis h € H that satisfies error(h) < e.

Notice that the confidence parameter § has disappeared from this
definition. Recall that this parameter guarded against the small but
nonzero probability that an extremely unrepresentative sample is drawn
from EX(c,D) in the PAC learning model. Since EX (¢, D) has now been
replaced by the oracle STAT (¢, D), whose behavior is completely deter-
mined modulo the query tolerance 7, there is no need for §. Of course,



Learning in the Presence of Noise 111

we could allow a certain failure probability for the case of randomized
learning algorithms, but choose not to for the sake of simplicity, since we
will only examine deterministic algorithms.

The following theorem verifies that we have defined the statistical
query model in a way that ensures efficient simulation in the PAC model.
Its proof is the subject of Exercise 5.6. Thus, we have found a model that
specializes the PAC model in a way that allows learning algorithms to
estimate probabilities, but to do nothing else.

Theorem 5.1 Let C be a concept class and H be a representation class
over X. Then if C is effictently learnable from statistical queries using

H, C is efficiently PAC learnable using ‘H.

In the following section we will show a much more interesting and
useful result: any class that is efficiently learnable from statistical queries
is in fact efficiently PAC learnable even in the presence of classification
noise. Before this, however, we pause to note that by the analysis of
Section 5.2, we already have our first positive result in the statistical
query model:

Theorem 5.2 The representation class of conjunctions of literals 1s ef-
ficiently learnable from statistical queries.

5.4 Simulating Statistical Queries in the
Presence of Noise

Let us fix the target concept ¢ € C and the distribution D, and suppose
we are given a statistical query (x, 7). We now give an efficient method
for obtaining an accurate estimate of

Py = Proep[x(2, c(z)) = 1]



112 Chapter 5

given access only to the noisy examples oracle EX 7y (c, D). We will then
show how this method can be used to efficiently simulate any statistical
query learning algorithm in the presence of classification noise.

5.4.1 A Nice Decomposition of P,

The key idea behind obtaining the desired expression for P, is to define
a partition of the input space X into two disjoint regions X; and X,
as follows: X; consists of all those points # € X such that x(z,0) #
x(z,1), and X, consists of all those points z € X such that x(z,0) =
x(z,1). Thus, X; is the set of all inputs such that the label “matters”
in determining the value of , and X, is the set of all inputs such that
the label is irrelevant in determining the value of x. Note that X; and

X, are disjoint and X; U X, = X.

Having defined the regions X; and X,, we can now define the induced
distributions on these regions. Thus, we let p; = Prycplz € X;] and
pa = Pryeplz € X,] (note that p; + pp = 1), and we define D; over X;
by letting
Pr.cplz € 5]

4
for any subset S C X;. Thus, D; is just D restricted to X;. Similarly,
we define Dy over X, by letting

Precp, [m € S] =

Pr.cp[z € S]
D2

PrzEDz [m € S] =

for any subset S C X,.

For convenience, let us introduce the shorthand notation PrEX(C,D)[-]
and Prgyn, (. p)[:] to denote probabilities over pairs (z,b) € X x {0,1}
drawn from the subscripting oracle. We will now derive an expression
for P, = Prgx(.p)[x = 1] (we have omitted the arguments z,b to x for
brevity) involving only the quantities

17, P1, PrEX'(’JN(c,Dl)[X = 1], PrEX'éN(c,D)[(X =1) A (z € Xz)].



Learning in the Presence of Noise 113

Looking ahead, we will then show that an accurate guess for 1 can be
made and verified given only the upper bound 7, and that the latter three
probabilities can in fact be estimated from the noisy oracle EX %y (c, D).

To derive the desired expression for P, we may write:

Py = Prgxenlx=1]
= Prgxen|(x =1)A(z € X1)] + Prexenl(x =1) A (z € X3)]

= PrEX(CD)[m c Xl]PrEX(cD [ = ].|13 - Xl]
+Prexen)(x = 1) A (z € X3)]
= piPrexeon)[x =1 + PrEX'éN(c,D)[(X =1)A(zeXy)] (5.1)

where to obtain the final equality we have used the fact that for ¢ € X,,
we may replace the correct label by a noisy label without changing the
probability that x = 1.

Note that since x is always dependent on the label in region X, we
also have:

Prgyr (eonlx =1 = (L=n)Prexp,)lx = 1] + nPrex(p,)[x = 0]
= (1—=n)Prax(p)lx =1]
+n(1 — Prex(ep,)[x = 1])
= 1+ (1 —29)Prgx(p,)lx = 1].

Solving for Prgx(p,)[x = 1] and substituting into Equation 5.1, we
obtain:
PrEX"N(c,Dl)[X =1 -9

Py =p ¢ 1—2n ‘|‘PTEX'5N(C,D)[(X =1)A(z € X3)] (5.2)

As promised, we now show that the probabilities

P, PrEX'éN(c,Dl)[X = 1], PrEX'éN(c,D)[(X =1) A (z € X3)]

appearing in Equation (5.2) can in fact be estimated from the noisy oracle
EX}x(c,D). In a later section we return to the issue of estimating the
noise rate.



114 Chapter 5

First, note that it is easy to estimate p; using only calls to EX Ly (¢, D):
we simply take many noisy examples (z,b) from EX7y(c, D), ignore the
provided label b, and test whether x(z,0) # x(z,1). If so, then z € X},
otherwise z € X,. Thus for a large enough sample, the fraction of the =
falling in X; will be a good estimate for p; by Chernoff bounds. The fact
that the labels are noisy does not bother us, since membership in X is
a property of the input z alone.

Next, PrEX%N(C,Dl)[X = 1] can be estimated from EX7y(c, D). Note
that we do not have direct access to the subscripting oracle, since it is
defined with respect to D; and not D. Instead, we simply sample pairs
(z,b) returned by EX Ty (c, D) and use only those inputs  that fall in X;
(using the membership test x(z,0) # x(z,1)). For such z, we compute
x(z, b) (using the noisy label b given with z) and use the fraction of times
x(z,b) =1 as our estimate.

Finally, note that we can estimate PrEX%N(C,D)[(X =1)A(z € X)]
from EX7y(c, D) because we have a membership test for X5, and this
probability is already defined directly with repsect to the noisy oracle.

5.4.2 Solving for an Estimate of P,

Equation (5.2) has the desired form, being a simple algebraic expression
for P, in terms of n and the probabilities that we have already argued
can be accurately and efficiently estimated from EX7Ty(c, D). Assuming
that we have “sufficiently accurate” estimates for all of the quantities on
the right hand side of Equation (5.2), we can use the estimates to solve
for an accurate estimate of P,.

Of course, in order to use this method to obtain an estimate of P,
that is accurate within the desired additive error 7, we may need to
estimate the probabilities on the right hand side of Equation (5.2) with
an additive accuracy 7’ that is slightly smaller than 7. For instance, for

any A, B € [0,1] and A Be [0,1] that satisfy A — 7' < A< A+1 and



Learning in the Presence of Noise 115

B—1' < B< B+7 for some 7 € [0,1], we have AB — 27" < AB <
AB + 37'. Thus if we are using the product of the estimates A and B to
estimate the product AB within additive error 7, then 7/ = 7/3 suffices.
However, Equation (5.2) is more complex than a single product, and thus
we need to make 7’ even smaller to prevent the accumulation of too much
error when solving for P,. It turns out that the choice ' = 7/27 will
suffices; this comes from the fact that the right hand side of Equation
(5.2) can be multiplied out to obtain a sum of three terms, with each
term being a product of at most three factors. Thus if every estimated
factor has additive error at most 7/27, then each estimated product will
have error at most 3(37/27) = 7/3, and the estimated sum will have
error at most 7, as desired. As we shall now see, however, we need to
guess 1 with even greater accuracy.

5.4.3 Guessing and Verifying the Noise Rate

The main issue that remains unresolved is that when estimating the
right hand side of Equation (5.2) to solve for P, we do not know the
exact value of n, but have only the upper bound 7. This is handled by
simulating the statistical query algorithm (let us denote this algorithm
by L) [1/2A] times, where A € [0, 1] is a quantity in our control that
will be determined by the analysis. The ith time L is simulated (for
1=0,1,2,...,[1/2A]—1), we substitute the guess 7 = iA for  whenever
solving for a probability P, using Equation (5.2). Eventually we will
choose the best of the 1/2A hypotheses output by L on these many
simulations as our final hypothesis.

Note that for some value of 7, the guess 7 = 1A satisfies
n—-A<n<n+A

We would now like to derive conditions on A that will ensure that for
this 7 we have

! < 1 (5.3)
1_2?7 Tmln_l_zﬁ_l_zn Tmln' .




116 Chapter 5

Here 7, will be a quantity smaller than any of the tolerances ™ needed
by L (but still an inverse polynomial in the learning problem parameters).
Like the estimates for the probabilities discussed in the last section, this
will ensure that on this ¢th run of L, our guess 1/(1 — 27) for the factor
1/(1 — 27) in Equation (5.2) will be sufficiently close to let us solve for
P, within the desired 7.

Now we know

1 < 1 < 1 ‘
1-2(n—A) " 1-2 = 1-2(n+A)

Taking the leftmost inequality of this equation, we see that the leftmost
inequality of Equation (5.3) will be satisfied if we have
1 < 1
1-27 ™"=1_2(_A)

Solving for constraints on A gives:

1
1-2+2A< —————

1 _2,’7 - Tmin

or 1
2A < 4 — (1 - 27).

1-2n Tmin
If we set # = 1/(1 — 2n) we obtain
1
AN — —

L — Tmin

1
T
or, if we further define f(z) =1/,

2A < f(z — Tmin) — f(2).

The right hand side of this inequality suggests analysis via the derivative
of f. Now f'(z) = —1/z? and we may write f(Z—Tmin) > f(z)+CoTmin/z>
for some constant ¢o > 0, giving

C0Tmin C0Tmin 2
A< = 1—2n)°.
< 52 5 (1—2n)



Learning in the Presence of Noise 117

An identical analysis gives a similar bound on A for achieving the
rightmost inequality in Equation (5.3). Thus we see that to ensure that
our additive error in guessing the value of the factor 1/(1 — 25) in Equa-
tion (5.2) is smaller than 7y, we should make sure that the “resolution”
A of our successive guesses for 7 is smaller than coTimin/(2(1—27)?). Since
we only have the upper bound 7y, we will instead use the smaller value

A = coTmin/ (2(1 — 2m0)?).

The preceding analysis shows that when A is properly chosen then on
one of the simulations L our guess 7 will be sufficiently close to 1, and on
this run L must output a hypothesis h such that error(h) < e. We must
still give some way of verifying which simulation was the good one. This is
a straightforward matter. Let ho,...,h[1/2a1-1 be the hypotheses output
by L on the [1/2A] simulations. If we define y; = PrEX%N(C,D)[hi(m) +*
b] (this is the probability h; disagrees with the label provided by the
noisy oracle), then v; = (1 — n)error(h;) + n(l — error(h;)) =n + (1 —
2n)error(h;), and v; —v; = (1 — 2n)(error(h;) — error(h;)). This shows
that if we estimate all of the +; to within an additive error of €/(2(1 —27))
(which is easily done, since «; is defined with respect to the noisy oracle)
and choose as our final hypothesis that h; whose associated estimate
4; is smallest, then error(h) < e with high probability. Again, having
only the upper bound 7y we can instead use the smaller additive error of

e/(1 — 2mpo).

5.4.4 Description of the Simulation Algorithm
We are finally ready to give a detailed outline of the overall simulation,
followed by the main result of this chapter.
Algorithm Simulate-SQ(¢, d,70):
® Tmin < 1/(4r(1/€,n, size(c))), where r(1/¢, n, size(c)) is the polyno-

mial bound on the inverse tolerance for all queries of the statistical
query algorithm L.



118 Chapter 5

o A< CoTmin/(2(1 — 2m0)?).
e Fori=0to [1/2A] - 1:
— 1+ A,
— Simulate the statistical query algorithm L with accuracy pa-

rameter € and using 7 as the guessed noise rate. More precisely,
for every statistical query (x,7) made by L:

* Randomly sample from the noisy oracle EX 7%y (c, D) to
compute estimates p, for py = Prgyp)lz € Xi], ¢ for
q= PrEX%N(C,Dl)[X = 1] and 7 for

r="Prgxr_(p)llx =1) A(z € Xs)].

Here X, X, is the partition of X defined by x. These es-
timates should be accurate (with high probability) within
an additive error of 7' = 7/27.

« P, < p1(G—1)/(1—20)+#. This is the estimated solution
of Equation (5.2).

* Return Px to L.

— Let h; be the hypothesis returned by the ith simulation of L.

e Fori=0to [1/2A]—1,let v; = PrEX%N(C,D)[hi(m) # b]. Randomly
sample from EX7y(c, D) to obtain estimates ¥; that are accurate
within additive error €/(2(1 — 2n)), and output the h; with the
smallest ;.

The only details missing from our analysis of this simulation is its
dependence on the confidence parameter §, and of course, a precise bound
on the number of examples from EX 7y (¢, D) required by the simulation.
The handling of § is the standard one used in Section 4.3.6 when proving
the equivalence of weak and strong learning. Namely, in any execution
of Simulate-SQ there are many places in which we need to randomly
sample to accurately estimate some probability, and there is always some
small probability that we fail to get an accurate estimate. If N is the



Learning in the Presence of Noise 119

number of such estimates, we can simply allocate probability of failure
§/N to each and apply the union bound to bound our total probability
of failure, and we can always use the running time of L as a crude bound
on N. Finally, although we have been careful to argue that for every
estimate we can tolerate an additive error that is polynomial in €, T,
and (1 — 27m9) (and thus that a polynomial sample suffices by Chernoff
bounds), we leave it to the reader (Exercise 5.7) to give precise bounds,
and to in fact improve the simulation sample bounds in certain natural
cases by drawing a single initial sample from EX 7y (¢, D) from which all
probabilities can be estimated throughout the simulation.

The statement of our main result follows.

Theorem 5.3 Let C be a concept class and let H be a representation
class over X. Then of C is efficiently learnable from statistical queries
using H, C is efficiently PAC learnable using ‘H wn the presence of clas-
sification noise.

From Theorems 5.2 and 5.3, we have:

Corollary 5.4 The representation class of conjunctions of literals is ef-
ficiently PAC learnable wn the presence of classification noise.

We leave it to the reader in the exercises to verify that the other
classes for which we have provided PAC learning algorithms also have
statistical query algorithms, and thus are learnable in the presence of
classification noise.

5.5 Exercises

5.1. Show that the representation class of decision lists is efficiently
learnable from statistical queries.



120 Chapter 5

5.2. Show that there is a statistical query model analogue to the effi-
cient algorithm given in Section 2.3 for learning conjunctions with few
relevant literals. Show that this statistical query algorithm can be ef-
ficiently simulated in the classification noise model using a number of
calls to EX 7y (c, D) whose dependence on the number of literals size(c)
is polynomial, but whose dependence on the total number of variables n
is only logarithmic.

5.3. Consider the variant of the statistical query model in which the
learning algorithm, in addition to the oracle STAT (¢, D), is also given
access to unlabeled random draws from the target distribution D. Ar-
gue that Theorem 5.3 still holds for this variant, then show that the
concept class of axis-aligned rectangles in R™ can be efficiently learned
in this variant (and thus is efficiently PAC learnable in the presence of
classification noise).

5.4. Show that if there is an efficient algorithm for PAC learning in the
presence of classification noise by an algorithm that is given a noise rate
upper bound 7 (1/2 > 1o > n > 0) and whose running time depends
polynomially on 1/(1 — 21,), then there is an an efficient algorithm that
i1s given no information about the noise rate and whose running time
depends polynomially on 1/(1 — 27).

5.5. Give the weakest conditions you can on a concept class C that imply
that any algorithm for PAC learning C in the presence of classification
noise must have a sample complexity that depends at least linearly on

1/(1 - 2n).
5.6. Prove Theorem 5.1.

5.7. Give the best sample size bounds you can for the simulation of a
statistical query algorithm in the presence of classification noise given in
Section 5.4.4. Now suppose further that the statistical query algorithm
always chooses its queries ¥ from some restricted class Q of functions
from X x {0,1} to {0,1}. Give a modified simulation with improved
sample size bounds that depend on log |Q| (in the case of finite Q) and



Learning in the Presence of Noise 121

VCD(Q).

5.6 Bibliographic Notes

The classification noise variant of the PAC model was introduced by An-
gluin and Laird [10], who proved that boolean conjunctions are efficiently
PAC learnable in the presence of classification noise. Their paper also
contains several useful and general results on learning with noise, as does
the book of Laird [63]. Prior to the introduction of the statistical query
model, algorithms for PAC learning with classification noise were given
by Sakakibara [82] and Kearns and Schapire [61, 85], who examine a
model of learning probabilistic concepts, in which the noise rate can be
regarded as dependent on the instance.

The statistical query model and the theorems given for it in this
chapter are due to Kearns [56], who also establishes that the statistical
query model is strictly weaker than the PAC model, and gives lower
bounds on the number of statistical queries that must be made in terms
of the VC dimension. The paper also examines some apparently less
benign noise models in which the statistical query results given here still
hold. Exercises 5.1, 5.2, 5.3, 5.6 and 5.7 are also from the paper of Kearns.
The relationship between the statistical query model and other models of
robust learning is examined by Decatur [28], and Decatur and Aslam [12]
establish the equivalence of weak and strong learning in the statistical
query model. A recent paper has given a complete characterization of
the number of queries required for learning in the statistical query model

(Blum et al. [18]).

In addition to the classification noise model, several other variants of
the PAC model have been introduced to model errors in the data. These
include PAC learning in the presence of malicious errors (Valiant [93];
Kearns and Li [57]),and a model of errors in which there is noise in the

inputs but not in the labels (Shackelford and Volper [87]); Goldman and



