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The Vapnik-Chervonenkis
Dimension

3.1 When Can Infinite Classes Be
Learned with a Finite Sample?

In this chapter, we consider the following question: How many random
examples does a learning algorithm need to draw before it has sufficient
information to learn an unknown target concept chosen from the concept
class C? We should emphasize that we will temporarily ignore issues
of computational efficiency while studying this question (or equivalently,
we assume that the learning algorithm has infinite computing power to
process the finite random sample it has drawn). We first note that the
results of the previous chapter can be used to give such a bound in the
case that C is a concept class of finite cardinality. If the learning algorithm
simply draws a random sample of O((1/¢)log(|C|/d)) examples, and finds
any h € C consistent with these examples (say, by exhaustive search),
then Theorem 2.2 guarantees that h will meet the PAC model criteria.
Notice that this bound is not meaningful if C has infinite cardinality.
Are there any non-trivial infinite concept classes that are learnable from
a finite sample?
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Actually, our PAC learning algorithm for axis-aligned rectangles in
the Euclidean plane given in Section 1.1 is an example of such a class.
In the analysis of that PAC learning algorithm, we made critical use of
the fact that axis-aligned rectangles have simple boundaries: the target
rectangle is always completely specified by four real numbers that indicate
the locations of the four bounding edges, and this allowed us to partition
the error of the tightest-fit hypothesis into four simple rectilinear regions.
It is tempting to say that the “complexity” of this concept class is four,
because the boundary of any concept in the class can be described by
four real numbers.

In this chapter, we are interested in a general measure of complexity
for concept classes of infinite cardinality. We would like this measure
to play the same role in the sample complexity of PAC learning infinite
classes that the quantity log |C| (which we saw in Chapter 2 was closely
related to the size of representations) plays in the sample complexity
of PAC learning finite classes. We will define a purely combinatorial
measure of concept class complexity known as the Vapnik-Chervonenkus
dimension, a measure that assigns to each concept class C a single number
that characterizes the sample size needed to PAC learn C.

3.2 The Vapnik-Chervonenkis Dimension

For the remainder of this chapter, C will be a concept class over instance
space X, and both C and X may be infinite. The first thing we will need
1s a way to discuss the behavior of C when attention is restricted to a
finite set of points S C X.

Definition 7 For any concept class C over X, and any S C X,

IIe(S) ={cN S:ceC}.
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Fquivalently, if S = {z1,...,&m} then we can think of Il¢(S) as the set
of vectors Il¢(S) C {0,1}™ defined by

IIe(S) = {(c(z1), ..., c(zm)) : c € C}.

Thus, II¢(S) is the set of all the behaviors or dichotomies on S that
are induced or realized by C. We will use the descriptions of Il¢(S) as
a collection of subsets of S and as a set of vectors interchangeably.

Definition 8 IfII¢(S) = {0,1}™ (where m = |S|), then we say that S
1s shattered by C. Thus, S s shattered by C if C realizes all possible
dichotomzes of S.

Now we are ready for our key definition.

Definition 9 The Vapnik-Chervonenkis (VC) dimension of C, de-
noted as VCD(C), is the cardinality d of the largest set S shattered by C.
If arbitrarily large finite sets can be shattered by C, then VCD(C) = oo.

3.3 Examples of the VC Dimension

Let us consider a few natural geometric concept classes, and informally
calculate their VC dimension. It is important to emphasize the nature of
the existential and universal quantifiers in the definition of VC dimension:
in order to show that the VC dimension of a class is at least d, we must
simply find some shattered set of size d. In order to show that the VC
dimension is at most d, we must show that no set of size d+1 is shattered.
For this reason, proving upper bounds on the VC dimension is usually
considerably more difficult than proving lower bounds. The following
examples are not meant to be precise proofs of the stated bounds on
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Figure 3.1: A dichotomy unrealizable by wntervals.

the VC dimension, but are simply illustrative exercises to provide some
practice thinking about the VC dimension.

Intervals of the real line. For this concept class, any set of two
points can be shattered, so the VC Dimension is at least two, but no
set of three points can be shattered: label the three points as shown in
Figure 3.1, a labeling which cannot be induced by any interval. Thus the
VC dimension for this class is two.

Linear halfspaces in the plane. For this concept class, any three
points that are not collinear can be shattered. Figure 3.2(a) shows how
one dichotomy out of the possible 8 dichotomies can be realized by a
halfspace; the reader can easily verify that the remaining 7 dichotomies
can be realized by halfspaces. To see that no set of four points can
be shattered, we consider two cases. In the first case (shown in Figure
3.2(b)), all four points lie on the convex hull defined by the four points. In
this case, if we label one “diagonal” pair positive and the other “diagonal”
pair negative as shown in Figure 3.2(b), no halfspace can induce this
labeling. In the second case (shown in Figure 3.2(c)), three of the four
points define the convex hull of the four points, and if we label the interior
point negative and the hull points positive, again no halfspace can induce
the dichotomy. Thus the VC dimension here is three. In general, for
halfspaces in ¢, the VC dimension is d + 1.

Axis-aligned rectangles in the plane. For this concept class, we
can shatter the four points shown in Figure 3.3(a), where we have again
indicated how a single dichotomy can be realized and left the remainder
to the reader. However, not all sets of four points can be shattered, as
indicated by the unrealizable dichotomy shown in Figure 3.3(b). Still, the
existence of a single shattered set of size four is sufficient to lower bound
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Figure 3.2: (a) A dichotomy and its realization by a halfspace, with the
shaded region indicating the positive side. (b) and (c) Dichotomies unre-
alizable by halfspaces.
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Figure 3.3: (a) A dichotomy and its realization by an awis-aligned rect-
angle. (b) and (c) Dichotomies unrealizable by azis-aligned rectangles.

the VC dimension. Now for any set of five points in the plane, there
must be some point that is neither the extreme left, right, top or bottom
point of the five (see Figure 3.3(c)). If we label this non-extremal point
negative and the remaining four extremal point positive, no rectangle can
realize the dichotomy. Thus the VC dimension is four.
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(a) +

Figure 3.4: (a) Realizing a dichotomy with a polygon when there are fewer
positive labels. (b) When there are fewer negative labels.

Convex polygons in the plane. For convex d-gons in the plane,
the VC dimension i1s 2d 4+ 1. For the lower bound, we can induce any
labeling of any 2d 4+ 1 points on a circle using a d-gon as follows: if there
are more negative labels than positive labels, use the positive points as
the vertices as shown in Figure 3.4(a). Otherwise, use tangents to the
negative points as edges as shown in Figure 3.4(b). For the upper bound,
it can be shown that choosing the points to lie on a circle does in fact
maximize the number of points that can be shattered, and we can force
d + 1 sides using 2d + 2 points on a circle by alternating positive and
negative labels.

3.4 A Polynomial Bound on |II¢(S)|

Definition 10 For any natural number m we define

IIe(m) = max{|Il¢(S)| : |S| = m}.
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The function Il¢(m) can be thought of as a measure of the complexity
of C: the faster this function grows, the more behaviors on sets of m
points that can be realized by C as m increases. Now clearly, if C does
not have finite VC dimension, then Il¢(m) = 2™ for all m since we can
shatter arbitrarily large finite sets. In this section, we prove a surprising
and beautiful result, namely that despite the fact that we might naively
expect Il¢(m) to grow as rapidly as an exponential function of m, it is
actually bounded by a polynomial in m of degree d, where d is the VC
dimension of C. In other words, depending on whether the VC dimension
is finite or infinite, the function Il¢(m) is either eventually polynomial or
forever exponential. For the more interesting and typical case of finite
VC dimension, we shall eventually translate the polynomial upper bound
on II¢(m) into an upper bound on the sample complexity of PAC learning
that is linear in d.

We begin by proving that Il¢(m) is bounded by the function ®4(m)
defined below. We then show a polynomial bound on ®4(m).

Definition 11 For any natural numbers m and d, the function ®4(m)
1s defined inductively by

<I>d(m) = <I>d(m — 1) + <I>d_1(m — 1)

with initial conditions ®4(0) = ®o(m) = 1.

Lemma 3.1 If VCD(C) = d, then for any m, ll¢(m) < &4(m).

Proof: By induction on both d and m. For the base cases, the lemma
is easily established when d = 0 and m is arbitrary, and when m = 0
and d is arbitrary. We assume for induction that for all m/, d’ such that
m' < m and d < d and at least one of the two inequalities is strict, we
have Il¢(m') < ®4(m'). We now show that this inductive assumption
establishes the desired statement for d and m.
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Given any set S of size m, let € S be a distinguished point. Let us
first compute |II¢(S — {z})|. This is easy since by induction (note that
S — {z} is a set of size m — 1) we have |II¢(S — {z})| < ®4(m — 1).

The difference between I1¢(S) and I (S —{z}) is that pairs of distinct
sets in II¢(S) that differ only on their labeling of z are identified (that
is, merged) in II¢(S — {z}). Thus let us define

C'={cele(S):z¢c,cU{z} €Ile(9)}
Then |C'| counts the number of pairs of sets in II¢(S) that are collapsed
to a single representative in Il¢(S — {z}). Note that C' = Il¢/(S — {z})
because C' consists only of subsets of S — {z}. This yields the simple

equality
e (5)] = [He(S = {=})| + e/ (S — {=})].

We now show that VCD(C') < d — 1. To see this, let S’ C S — {=z}
be shattered by C’. Then S’ U {z} is shattered by C. Thus we must
have |S’| < d — 1. Now by induction we have |C'| = |¢/(S — {z})] <
<I>d_1(m — 1)

Our total count is thus bounded by ®4(m—1)+®4_1(m—1) = ®4(m),
as desired. [((Lemma 3.1)

Lemma 3.2 &4(m) =%, (m)

1

Proof: By induction; the base cases are easy to check. For the induc-
tion step, we have:

<I>d(m) = <I>d(m — 1) + <I>d_1(m — 1)

SECO) D)

2 2=0 2

-2l ()]
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where the second equality is by induction and we define (m__ll) = 0 for

the third equality. [(Lemma 3.2)

Now for m < d, ®4(m) = 2™. For m > d, since 0 < d/m < 1, we may
write:

'S ()<L @ () <E@(F) =0 <

=0 =0 =0

d
Dividing both sides by (%) yields

wum) =3 (7 ) < (%) = 0t

which is polynomial in m for fixed d, giving us the promised polynomial
bound for the case m > d.

3.5 A Polynomial Bound on the Sample
Size for PAC Learning

3.5.1 The Importance of e-Nets

Let us now fix the target concept ¢ € C, and define the class of error
regions with respect to ¢ and C by A(c) = {cAc : ¢ € C}. It is easy
to show that VCD(C) = VCD(A(c)). To see this, for any set S we can
map each element ¢’ € II¢(S) to c'A(cN S) € Ila(g)(S). Since this is a
bijective mapping of Il¢(S) to IIa()(S), Ha()(S)| = [He(S)|. Since this
holds for any set S, VCD(C) = VCD(A(c)) follows.

We may further refine the definition of A(c) to consider only those
error regions with weight at least € under the fixed target distribution D.
Thus, let Ac(c) = {r € A(c) : Pryep|z € 7] > €}. We can now make the
following important definition:
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Definition 12 For any € > 0, we say that a set S is an e-net for A(c)
if every region in A(c) ts “hit” by a point in S, that is, if for every
r € A(c) we have SN £ 0.

An enet for A(c) is thus a set that hits all of the e-heavy regions of
A(c). As an example, suppose X is the closed interval [0, 1] and let D be
the uniform density on X. Suppose that C consists of all closed intervals
on [0,1] as well as the empty set (), and that the target concept ¢ = 0.
Then A(c) is again the set of all closed intervals on [0, 1]. For any interval
I under the uniform density, Prycp[z € I] is just the length of I. Any
interval whose probability is greater than e will have length greater than

€, so the set of all points ke, for natural numbers 1 < k < [1/¢], is an
e-net for A(c).

The notion of e-nets has actually been implicit in some of our earlier
analyses, in particular those of Occam’s Razor in Chapter 2. The im-
portant property of e-nets is that if the sample S drawn by a learning
algorithm forms an e-net for A(c), and the learning algorithm outputs
a hypothesis h € C that is consistent with S, then this hypothesis must
have error less than e: since cAh € A(c) was not hit by S (otherwise
h would not be consistent with S), and S is an e-net for A(c), we must

have cAh & A(c) and therefore error(h) < e.

Thus if we can bound the probability that the random sample S fails
to form an e-net for A(c), then we have bounded the probability that
a hypothesis consistent with S has error greater than e. For the case
of finite C, the analysis of Occam’s Razor obtained such a bound by a
simple counting argument that we sketch again here in our new notation:
for any fixed error region ¢cAh € A¢(c), the probability that we fail to hit
c¢Ah in m random examples is at most (1 — €)™. Thus the probability
that we fail to hit some cAh € A(c) is bounded above by |A(c)|(1— €)™,
which in turn is bounded by |C|(1 — €)™.

Alternatively, we can carry out the above analysis replacing |C| by

®,4(|X|). This follows immediately from the fact that C = II¢(X) and
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Lemma 3.1. This gives us a bound of ®4(]|X|)(1 — €)™ on the probability
of failing to draw an e-net for A(c). However, this does not represent any
progress over the state of affairs in which we began this chapter, since
if X is infinite then ®4(]|X|) is infinite as well. Ideally, we would like to
carry out a similar analysis that instead of considering the entire domain
X considers only the small random subset S observed by the learning
algorithm.

3.5.2 A Small e-Net from Random Sampling

We now show that if we draw a small set of examples from the oracle
EX(c,D), then they form an e-net with high probability. The impor-
tant property is that the size of the required sample depends on the VC
dimension d and € and §, but is independent of |C| and |X|. From the
preceding discussion, this will immediately lead to an upper bound on
the number of examples required for PAC learning that depends only on
these same quantities.

Suppose that we draw a multiset S; of m random examples from D,
and let A denote the event that the elements of S; fail to form an e-net
for A(c). Clearly, our goal is to upper bound the probability of event
A. If event A occurs, then by the definition of e-nets, S; misses some
region 7 € Ac(c). Let us fix this missed region 7, and suppose we now
draw an additional multiset Sy of m random examples from D. Since
each element of Sy has probability at least € of hitting r, if m = O(1/¢)
the probability S, hits r at least em/2 times is at least 1/2 by Markov’s
inequality (see the Appendix in Chapter 9).

If we let B be the combined event over the random draws of 5; and
Sy that A occurs on the draw of S; (so S; is not an e-net) and S, has
at least em/2 hits in a region of A.(c) that is missed by S;, then we
have argued that Pr[B|A] > 1/2. Since the definition of event B already
requires that event A occurs on S;, we also have Pr[B] = Pr[B|A|Pr[4],
so 2Pr[B] > Pr[A].
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Thus, we can upper bound the probability of event A by upper bound-
ing the probability of event B. The principal advantage of event B over
event A for the purposes of our analysis can be described as follows.
To directly analyze the probability of event A, we must consider all re-
gions of the uncountably infinite class A.(c) that S; might miss. To
analyze the probability of event B, we need only consider the regions of
HAE(C)(Sl U S2). This is because the occurrence of event B is equivalent
to saying that there is some r € IIa,(¢)(S1 U S2) such that |#| > em/2 and
rN 51 = 0

To bound the probability that such an r exists, rather than drawing
S; at random and then drawing S; at random, we can instead first draw
a multiset S of 2m instances at random, and then randomly divide S
into S; and S5. The resulting distribution of S; and S5 is the same in
both experiments, since each draw from D is independent and identically
distributed. Now once S is drawn and fixed (but before it is divided ran-
domly into S; and S;), we may also fix a region = € IIa )(S) satisfying
|r| > em /2. For this fixed S and fixed », we now analyze the probability
(with respect only to the random partitioning of S into S; and S,) that
rNS; = 0. We will then obtain a bound on the probability of event B
by summing over all possible fixed » € Il4,(¢)(S) and applying the union
bound.

Our problem is now reduced to the following simple combinatorial
experiment: we have 2m balls (the multiset S), each colored red or blue,
with exactly £ > em/2 red balls (these are the instances of S that fall in
r). We divide these balls randomly into two groups of equal size S; and
Sy, and we are interested in bounding the probability that all £ of the
red balls fall in Sy (that is, the probability that » N S; = 0).

Equivalently, we can first divide 2m uncolored balls into S; and S,
and then randomly choose £ of the balls to be marked red, the rest being
marked blue. Then the probability that all £ of the red marks fall on
balls S, is exactly (T) / (Zm) — this is simply the number of ways we can

£
choose the £ red marks in S, divided by the number of ways the £ red
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marks can be chosen without constraints. But (7)/(27) < 1/2%. This is
because
(7) _

Thus, for any fixed S and r € Ila,(¢)(S) satisfying |r| > em/2, the
probability that the random partitioning of S results in r NS} = 0 is
at most 27°™/2. The probability that this occurs for some r € A, ) (S)
satisfying |r| > em/2 (and thus Pr[B]) is at most

m

a(S)I27% < Ha@(S)[27% < [Me(S))27F

2em)d2_%
¥ :
Finally, Pr[A] < 2Pr[B] < 2(2em/d)?27°™/2, which is less than & for

1 1 d 1
m:O(—log——l——log—).
€ 6 € €

< ®4(2m)2° % < (

We have proved the main result of this chapter:

Theorem 3.3 Let C be any concept class of VC dimension d. Let L
be any algorithm that takes as input a set S of m labeled ezamples of a
concept in C, and produces as output a concept h € C that is consistent
with S. Then L is a PAC learning algorithm for C prouvided it is given a
random sample of m examples from EX (¢, D), where m obeys

1 1 d 1
cho ;10g3+210g;

for some constant ¢y > 0.

Recall that in Chapter 1, we saw that for computational reasons there
may sometimes be a great advantage in using a hypothesis class ‘H that
1s more powerful than the class C from which the target is chosen. The
reader can verify that the same proof used to establish Theorem 3.3 can
be used to prove the following analogue:
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Theorem 3.4 Let C be any concept class. Let H be any representation
class of VC dimension d. Let L be any algorithm that takes as input a
set S of m labeled examples of a concept in C, and produces as output a
concept h € ‘H that is consistent with S. Then L is a PAC learning algo-
rithm for C using H provided it is given a random sample of m ezamples

from EX(c,D), where m obeys

€

1 1 d 1
m > ¢y | —log = + —log
€ d €
for some constant ¢y > 0.

Thus, to obtain an algorithm for PAC learning C using H, we take
a number of examples on the order of the VC dimension of H (which is
at least as large as the VC dimension of C if # O C). This shows that
while we may reduce our computation time by choosing a more powerful
hypothesis representation, we may also increase the number of examples
required.

3.6 Sample Size Lower Bounds

We now show that the upper bound on the sample complexity of PAC
learning given by Theorem 3.3 is tight within a factor of O(log1/€) (ig-
noring the dependence on 4). First we show a lower bound of Q(d) on
the number of examples required for PAC learning using a fairly simple
argument, then we present a refined argument that improves the bound

to Q(d/e).

Theorem 3.5 Any algorithm for PAC learning a concept class of Vapnik-
Chervonenkis dimension d must use )(d/e) examples in the worst case.

Proof: Consider a concept class C such that VCD(C) = d. Let S =

{z1,...,z4} be shattered by C. To show a lower bound, we construct a
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particular distribution that forces any PAC learning algorithm to take
many examples. Thus, let D give probability 1/d to each point in S, and
probability 0 to points not in S. For this distribution, we can assume
without loss of generality that C = II¢(S) (that is, X = S), so C is a
finite class and |C| = 2%.

Note that we have arranged things so that for all of the 2¢ possible
binary labelings of the points in S, there is exactly one concept in C that
induces this labeling. Thus, choosing the target concept ¢ randomly from
C is equivalent to flipping a fair coin d times to determine the labeling
induced by c on S.

Now let L be any PAC learning algorithm for C. Set the error pa-
rameter € < 1/8, and consider running L when the target concept ¢ € C
is chosen randomly and the input distribution is D. Suppose that after
drawing m < d examples from EX(¢,D), L has drawn m' < m differ-
ent instances; without loss of generality, let these be z;,...,#,,;. Then
from the above observations, it is clear that the problem of predicting the
correct label of any unseen instance z; for j > m' is equivalent to pre-
dicting the outcome of a fair coin, since each label of ¢ on S is determined
by an independent coin flip. Thus the expected error (over the random
choice of ¢ and the sample of points) of L’s hypothesis is (d — m')/2d,
and by Markov’s inequality (see the Appendix in Chapter 9) is at least
(d — m')/4d with probability at least 1/2. For m = d/2 we obtain that
the error of L’s hypothesis is at least 1/8 with probability at least 1/2
(over the random choice of ¢ and the sample). Since this shows that L
must fail when ¢ is chosen randomly, there must certainly be some fixed
target concept on which L fails, thus giving the Q(d) sample complexity
lower bound.

To refine this argument to get a lower bound that incorporates €, we
simply scale the above coin flipping construction to a region of the distri-
bution that is small but still too large to be “ignored” by the algorithm.
Thus, we modify D to let the distinguished instance z; have probability
1 — 8¢ under D (we are essentially “giving” this instance along with its
correct label to L), and let z,,..., 24 each have probability 8¢/(d — 1)
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under D (this is the coin flipping region). Now by simply scaling our
previous calculation to the coin flipping region, the expected error of L
after seeing at most d/2 different instances is at least (1/8)8¢ = € with
probability at least 1/2. But it is not difficult to show that now draw-
ing d/2 different points requires }(d/e) examples, because our problem
is reduced to obtaining d/2 “successes” in independent trials, each with
probability of success only 4e. [O(Theorem 3.5)

3.7 An Application to Neural Networks

We conclude this chapter by giving a useful general lemma that bounds
VCD(C) when each concept in the class C is actually a composition of
simpler concepts. Such classes arise frequently — for instance, a DNF
formulae is simply a (very constrained) composition of boolean conjunc-
tions (the constraint being that we can only compute disjunctions of
conjunctions). After giving this lemma, we then apply it to obtain upper
bounds on the sample size required for PAC learning neural networks.

To formalize a general notion of concept composition, let G be a
layered directed acyclic graph. By this we mean that the nodes of G
can be partitioned into layers, and the directed edges of G go only from a
node at layer £ to a node at layer £+ 1. We let n be the number of nodes
at layer 0, and we assume that all of these have indegree 0. We think of
these n layer 0 nodes as being the inputs to the graph. We also assume
that there is only a single node of outdegree 0 at the highest level of the
graph, and we think of this node as being the output node of the graph.
All internal (that is, non-input) nodes have the same indegree r, and we
let s denote the number of internal nodes. Figure 3.5 shows an example
of such a layered graph with n =8, s = 8 and » = 3.

Now let C be a concept class over r-dimensional Euclidean space R”.
Suppose we take such a layered graph G, and we label each internal
(that is, non-input) node N; with a concept ¢; € C. Then such a labeled
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Figure 3.5: A layered directed acyclic graph.

graph represents a concept over n-dimensional Euclidean space R in
the obvious way: if we label each of the n input nodes at layer 0 with
a real number, then starting with layer 1 we can compute the value at
each node N; by applying the concept c¢; labeling node N; to the values
computed at the nodes feeding N;. (Note that although concepts in C are
defined over R", the input values feeding nodes at level 2 and higher will
actually only be from {0,1}".) The output of the entire labeled graph is
the binary value computed at the output node. We will call the class of
all concepts over R” that can be obtained by labeling G with concepts
from C the G-composition of C, which we denote Cq.

Theorem 3.6 Let G be a layered directed acyclic graph with n input
nodes and s > 2 internal nodes, each of indegree r. Let C be a concept
class over X" of VC dimension d, and let Cg be the G-composition of C.
Then VCD(Cq) < 2dslog(es).

Proof: The idea is to first bound the function Il¢,(m). Let us fix any
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set S of m input vectors Z1,...,Z, € RN” to the graph G (thus, each Z;
determines a complete setting of the n input nodes of G). For this fixed
input set S, if we now also label each node in G with a concept from
C, then for each #; we have completely determined the binary values
that will be computed at every node of G when the input is Z;. Let
us call the collection of all the values computed at each node, for each
z; € S, a computation of G on S. Thus, a computation can be represented
by labeling each internal node with the vector in {0,1}™ of the values
computed at that node on the m vectorsin S. Then the set of all possible
computations of G on S is obtained by ranging over all possible choices
of labels from C for the nodes of G. Note that two computations of G on
S differ if and only if the value computed at some node on some input
from S differs in the two computations. Clearly, |[II¢,(S)| is bounded
by the total number of possible computations of G on S, which we shall
denote Te,(S).

To bound T¢,(S5), let G' be the subgraph obtained by removing the
output node N, from G. Let TcG,(S) denote the total number of com-
putations of G’ on S. Each fixed computation of G’ can be extended to
at most II¢(m) computations of G, because fixing the computation of G’
determines for each 1 < ¢ < m the input y; € {0,1}" that is fed to N,
when &; is fed to G, and at most Il¢(m) labelings of yi,...,¥m can be
obtained at N, by varying the choice of concept from C placed at N,.
Thus we obtain that for any S, Te,(S) < Te,,(S) x Il¢(m), and a simple
inductive argument establishes

My (5)] < Teo(S) < (e(m)) < ()

where the second inequality comes from the polynomial bound on the
II¢(m) given in Section 3.4. Since S was arbitrary, this bound in fact

holds for Il¢,(m).

Thus in order for Cg to shatter m points, the inequality (em/d)% > 2™
must hold. Conversely, if (em/d)% < 2™ for some m, then m is an upper
bound on VCD(Cg). It is easy to verify that this latter inequality holds
for m = 2dslog(es) provided s > 2. [(O(Theorem 3.6)
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To apply Theorem 3.6 to the problem of PAC learning neural net-
works, we simply let the function at each node in the graph G be a
linear threshold function. If the indegree is r, such a function is de-
fined by real weights wy,...,w, € R and a threshold ® € ®. On inputs
z1,...,2, € N the function outputs 1 if }7_; w;z; > O, and outputs 0
otherwise. We call G the underlying architecture of the neural network.

Now as we mentioned in Section 3.3, it is known that the VC dimen-
sion of the class of linear threshold on r inputs is » + 1. By Theorem 3.6
we find that the Vapnik-Chervonenkis of the class of neural networks
with architecture G is at most 2(rs + s)log(es), and combined with The-
orem 3.3, we obtain:

Theorem 3.7 Let G be any directed acyclic graph, and let Cg be the class
of neural networks on an architecture G with indegree v and s internal
nodes. Then the number of examples required to learn Cg s

o) (llog ! + (rs + )log s log 1) .
€ ) € €

3.8 Exercises

3.1. Compute the VC dimension of the class of boolean conjunctions of
literals over {0,1}".

3.2. Consider the concept class over the Euclidean plane R? consisting
of the interior regions of circles; thus, the positive examples of each con-
cept form a disk in the plane. Compute the VC dimension of this class.
Compute the VC dimension of the class of interiors of triangles in the
plane.

3.3. Show that there is no 1l-decision list over {0,1}" computing the
exclusive-or function z; @ z. Then show that the VC dimension of



68 Chapter 3

1-decision lists over {0,1}" is ©(n), and that the VC dimension of k-
decision lists is @(n*). Hint: show that 1-decision lists over {0,1}" com-
pute linearly separable functions (halfspaces). You may use the fact that
the VC dimension of halfspaces over R™ is linear in mn.

3.4. Let P;j be the class of concepts over R¢ defined by convex polytopes
with k sides; thus, each the positive examples of each concept in P, are
defined by the convex intersection of k halfspaces in R¢. Give the best
upper and lower bounds that you can on VCD(Pyx). You may use the
fact that the VC dimension of halfspaces over R is linear in d.

3.5. Let C be any concept class of VC dimension d over X, and let D
be any distribution over X. Suppose we are given access to a source of
random (unlabeled) instances drawn according to D, and also access to
an oracle that for any labeled sample of points will return “Yes” if there
is a concept in C that is consistent with the labeled sample, and will
return “No” otherwise. Describe an algorithm that on input any finite
set of instances S C X and any €,4 > 0 will output either the answer
“Yes, S in an e-net for C with respect to D”, or the answer “No, S is
not an €/4-net for C with respect to D”. Moreover, the algorithm must
give a correct answer with probability at least 1 —§. The algorithm need
not be efficient. (The quantity €/4 in the “No” condition can in fact be
replaced by ae for any fixed constant a < 1, giving an arbitrarily refined
test.)

3.6. Prove that the bound of ®4(m) on Il¢(m) is tight: that is, for any
concept class C of VC dimension d and any m, there exists a set S of m

points such that |II¢(S)| = ®4(m).

3.7. In this exercise we consider the two-oracle model of PAC learning
defined in Exercise 1.3 of Chapter 1. We say that a concept class C is
PAC learnable from positive examples alone if it is PAC learnable
by an algorithm that only draws from the oracle EX (¢, D) when learning
target concept ¢ € C (the hypothesis must still meet the two-sided error
criterion). We have already seen in Chapter 1 that boolean conjunctions
are efficiently PAC learnable from positive examples alone. This exercise
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ignores computational considerations, and concentrates on the number
of examples required for learning from positive examples alone.

We say that a subclass C' C C has unique negative examples if
for every ¢ € C’, there is an instance z. € X such that z. & ¢ but z. € ¢
for every other ¢’ € C'. We define the unique negative dimension of
the class C, UND(C), to be the cardinality of the largest subclass C' that

has unique negative examples.

Prove that any algorithm learning C from positive examples alone
(regardless of computation time or the hypothesis class used) requires

Q(UND(C)/e¢) positive examples.

Then prove that O(UND(C)/¢€) positive examples are sufficient for
learning from positive examples alone by the following steps. Consider
the algorithm that takes a sample S of positive examples of the target
concept and returns the hypothesis

h = min(S) = ﬂ c.

c

Note that A may not be contained in C, and also that this algorithm will
never err on a negative example of the target concept.

First show that if on random samples S of size d/e (where d =
UND(C)) from EX(c,D;}), the expected error of ming(.S) with respect to
D} exceeds €, then there must exist a set S* C ¢ of size d/e + 1 with the
property that for a fraction at least € of the z € S*, # ¢ mine(S* — {z}).
Then show that this implies that UND(C) > d, a contradiction.

Thus, ®( UND(C)/€) positive examples are necessary and sufficient for
learning from positive examples alone, and the unique negative dimension
plays a role analogous to the Vapnik-Chervonenkis dimension for this
model of learning.
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3.9 Bibliographic Notes

The classic paper on the VC dimension, and the one in which the main
elements of the proof of Theorem 3.3 are first introduced, is by Vapnik
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work of Blumer, Ehrenfeucht, Haussler and Warmuth [22]. Vapnik has
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The VC dimension and its attendant theorems have been influential
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nities. The calculation of the VC dimension of neural networks is due to
Baum and Haussler [13], and Abu-Mostafa [1] and Tesauro and Cohn [89]
examine VC dimension issues from a neural network perspective. Haus-
sler [45] examines the VC dimension as a form of inductive bias from an
artificial intelligence viewpoint.

The value of the VC dimension as a measure of the sample complex-
ity of learning transcends the PAC model; many authors have shown
that the VC dimension provides upper or lower bounds on the resources
required for learning in many models. These include on-line models of
learning (Haussler, Littlestone and Warmuth [51]; Maass and Turén [69];
Littlestone [66]), models of query learning (Maass and Turadn [69]); and
many others.

The VC dimension has also been generalized to give combinatorial
complexity measures that characterize the sample complexity of learning
in various extensions of the PAC model. Perhaps the most general work
along these lines in the computational learning theory literature has been
undertaken by Haussler [48], who draws on work in statistics, notably the
work of Pollard [74] and of Dudley [31]. Haussler’s general framework is
examined carefully in the context of learning probabilistic concept by
Kearns and Schapire [61], who prove that a certain generalization of the
VC dimension provides a lower bound on sample size for learning in this
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model, and by Alon et al. [4], who give an upper bound.

The VC dimension and its generalizations are only one of the many
ways that computational learning theory and statistics attempt to quan-
tify the behavior of learning curves, that is, the error of the hypothesis
as a function of the number of examples seen. For instance, among the
many alternative methods of analysis are theories based on tools from
information theory and statistical physics [50, 86].

The Q(d/¢) sample size lower bound is due to Ehrenfeucht et al. [33],
who also give the solution to Exercise 3.3. Exercise 3.7 is due to Gereb-

Graus [39].



