
3The Vapnik-ChervonenkisDimension3.1 When Can In�nite Classes BeLearned with a Finite Sample?In this chapter, we consider the following question: How many randomexamples does a learning algorithm need to draw before it has su�cientinformation to learn an unknown target concept chosen from the conceptclass C? We should emphasize that we will temporarily ignore issuesof computational e�ciency while studying this question (or equivalently,we assume that the learning algorithm has in�nite computing power toprocess the �nite random sample it has drawn). We �rst note that theresults of the previous chapter can be used to give such a bound in thecase that C is a concept class of �nite cardinality. If the learning algorithmsimply draws a random sample of O((1=�) log(jCj=�)) examples, and �ndsany h 2 C consistent with these examples (say, by exhaustive search),then Theorem 2.2 guarantees that h will meet the PAC model criteria.Notice that this bound is not meaningful if C has in�nite cardinality.Are there any non-trivial in�nite concept classes that are learnable froma �nite sample?



50 Chapter 3Actually, our PAC learning algorithm for axis-aligned rectangles inthe Euclidean plane given in Section 1.1 is an example of such a class.In the analysis of that PAC learning algorithm, we made critical use ofthe fact that axis-aligned rectangles have simple boundaries: the targetrectangle is always completely speci�ed by four real numbers that indicatethe locations of the four bounding edges, and this allowed us to partitionthe error of the tightest-�t hypothesis into four simple rectilinear regions.It is tempting to say that the \complexity" of this concept class is four,because the boundary of any concept in the class can be described byfour real numbers.In this chapter, we are interested in a general measure of complexityfor concept classes of in�nite cardinality. We would like this measureto play the same role in the sample complexity of PAC learning in�niteclasses that the quantity log jCj (which we saw in Chapter 2 was closelyrelated to the size of representations) plays in the sample complexityof PAC learning �nite classes. We will de�ne a purely combinatorialmeasure of concept class complexity known as the Vapnik-Chervonenkisdimension, a measure that assigns to each concept class C a single numberthat characterizes the sample size needed to PAC learn C.3.2 The Vapnik-Chervonenkis DimensionFor the remainder of this chapter, C will be a concept class over instancespace X, and both C and X may be in�nite. The �rst thing we will needis a way to discuss the behavior of C when attention is restricted to a�nite set of points S � X.De�nition 7 For any concept class C over X, and any S � X,�C(S) = fc \ S : c 2 Cg:



The Vapnik-Chervonenkis Dimension 51Equivalently, if S = fx1; : : : ; xmg then we can think of �C(S) as the setof vectors �C(S) � f0; 1gm de�ned by�C(S) = f(c(x1); : : : ; c(xm)) : c 2 Cg:Thus, �C(S) is the set of all the behaviors or dichotomies on S thatare induced or realized by C. We will use the descriptions of �C(S) asa collection of subsets of S and as a set of vectors interchangeably.De�nition 8 If �C(S) = f0; 1gm (where m = jSj), then we say that Sis shattered by C. Thus, S is shattered by C if C realizes all possibledichotomies of S.Now we are ready for our key de�nition.De�nition 9 The Vapnik-Chervonenkis (VC) dimension of C, de-noted as VCD(C), is the cardinality d of the largest set S shattered by C.If arbitrarily large �nite sets can be shattered by C, then VCD(C) =1.3.3 Examples of the VC DimensionLet us consider a few natural geometric concept classes, and informallycalculate their VC dimension. It is important to emphasize the nature ofthe existential and universal quanti�ers in the de�nition of VC dimension:in order to show that the VC dimension of a class is at least d, we mustsimply �nd some shattered set of size d. In order to show that the VCdimension is at most d, we must show that no set of size d+1 is shattered.For this reason, proving upper bounds on the VC dimension is usuallyconsiderably more di�cult than proving lower bounds. The followingexamples are not meant to be precise proofs of the stated bounds on



52 Chapter 3
+ – +Figure 3.1: A dichotomy unrealizable by intervals.the VC dimension, but are simply illustrative exercises to provide somepractice thinking about the VC dimension.Intervals of the real line. For this concept class, any set of twopoints can be shattered, so the VC Dimension is at least two, but noset of three points can be shattered: label the three points as shown inFigure 3.1, a labeling which cannot be induced by any interval. Thus theVC dimension for this class is two.Linear halfspaces in the plane. For this concept class, any threepoints that are not collinear can be shattered. Figure 3.2(a) shows howone dichotomy out of the possible 8 dichotomies can be realized by ahalfspace; the reader can easily verify that the remaining 7 dichotomiescan be realized by halfspaces. To see that no set of four points canbe shattered, we consider two cases. In the �rst case (shown in Figure3.2(b)), all four points lie on the convex hull de�ned by the four points. Inthis case, if we label one \diagonal" pair positive and the other \diagonal"pair negative as shown in Figure 3.2(b), no halfspace can induce thislabeling. In the second case (shown in Figure 3.2(c)), three of the fourpoints de�ne the convex hull of the four points, and if we label the interiorpoint negative and the hull points positive, again no halfspace can inducethe dichotomy. Thus the VC dimension here is three. In general, forhalfspaces in <d, the VC dimension is d+ 1.Axis-aligned rectangles in the plane. For this concept class, wecan shatter the four points shown in Figure 3.3(a), where we have againindicated how a single dichotomy can be realized and left the remainderto the reader. However, not all sets of four points can be shattered, asindicated by the unrealizable dichotomy shown in Figure 3.3(b). Still, theexistence of a single shattered set of size four is su�cient to lower bound
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Figure 3.2: (a) A dichotomy and its realization by a halfspace, with theshaded region indicating the positive side. (b) and (c) Dichotomies unre-alizable by halfspaces.
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Figure 3.3: (a) A dichotomy and its realization by an axis-aligned rect-angle. (b) and (c) Dichotomies unrealizable by axis-aligned rectangles.the VC dimension. Now for any set of �ve points in the plane, theremust be some point that is neither the extreme left, right, top or bottompoint of the �ve (see Figure 3.3(c)). If we label this non-extremal pointnegative and the remaining four extremal point positive, no rectangle canrealize the dichotomy. Thus the VC dimension is four.
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––Figure 3.4: (a) Realizing a dichotomy with a polygon when there are fewerpositive labels. (b) When there are fewer negative labels.Convex polygons in the plane. For convex d-gons in the plane,the VC dimension is 2d + 1. For the lower bound, we can induce anylabeling of any 2d+1 points on a circle using a d-gon as follows: if thereare more negative labels than positive labels, use the positive points asthe vertices as shown in Figure 3.4(a). Otherwise, use tangents to thenegative points as edges as shown in Figure 3.4(b). For the upper bound,it can be shown that choosing the points to lie on a circle does in factmaximize the number of points that can be shattered, and we can forced + 1 sides using 2d + 2 points on a circle by alternating positive andnegative labels.3.4 A Polynomial Bound on j�C(S)jDe�nition 10 For any natural number m we de�ne�C(m) = maxfj�C(S)j : jSj = mg:



The Vapnik-Chervonenkis Dimension 55The function �C(m) can be thought of as a measure of the complexityof C: the faster this function grows, the more behaviors on sets of mpoints that can be realized by C as m increases. Now clearly, if C doesnot have �nite VC dimension, then �C(m) = 2m for all m since we canshatter arbitrarily large �nite sets. In this section, we prove a surprisingand beautiful result, namely that despite the fact that we might naivelyexpect �C(m) to grow as rapidly as an exponential function of m, it isactually bounded by a polynomial in m of degree d, where d is the VCdimension of C. In other words, depending on whether the VC dimensionis �nite or in�nite, the function �C(m) is either eventually polynomial orforever exponential. For the more interesting and typical case of �niteVC dimension, we shall eventually translate the polynomial upper boundon �C(m) into an upper bound on the sample complexity of PAC learningthat is linear in d.We begin by proving that �C(m) is bounded by the function �d(m)de�ned below. We then show a polynomial bound on �d(m).De�nition 11 For any natural numbers m and d, the function �d(m)is de�ned inductively by�d(m) = �d(m� 1) + �d�1(m� 1)with initial conditions �d(0) = �0(m) = 1.Lemma 3.1 If VCD(C) = d, then for any m, �C(m) � �d(m).Proof: By induction on both d and m. For the base cases, the lemmais easily established when d = 0 and m is arbitrary, and when m = 0and d is arbitrary. We assume for induction that for all m0; d0 such thatm0 � m and d0 � d and at least one of the two inequalities is strict, wehave �C(m0) � �d0(m0). We now show that this inductive assumptionestablishes the desired statement for d and m.



56 Chapter 3Given any set S of size m, let x 2 S be a distinguished point. Let us�rst compute j�C(S � fxg)j. This is easy since by induction (note thatS � fxg is a set of size m� 1) we have j�C(S � fxg)j � �d(m� 1).The di�erence between �C(S) and �C(S�fxg) is that pairs of distinctsets in �C(S) that di�er only on their labeling of x are identi�ed (thatis, merged) in �C(S � fxg). Thus let us de�neC 0 = fc 2 �C(S) : x 62 c; c [ fxg 2 �C(S)g:Then jC 0j counts the number of pairs of sets in �C(S) that are collapsedto a single representative in �C(S � fxg). Note that C 0 = �C0(S � fxg)because C 0 consists only of subsets of S � fxg. This yields the simpleequality j�C(S)j = j�C(S � fxg)j+ j�C0(S � fxg)j:We now show that VCD(C 0) � d � 1. To see this, let S 0 � S � fxgbe shattered by C 0. Then S 0 [ fxg is shattered by C. Thus we musthave jS 0j � d � 1. Now by induction we have jC 0j = j�C0(S � fxg)j ��d�1(m� 1).Our total count is thus bounded by �d(m�1)+�d�1(m�1) = �d(m),as desired. (Lemma 3.1)Lemma 3.2 �d(m) = Pdi=0 �mi �:Proof: By induction; the base cases are easy to check. For the induc-tion step, we have:�d(m) = �d(m� 1) + �d�1(m� 1)= dXi=0  m� 1i !+ d�1Xi=0  m� 1i != dXi=0 " m� 1i !+  m� 1i� 1 !#= dXi=0  mi !



The Vapnik-Chervonenkis Dimension 57where the second equality is by induction and we de�ne �m�1�1 � = 0 forthe third equality. (Lemma 3.2)Now for m � d, �d(m) = 2m. For m > d, since 0 � d=m � 1, we maywrite:� dm�d dXi=0  mi ! � dXi=0 � dm�i mi ! � mXi=0 � dm�i mi ! = �1 + dm�m � ed:Dividing both sides by � dm�d yields�d(m) = dXi=0  mi ! � �emd �d = O(md)which is polynomial in m for �xed d, giving us the promised polynomialbound for the case m > d.3.5 A Polynomial Bound on the SampleSize for PAC Learning3.5.1 The Importance of �-NetsLet us now �x the target concept c 2 C, and de�ne the class of errorregions with respect to c and C by �(c) = fc�c0 : c0 2 Cg. It is easyto show that VCD(C) = VCD(�(c)). To see this, for any set S we canmap each element c0 2 �C(S) to c0�(c \ S) 2 ��(c)(S). Since this is abijective mapping of �C(S) to ��(c)(S), j��(c)(S)j = j�C(S)j. Since thisholds for any set S, VCD(C) = VCD(�(c)) follows.We may further re�ne the de�nition of �(c) to consider only thoseerror regions with weight at least � under the �xed target distribution D.Thus, let ��(c) = fr 2 �(c) : Prx2D[x 2 r] � �g. We can now make thefollowing important de�nition:



58 Chapter 3De�nition 12 For any � > 0, we say that a set S is an �-net for �(c)if every region in ��(c) is \hit" by a point in S, that is, if for everyr 2 ��(c) we have S \ r 6= ;.An �-net for �(c) is thus a set that hits all of the �-heavy regions of�(c). As an example, suppose X is the closed interval [0; 1] and let D bethe uniform density on X. Suppose that C consists of all closed intervalson [0; 1] as well as the empty set ;, and that the target concept c = ;.Then �(c) is again the set of all closed intervals on [0; 1]. For any intervalI under the uniform density, Prx2D[x 2 I] is just the length of I. Anyinterval whose probability is greater than � will have length greater than�, so the set of all points k�, for natural numbers 1 � k � d1=�e, is an�-net for �(c).The notion of �-nets has actually been implicit in some of our earlieranalyses, in particular those of Occam's Razor in Chapter 2. The im-portant property of �-nets is that if the sample S drawn by a learningalgorithm forms an �-net for �(c), and the learning algorithm outputsa hypothesis h 2 C that is consistent with S, then this hypothesis musthave error less than �: since c�h 2 �(c) was not hit by S (otherwiseh would not be consistent with S), and S is an �-net for �(c), we musthave c�h 62 ��(c) and therefore error(h) � �.Thus if we can bound the probability that the random sample S failsto form an �-net for �(c), then we have bounded the probability thata hypothesis consistent with S has error greater than �. For the caseof �nite C, the analysis of Occam's Razor obtained such a bound by asimple counting argument that we sketch again here in our new notation:for any �xed error region c�h 2 ��(c), the probability that we fail to hitc�h in m random examples is at most (1 � �)m. Thus the probabilitythat we fail to hit some c�h 2 ��(c) is bounded above by j�(c)j(1��)m,which in turn is bounded by jCj(1� �)m.Alternatively, we can carry out the above analysis replacing jCj by�d(jXj). This follows immediately from the fact that C = �C(X) and



The Vapnik-Chervonenkis Dimension 59Lemma 3.1. This gives us a bound of �d(jXj)(1� �)m on the probabilityof failing to draw an �-net for �(c). However, this does not represent anyprogress over the state of a�airs in which we began this chapter, sinceif X is in�nite then �d(jXj) is in�nite as well. Ideally, we would like tocarry out a similar analysis that instead of considering the entire domainX considers only the small random subset S observed by the learningalgorithm.3.5.2 A Small �-Net from Random SamplingWe now show that if we draw a small set of examples from the oracleEX (c;D), then they form an �-net with high probability. The impor-tant property is that the size of the required sample depends on the VCdimension d and � and �, but is independent of jCj and jXj. From thepreceding discussion, this will immediately lead to an upper bound onthe number of examples required for PAC learning that depends only onthese same quantities.Suppose that we draw a multiset S1 of m random examples from D,and let A denote the event that the elements of S1 fail to form an �-netfor �(c). Clearly, our goal is to upper bound the probability of eventA. If event A occurs, then by the de�nition of �-nets, S1 misses someregion r 2 ��(c). Let us �x this missed region r, and suppose we nowdraw an additional multiset S2 of m random examples from D. Sinceeach element of S2 has probability at least � of hitting r, if m = O(1=�)the probability S2 hits r at least �m=2 times is at least 1=2 by Markov'sinequality (see the Appendix in Chapter 9).If we let B be the combined event over the random draws of S1 andS2 that A occurs on the draw of S1 (so S1 is not an �-net) and S2 hasat least �m=2 hits in a region of ��(c) that is missed by S1, then wehave argued that Pr[BjA]� 1=2. Since the de�nition of event B alreadyrequires that event A occurs on S1, we also have Pr[B] = Pr[BjA]Pr[A],so 2Pr[B] � Pr[A].



60 Chapter 3Thus, we can upper bound the probability of eventA by upper bound-ing the probability of event B. The principal advantage of event B overevent A for the purposes of our analysis can be described as follows.To directly analyze the probability of event A, we must consider all re-gions of the uncountably in�nite class ��(c) that S1 might miss. Toanalyze the probability of event B, we need only consider the regions of���(c)(S1 [ S2). This is because the occurrence of event B is equivalentto saying that there is some r 2 ���(c)(S1[S2) such that jrj � �m=2 andr \ S1 = ;.To bound the probability that such an r exists, rather than drawingS1 at random and then drawing S2 at random, we can instead �rst drawa multiset S of 2m instances at random, and then randomly divide Sinto S1 and S2. The resulting distribution of S1 and S2 is the same inboth experiments, since each draw from D is independent and identicallydistributed. Now once S is drawn and �xed (but before it is divided ran-domly into S1 and S2), we may also �x a region r 2 ���(c)(S) satisfyingjrj � �m=2. For this �xed S and �xed r, we now analyze the probability(with respect only to the random partitioning of S into S1 and S2) thatr \ S1 = ;. We will then obtain a bound on the probability of event Bby summing over all possible �xed r 2 ���(c)(S) and applying the unionbound.Our problem is now reduced to the following simple combinatorialexperiment: we have 2m balls (the multiset S), each colored red or blue,with exactly ` � �m=2 red balls (these are the instances of S that fall inr). We divide these balls randomly into two groups of equal size S1 andS2, and we are interested in bounding the probability that all ` of thered balls fall in S2 (that is, the probability that r \ S1 = ;).Equivalently, we can �rst divide 2m uncolored balls into S1 and S2,and then randomly choose ` of the balls to be marked red, the rest beingmarked blue. Then the probability that all ` of the red marks fall onballs S2 is exactly �m̀�=�2m̀�| this is simply the number of ways we canchoose the ` red marks in S2 divided by the number of ways the ` red



The Vapnik-Chervonenkis Dimension 61marks can be chosen without constraints. But �m̀�=�2m̀� � 1=2`. This isbecause �m̀��2m̀� = �`�1i=0 (m� i)(2m� i) � �`�1i=0 �12� = 12` :Thus, for any �xed S and r 2 ���(c)(S) satisfying jrj � �m=2, theprobability that the random partitioning of S results in r \ S1 = ; isat most 2��m=2. The probability that this occurs for some r 2 ���(c)(S)satisfying jrj � �m=2 (and thus Pr[B]) is at mostj���(c)(S)j2� �m2 � j��(c)(S)j2� �m2 � j�C(S)j2� �m2� �d(2m)2� �m2 � �2emd �d 2� �m2 :Finally, Pr[A] � 2Pr[B] � 2(2em=d)d2��m=2, which is less than � form = O  1� log 1� + d� log 1�! :We have proved the main result of this chapter:Theorem 3.3 Let C be any concept class of VC dimension d. Let Lbe any algorithm that takes as input a set S of m labeled examples of aconcept in C, and produces as output a concept h 2 C that is consistentwith S. Then L is a PAC learning algorithm for C provided it is given arandom sample of m examples from EX (c;D), where m obeysm � c0  1� log 1� + d� log 1�!for some constant c0 > 0.Recall that in Chapter 1, we saw that for computational reasons theremay sometimes be a great advantage in using a hypothesis class H thatis more powerful than the class C from which the target is chosen. Thereader can verify that the same proof used to establish Theorem 3.3 canbe used to prove the following analogue:



62 Chapter 3Theorem 3.4 Let C be any concept class. Let H be any representationclass of VC dimension d. Let L be any algorithm that takes as input aset S of m labeled examples of a concept in C, and produces as output aconcept h 2 H that is consistent with S. Then L is a PAC learning algo-rithm for C using H provided it is given a random sample of m examplesfrom EX (c;D), where m obeysm � c0  1� log 1� + d� log 1�!for some constant c0 > 0.Thus, to obtain an algorithm for PAC learning C using H, we takea number of examples on the order of the VC dimension of H (which isat least as large as the VC dimension of C if H � C). This shows thatwhile we may reduce our computation time by choosing a more powerfulhypothesis representation, we may also increase the number of examplesrequired.3.6 Sample Size Lower BoundsWe now show that the upper bound on the sample complexity of PAClearning given by Theorem 3.3 is tight within a factor of O(log 1=�) (ig-noring the dependence on �). First we show a lower bound of 
(d) onthe number of examples required for PAC learning using a fairly simpleargument, then we present a re�ned argument that improves the boundto 
(d=�).Theorem 3.5 Any algorithm for PAC learning a concept class of Vapnik-Chervonenkis dimension d must use 
(d=�) examples in the worst case.Proof: Consider a concept class C such that VCD(C) = d. Let S =fx1; : : : ; xdg be shattered by C. To show a lower bound, we construct a



The Vapnik-Chervonenkis Dimension 63particular distribution that forces any PAC learning algorithm to takemany examples. Thus, let D give probability 1=d to each point in S, andprobability 0 to points not in S. For this distribution, we can assumewithout loss of generality that C = �C(S) (that is, X = S), so C is a�nite class and jCj = 2d.Note that we have arranged things so that for all of the 2d possiblebinary labelings of the points in S, there is exactly one concept in C thatinduces this labeling. Thus, choosing the target concept c randomly fromC is equivalent to 
ipping a fair coin d times to determine the labelinginduced by c on S.Now let L be any PAC learning algorithm for C. Set the error pa-rameter � � 1=8, and consider running L when the target concept c 2 Cis chosen randomly and the input distribution is D. Suppose that afterdrawing m < d examples from EX (c;D), L has drawn m0 � m di�er-ent instances; without loss of generality, let these be x1; : : : ; xm0. Thenfrom the above observations, it is clear that the problem of predicting thecorrect label of any unseen instance xj for j > m0 is equivalent to pre-dicting the outcome of a fair coin, since each label of c on S is determinedby an independent coin 
ip. Thus the expected error (over the randomchoice of c and the sample of points) of L's hypothesis is (d �m0)=2d,and by Markov's inequality (see the Appendix in Chapter 9) is at least(d�m0)=4d with probability at least 1=2. For m = d=2 we obtain thatthe error of L's hypothesis is at least 1=8 with probability at least 1=2(over the random choice of c and the sample). Since this shows that Lmust fail when c is chosen randomly, there must certainly be some �xedtarget concept on which L fails, thus giving the 
(d) sample complexitylower bound.To re�ne this argument to get a lower bound that incorporates �, wesimply scale the above coin 
ipping construction to a region of the distri-bution that is small but still too large to be \ignored" by the algorithm.Thus, we modify D to let the distinguished instance x1 have probability1 � 8� under D (we are essentially \giving" this instance along with itscorrect label to L), and let x2; : : : ; xd each have probability 8�=(d� 1)



64 Chapter 3under D (this is the coin 
ipping region). Now by simply scaling ourprevious calculation to the coin 
ipping region, the expected error of Lafter seeing at most d=2 di�erent instances is at least (1=8)8� = � withprobability at least 1=2. But it is not di�cult to show that now draw-ing d=2 di�erent points requires 
(d=�) examples, because our problemis reduced to obtaining d=2 \successes" in independent trials, each withprobability of success only 4�. (Theorem 3.5)3.7 An Application to Neural NetworksWe conclude this chapter by giving a useful general lemma that boundsVCD(C) when each concept in the class C is actually a composition ofsimpler concepts. Such classes arise frequently | for instance, a DNFformulae is simply a (very constrained) composition of boolean conjunc-tions (the constraint being that we can only compute disjunctions ofconjunctions). After giving this lemma, we then apply it to obtain upperbounds on the sample size required for PAC learning neural networks.To formalize a general notion of concept composition, let G be alayered directed acyclic graph. By this we mean that the nodes of Gcan be partitioned into layers, and the directed edges of G go only from anode at layer ` to a node at layer `+1. We let n be the number of nodesat layer 0, and we assume that all of these have indegree 0. We think ofthese n layer 0 nodes as being the inputs to the graph. We also assumethat there is only a single node of outdegree 0 at the highest level of thegraph, and we think of this node as being the output node of the graph.All internal (that is, non-input) nodes have the same indegree r, and welet s denote the number of internal nodes. Figure 3.5 shows an exampleof such a layered graph with n = 8, s = 8 and r = 3.Now let C be a concept class over r-dimensional Euclidean space <r.Suppose we take such a layered graph G, and we label each internal(that is, non-input) node Ni with a concept ci 2 C. Then such a labeled
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Figure 3.5: A layered directed acyclic graph.graph represents a concept over n-dimensional Euclidean space <n inthe obvious way: if we label each of the n input nodes at layer 0 witha real number, then starting with layer 1 we can compute the value ateach node Ni by applying the concept ci labeling node Ni to the valuescomputed at the nodes feeding Ni. (Note that although concepts in C arede�ned over <r, the input values feeding nodes at level 2 and higher willactually only be from f0; 1gr.) The output of the entire labeled graph isthe binary value computed at the output node. We will call the class ofall concepts over <n that can be obtained by labeling G with conceptsfrom C the G-composition of C, which we denote CG.Theorem 3.6 Let G be a layered directed acyclic graph with n inputnodes and s � 2 internal nodes, each of indegree r. Let C be a conceptclass over <r of VC dimension d, and let CG be the G-composition of C.Then VCD(CG) � 2ds log(es).Proof: The idea is to �rst bound the function �CG(m). Let us �x any



66 Chapter 3set S of m input vectors ~x1; : : : ; ~xm 2 <n to the graph G (thus, each ~xidetermines a complete setting of the n input nodes of G). For this �xedinput set S, if we now also label each node in G with a concept fromC, then for each ~xi we have completely determined the binary valuesthat will be computed at every node of G when the input is ~xi. Letus call the collection of all the values computed at each node, for each~xi 2 S, a computation ofG on S. Thus, a computation can be representedby labeling each internal node with the vector in f0; 1gm of the valuescomputed at that node on the m vectors in S. Then the set of all possiblecomputations of G on S is obtained by ranging over all possible choicesof labels from C for the nodes of G. Note that two computations of G onS di�er if and only if the value computed at some node on some inputfrom S di�ers in the two computations. Clearly, j�CG(S)j is boundedby the total number of possible computations of G on S, which we shalldenote TCG(S).To bound TCG(S), let G0 be the subgraph obtained by removing theoutput node No from G. Let TCG0 (S) denote the total number of com-putations of G0 on S. Each �xed computation of G0 can be extended toat most �C(m) computations of G, because �xing the computation of G0determines for each 1 � i � m the input ~yi 2 f0; 1gr that is fed to Nowhen ~xi is fed to G, and at most �C(m) labelings of ~y1; : : : ; ~ym can beobtained at No by varying the choice of concept from C placed at No.Thus we obtain that for any S, TCG(S) � TCG0(S)��C(m), and a simpleinductive argument establishesj�CG(S)j � TCG(S) � (�C(m))s � �emd �dswhere the second inequality comes from the polynomial bound on the�C(m) given in Section 3.4. Since S was arbitrary, this bound in factholds for �CG(m).Thus in order for CG to shatterm points, the inequality (em=d)ds � 2mmust hold. Conversely, if (em=d)ds < 2m for some m, then m is an upperbound on VCD(CG). It is easy to verify that this latter inequality holdsfor m = 2ds log(es) provided s � 2. (Theorem 3.6)



The Vapnik-Chervonenkis Dimension 67To apply Theorem 3.6 to the problem of PAC learning neural net-works, we simply let the function at each node in the graph G be alinear threshold function. If the indegree is r, such a function is de-�ned by realweights w1; : : : ; wr 2 < and a threshold � 2 <. On inputsx1; : : : ; xr 2 < the function outputs 1 if Pri=1 wixi � �, and outputs 0otherwise. We call G the underlying architecture of the neural network.Now as we mentioned in Section 3.3, it is known that the VC dimen-sion of the class of linear threshold on r inputs is r+1. By Theorem 3.6we �nd that the Vapnik-Chervonenkis of the class of neural networkswith architecture G is at most 2(rs+ s) log(es), and combined with The-orem 3.3, we obtain:Theorem 3.7 Let G be any directed acyclic graph, and let CG be the classof neural networks on an architecture G with indegree r and s internalnodes. Then the number of examples required to learn CG isO  1� log 1� + (rs+ s) log s� log 1�! :3.8 Exercises3.1. Compute the VC dimension of the class of boolean conjunctions ofliterals over f0; 1gn.3.2. Consider the concept class over the Euclidean plane <2 consistingof the interior regions of circles; thus, the positive examples of each con-cept form a disk in the plane. Compute the VC dimension of this class.Compute the VC dimension of the class of interiors of triangles in theplane.3.3. Show that there is no 1-decision list over f0; 1gn computing theexclusive-or function x1 � x2. Then show that the VC dimension of



68 Chapter 31-decision lists over f0; 1gn is �(n), and that the VC dimension of k-decision lists is �(nk). Hint: show that 1-decision lists over f0; 1gn com-pute linearly separable functions (halfspaces). You may use the fact thatthe VC dimension of halfspaces over <n is linear in n.3.4. Let Pd;k be the class of concepts over <d de�ned by convex polytopeswith k sides; thus, each the positive examples of each concept in Pd;k arede�ned by the convex intersection of k halfspaces in <d. Give the bestupper and lower bounds that you can on VCD(Pd;k). You may use thefact that the VC dimension of halfspaces over <d is linear in d.3.5. Let C be any concept class of VC dimension d over X, and let Dbe any distribution over X. Suppose we are given access to a source ofrandom (unlabeled) instances drawn according to D, and also access toan oracle that for any labeled sample of points will return \Yes" if thereis a concept in C that is consistent with the labeled sample, and willreturn \No" otherwise. Describe an algorithm that on input any �niteset of instances S � X and any �; � > 0 will output either the answer\Yes, S in an �-net for C with respect to D", or the answer \No, S isnot an �=4-net for C with respect to D". Moreover, the algorithm mustgive a correct answer with probability at least 1� �. The algorithm neednot be e�cient. (The quantity �=4 in the \No" condition can in fact bereplaced by �� for any �xed constant � < 1, giving an arbitrarily re�nedtest.)3.6. Prove that the bound of �d(m) on �C(m) is tight: that is, for anyconcept class C of VC dimension d and any m, there exists a set S of mpoints such that j�C(S)j = �d(m).3.7. In this exercise we consider the two-oracle model of PAC learningde�ned in Exercise 1.3 of Chapter 1. We say that a concept class C isPAC learnable from positive examples alone if it is PAC learnableby an algorithm that only draws from the oracle EX (c;D+c ) when learningtarget concept c 2 C (the hypothesis must still meet the two-sided errorcriterion). We have already seen in Chapter 1 that boolean conjunctionsare e�ciently PAC learnable from positive examples alone. This exercise



The Vapnik-Chervonenkis Dimension 69ignores computational considerations, and concentrates on the numberof examples required for learning from positive examples alone.We say that a subclass C 0 � C has unique negative examples iffor every c 2 C 0, there is an instance xc 2 X such that xc 62 c but xc 2 c0for every other c0 2 C 0. We de�ne the unique negative dimension ofthe class C, UND(C), to be the cardinality of the largest subclass C 0 thathas unique negative examples.Prove that any algorithm learning C from positive examples alone(regardless of computation time or the hypothesis class used) requires
(UND(C)=�) positive examples.Then prove that O(UND (C)=�) positive examples are su�cient forlearning from positive examples alone by the following steps. Considerthe algorithm that takes a sample S of positive examples of the targetconcept and returns the hypothesish = minC (S) = \c2C:S�c c:Note that h may not be contained in C, and also that this algorithm willnever err on a negative example of the target concept.First show that if on random samples S of size d=� (where d =UND(C)) from EX (c;D+c ), the expected error of minC(S) with respect toD+c exceeds �, then there must exist a set S� � c of size d=�+ 1 with theproperty that for a fraction at least � of the x 2 S�, x 62 minC(S��fxg).Then show that this implies that UND(C) > d, a contradiction.Thus, �(UND(C)=�) positive examples are necessary and su�cient forlearning from positive examples alone, and the unique negative dimensionplays a role analogous to the Vapnik-Chervonenkis dimension for thismodel of learning.



70 Chapter 33.9 Bibliographic NotesThe classic paper on the VC dimension, and the one in which the mainelements of the proof of Theorem 3.3 are �rst introduced, is by Vapnikand Chervonenkis [95]. These ideas were introduced into the computa-tional learning theory literature and elaborated upon in the in
uentialwork of Blumer, Ehrenfeucht, Haussler and Warmuth [22]. Vapnik hasalso written an excellent book [94] that greatly extends the original ideasinto a theory known as structural risk minimization.The VC dimension and its attendant theorems have been in
uentialin the neural network and arti�cial intelligence machine learning commu-nities. The calculation of the VC dimension of neural networks is due toBaum and Haussler [13], and Abu-Mostafa [1] and Tesauro and Cohn [89]examine VC dimension issues from a neural network perspective. Haus-sler [45] examines the VC dimension as a form of inductive bias from anarti�cial intelligence viewpoint.The value of the VC dimension as a measure of the sample complex-ity of learning transcends the PAC model; many authors have shownthat the VC dimension provides upper or lower bounds on the resourcesrequired for learning in many models. These include on-line models oflearning (Haussler, Littlestone and Warmuth [51]; Maass and Tur�an [69];Littlestone [66]), models of query learning (Maass and Tur�an [69]); andmany others.The VC dimension has also been generalized to give combinatorialcomplexity measures that characterize the sample complexity of learningin various extensions of the PAC model. Perhaps the most general workalong these lines in the computational learning theory literature has beenundertaken by Haussler [48], who draws on work in statistics, notably thework of Pollard [74] and of Dudley [31]. Haussler's general framework isexamined carefully in the context of learning probabilistic concept byKearns and Schapire [61], who prove that a certain generalization of theVC dimension provides a lower bound on sample size for learning in this



The Vapnik-Chervonenkis Dimension 71model, and by Alon et al. [4], who give an upper bound.The VC dimension and its generalizations are only one of the manyways that computational learning theory and statistics attempt to quan-tify the behavior of learning curves, that is, the error of the hypothesisas a function of the number of examples seen. For instance, among themany alternative methods of analysis are theories based on tools frominformation theory and statistical physics [50, 86].The 
(d=�) sample size lower bound is due to Ehrenfeucht et al. [33],who also give the solution to Exercise 3.3. Exercise 3.7 is due to Gereb-Graus [39].


