1

The Probably Approximately
Correct Learning Model

1.1 A Rectangle Learning Game

Consider a simple one-player learning game. The object of the game is to
learn an unknown axis-aligned rectangle B — that 1s, a rectangle in the
Euclidean plane R? whose sides are parallel with the coordinate axes. We
shall call R the target rectangle. The player receives information about
R only through the following process: every so often, a random point p
is chosen in the plane according to some fixed probability distribution D.
The player is given the point p together with a label indicating whether p
is contained in R (a positive example) or not contained in R (a negative
example). Figure 1.1 shows the unknown rectangular region R along with
a sample of positive and negative examples.

The goal of the player is to use as few examples as possible, and as
little computation as possible, to pick a hypothesis rectangle R’ which
is a close approximation to R. Informally, the player’s knowledge of R
1s tested by picking a new point at random from the same probability
distribution D, and checking whether the player can correctly decide
whether the point falls inside or outside of R. Formally, we measure the

2 Chapter 1

194
o —
® +
® +
® — o+ *—
® +
R

X

Figure 1.1: The target rectangle R in the plane along with a sample of
positive and negative examples.

error of R’ as the probability that a randomly chosen point from D falls
in the region RAR', where RAR' = (R — R') U (R' — R).

To motivate the rectangle learning game, consider a slightly more
concrete scenario that can be expressed as an instance of the game. Sup-
pose that we wanted to learn the concept of “men of medium build”.
Assume that a man is of medium build if his height and weight both lie
in some prescribed ranges — for instance, if his height is between five
feet six inches and six feet, and his weight is between 150 pounds and
200 pounds. Then each man’s build can be represented by a point in
the Euclidean plane, and the concept of medium build is represented by
an axis-aligned rectangular region of the plane. Thus, during an initial
training phase, the learner is told for each new man he meets whether
that man is of medium build or not. Over this period, the learner must
form some model or hypothesis of the concept of medium build.

Now assume that the learner encounters every man in his city with

Probably Approximately Correct Learning 3

equal probability. Even under this assumption, the corresponding points
in the plane may not be uniformly distributed (since not all heights and
weights are equally likely, and height and weight may be highly dependent
quantities), but will instead obey some fixed distribution D which may be
quite difficult to characterize. For this reason, in our learning game, we
allow the distribution D to be arbitrary, but we assume that it is fixed,
and that each example is drawn independently from this distribution.
(Note that once we allow D to be arbitrary, we no longer need to assume
that the learner encounters every man in his city with equal probability.)
To evaluate the hypothesis of the learner, we are simply evaluating its
success in classifying the build of men in future encounters, still assuming
that men are encountered according to the same probability distribution
as during the training phase.

There is a simple and efficient strategy for the player of the rectangle
learning game. The strategy is to request a “sufficiently large” number
m of random examples, then choose as the hypothesis the axis-aligned
rectangle R’ which gives the tightest fit to the positive examples (that
is, that rectangle with the smallest area that includes all of the positive
examples and none of the negative examples). If no positive examples are
drawn, then R' = 0. Figure 1.2 shows the tightest-fit rectangle defined
by the sample shown in Figure 1.1.

We will now show that for any target rectangle R and any distribution
D, and for any small values € and § (0 < ¢,8 < 1/2), for a suitably chosen
value of the sample size m we can assert that with probability at least
1—4, the tightest-fit rectangle has error at most € with respect to R and
D.

First observe that the tightest-fit rectangle R’ is always contained in
the target rectangle R (that is, R C R and so RAR' = R— R'). We can
express the difference R — R’ as the union of four rectangular strips. For
instance, the topmost of these strips, which is shaded and denoted 7" in
Figure 1.3, is the region above the upper boundary of R’ extended to the
left and right, but below the upper boundary of R. Note that there is
some overlap between these four rectangular strips at the corners. Now

4 Chapter 1

Ay
.—
+
= 4+ o 0=
+
Hl
R

>y

Figure 1.2: The tightest-fit rectangle R’ defined by the sample.

if we can guarantee that the weight under D of each strip (that is, the
probability with respect to D of falling in the strip) is at most ¢/4, then
we can conclude that the error of R’ is at most 4(e/4) = e. (Here we have
erred on the side of pessimism by counting cach overlap region twice.)

Let us analyze the weight of the top strip 7’. Define T to be the
rectangular strip along the inside top of R which encloses ezactly weight
¢/4 under D (thus, we sweep the top edge of R downwards until we have
swept out weight €¢/4; see Figure 1.3). Clearly, T’ has weight exceeding
/4 under D if and only if T’ includes T (which it does not in Figure
1.3). Furthermore, 7" includes T if and only if no point in T appears in
the sample § — since if S does contain a point p € T, this point has
a positive label since it is contained in R, and then by definition of the
tightest fit, the hypothesis rectangle R’ must extend upwards into T to
cover p.

By the definition of T, the probability that a single draw from the
distribution D misses the region T is exactly 1 — ¢/4. Therefore the

Probably Approximately Correct Learning 5

X

X

Figure 1.3: Analysis of the error contributed by the top shaded strip T'.
The strip T has weight ezactly e/4 under D.

probability that m independent draws from D all miss the region T is
exactly (1 — ¢/4)™. Here we are using the fact that the probability of a
conjunction of independent events is simply the product of the probabili-
ties of the individual events. The same analysis holds for the other three
rectangular regions of R — R’, so by the union bound, the probability
that any of the four strips of R — R’ has weight greater than ¢/4 is at
most 4(1 — ¢/4)™. By the union bound, we mean the fact that if A and
B are any two events (that is, subsets of a probability space), then

Pr[AU B] < Pr[A] + Pr[B].

Thus, the probability that one of the four error strips has weight exceed-
ing €/4 is at most four times the probability that a fixed error strip has
weight exceeding e/4.

Provided that we choose m to satisfy 4(1 — ¢/4)™ < §, then with
probability 1 — § over the m random examples, the weight of the error

6 Chapter 1

region R — R’ will be bounded by ¢, as claimed. Using the inequality
(l—z)<e"

(which we shall appeal to frequently in our studies) we see that any value
of m satisfying 4e~“™* < § also satisfies the previous condition. Dividing
by 4 and taking natural logarithms of both sides gives —em/4 < In(é§/4),
or equivalently m > (4/¢)In(4/4).

In summary, provided our tightest-fit algorithm takes a sample of at
least (4/¢)In(4/8) examples to form its hypothesis rectangle R', we can
assert that with probability at least 1 —§, R’ will misclassify a new point
(drawn according to the same distribution from which the sample was
chosen) with probability at most e.

A few brief comments are appropriate. First, note that the analysis
really does hold for any fixed probability distribution. We only needed
the independence of successive points to obtain our bound. Second, the
sample size bound behaves as we might expect, in that as we increase
our demands on the hypothesis rectangle — that is, as we ask for greater
accuracy by decreasing ¢ or greater confidence by decreasing § — our
algorithm requires more examples to meet those demands. Finally, the
algorithm we have analyzed is efficient: the required sample size is a
slowly growing function of 1/e and 1/4 (linear and logarithmic, respec-
tively), and once the sample is given, the computation of the tightest-fit
hypothesis can be carried out rapidly.

1.2 A General Model

In this section, we introduce the model of learning that will be the central
object for most of our study: the Probably Approximately Correct
or PAC model of learning. There are a number of features of the rectan-
gle learning game and its solution that are essential to the PAC model,
and bear highlighting before we dive into the general definitions.

Probably Approximately Correct Learning 7

e The goal of the learning game is to learn an unknown target set, but
the target set is not arbitrary. Instead, there is a known and rather
strong constraint on the target set — it is a rectangle in the plane
whose sides are parallel to the axes.

e Learning occurs in a probabilistic setting. Examples of the target
rectangle are drawn randomly in the plane according to a fixed
probability distribution which is unknown and unconstrained.

e The hypothesis of the learner is evaluated relative to the same prob-
abilistic setting in which the training takes place, and we allow hy-
potheses that are only approximations to the target. The tightest-
fit strategy might not find the target rectangle exactly, but will find
one with only a small probability of disagreement with the target.

e We are interested in a solution that is efficient: not many examples
are required to obtain small error with high confidence, and we can
process those examples rapidly.

We wish to state a general model of learning from examples that
shares and formalizes the properties we have listed. We begin by devel-
oping and motivating the necessary definitions.

1.2.1 Definition of the PAC Model

Let X be a set called the instance space. We think of X as being a
set of encodings of instances or objects in the learner’s world. In our
rectangle game, the instance space X was simply the set of all points in
the Euclidean plane R®2. As another example, in a character recognition
application, the instance space might consist of all 2-dimensional arrays
of binary pixels of a given width and height.

A concept over X is just a subset ¢ C X of the instance space. In
the rectangle game, the concepts were axis-aligned rectangular regions.

8 Chapter 1

Continuing our character recognition example, a natural concept might
be the set of all pixel arrays that are representations of the letter “A”
(assuming that every pixel array either represents an “A”, or fails to
represent an “A”).

A concept can thus be thought of as the set of all instances that
positively exemplify some simple or interesting rule. We can equivalently
define a concept to be a boolean mapping ¢: X — {0,1}, with ¢(z) =1
indicating that = is a positive example of ¢ and ¢(z) = 0 indicating that
z is a negative example. For this reason, we also sometimes call X the
input space.

A concept class C over X is a collection of concepts over X. In the
rectangle game, the target rectangle was chosen from the class C of all
axis-aligned rectangles. Ideally, we are interested in concept classes that
are sufficiently expressive for fairly general knowledge representation. As
an example in a logic-based setting, suppose we have a set z1,...,2,
of n boolean variables, and let X be the set of all assignments to these
variables (that is, X = {0,1}"). Suppose we consider concepts ¢ over
{0,1}" whose positive examples are exactly the satisfying assignments
of some boolean formulae f. over zi,...,2z,. Then we might define an
interesting concept class C by considering only those boolean formulae f,
that meet some natural syntactic constraints, such as being in disjunctive
normal form (DNF) and having a small number of terms.

In our model, a learning algorithm will have access to positive and
negative examples of an unknown target concept ¢, chosen from a
known concept class C. The learning algorithm will be judged by its
ability to identify a hypothesis concept that can accurately classify in-
stances as positive or negative examples of ¢. Before specifying the learn-
ing protocol further, it is important to note that in our model, learning
algorithms “know” the target class C, in the sense that the designer of the
learning algorithm is guaranteed that the target concept will be chosen
from C (but must design the algorithm to work for any ¢ € C).

Let D be any fixed probability distribution over the instance space X.

Probably Approximately Correct Learning 9

X

Figure 1.4: Venn diagram of two concepts, with symmetric difference
shaded.

We will refer to D as the target distribution. If & is any concept over
X, then the distribution D provides a natural measure of error between
h and the target concept ¢: namely, we define

error(h) = Proeplc(z) # h(z)].

Here we regard the concepts ¢ and h as boolean functions, and we have
introduced a notational convention that we shall use frequently: the sub-
script @ € D to Pr|[-] indicates that the probability is taken with respect
to the random draw of z according to D. Note that error(h) has an im-
plicit dependence on ¢ and D that we will usually omit for brevity when
no confusion will result.

A useful alternative way to view error(h) is represented in Figure 1.4.
Here we view the concepts ¢ and h as sets rather than as functions, and
we have drawn an abstract Venn diagram showing the positive examples
of ¢ and h, which of course lie within the entire instance space X. Then
error(h) is simply the probability with respect to D that an instance is
drawn falling in the shaded region.

Let EX (¢, D) be a procedure (we will sometimes call it an oracle) that

10 Chapter 1

runs in unit time, and on each call returns a labeled example (z, ¢(z)),
where z is drawn randomly and independently according to D. A learning
algorithm will have access to this oracle when learning the target concept
¢ € C. Ideally, the learning algorithm will satisfy three properties:

e The number of calls to £X(c,D) is small, in the sense that it is
bounded by a fixed polynomial in some parameters to be specified
shortly.

e The amount of computation performed is small.

e The algorithm outputs a hypothesis concept h such that error(h)
is small.

Note that the number of calls made by a learning algorithm to EX (¢, D)
is bounded by the running time of the learning algorithm.

We are now ready to give the definition of Probably Approximately
Correct learning. We designate it as our preliminary definition, since we
shall soon make some important additions to it.

Definition 1 (The PAC Model, Preliminary Definition) Let C be a con-
cept class over X. We say that C is PAC learnable if there exists an
algorithm L with the following property: for every concept ¢ € C, for ev-
ery distribution D on X, and for all 0 < e < 1/2 and 0 < § < 1/2, if L s
gwen access to EX (¢, D) and inputs € and §, then with probability at least
1—4, L outputs a hypothesis concept h € C satisfying error(h) < e. This
probability is taken over the random ezamples drawn by calls to EX (¢, D),
and any internal randomization of L.

If L runs in time polynomial in 1/e and 1/§, we say that C is effi-
ciently PAC learnable. We will sometimes refer to the input ¢ as the
error parameter, and the input § as the confidence parameter.

Probably Approximately Correct Learning 11

The hypothesis A € C of the PAC learning algorithm is thus “ap-
proximately correct” with high probability, hence the name Probably
Approximately Correct learning.

Two important comments regarding the PAC learning model are now
in order. First, the error and confidence parameters ¢ and § control the
two types of failure to which a learning algorithm in the PAC model
is inevitably susceptible. The error parameter ¢ is necessary since, for
example, there may be only a negligible probability that a small random
sample will distinguish between two competing hypotheses that differ
on only one improbable point in the instance space. The confidence
parameter 4 is necessary since the learning algorithm may occasionally
be extremely unlucky, and draw a terribly “unrepresentative” sample of
the target concept — for instance, a sample consisting only of repeated
draws of the same instance despite the fact that the distribution is spread
evenly over all instances. The best we can hope for is that the probability
of both types of failure can be made arbitrarily small at a modest cost.

Second, notice that we demand that a PAC learning algorithm per-
form well with respect to any distribution D. This strong requirement
is moderated by the fact that we only evaluate the hypothesis of the
learning algorithm with respect to the same distribution D. For exam-
ple, in the rectangle learning game discussed earlier, this means that if
the distribution gives negligible weight to some parts of the Euclidean
plane, then the learner does not have to be very careful in learning the
boundary of the target rectangle in that region.

Definition 1, then, is our tentative definition of PAC learning, which
will be the model forming the bulk of our studies. As previously men-
tioned, we shall make a couple of important refinements to this definition
before we begin the serious investigation. Before doing so, however, we
pause to note that we have already proven our first result in this model.
Recall that our algorithm for the rectangle learning game required the
ability to store real numbers and perform basic operations on them, such
as comparisons. In the following theorem, and throughout our study,
whenever necessary we will assume a model of computation that allows

12 Chapter 1

storage of a single real number in a single memory location, and that
charges one unit of computation time for a basic arithmetic operation
(addition, multiplication or division) on two real numbers.

Theorem 1.1 The concept class of azis-aligned rectangles over the Eu-
clidean plane R? is efficiently PAC learnable.

1.2.2 Representation Size and Instance
Dimension

An important issue was swept under the rug in our definition of PAC
learning. This is the fundamental distinction between a concept (which
is just a set or a boolean function) and its representation (which is a
symbolic encoding of that set or function). Consider a class of concepts
defined by the satisfying assignments of boolean formulae. A concept
from this class — that is, the set of satisfying assignments for some
boolean formula f — can be represented by the formula f, by a truth
table, or by another boolean formula f’ that is logically equivalent to f.
Although all of these are representations of the same underlying concept,
they may differ radically in representational size.

For instance, it is not hard to prove that for all », the boolean parity
function f(z1,...,2n) = 21 @+ D 2, (where @ denotes the exclusive-or
operation) can be computed by a circuit of A, V and — gates whose size is
bounded by a fixed polynomial in n, but to represent this same function
as a disjunctive normal form (abbreviated DNF) formula requires size ex-
ponential in n. As another example, in high-dimensional Fuclidean space
R™, we may choose to represent a convex polytope either by specifying
its vertices, or by specifying linear equations for its faces, and these two
representation schemes can differ exponentially in size.

In each of these examples, we are fixing some representation scheme
— that is, a precise method for encoding concepts — and then examining

Probably Approximately Correct Learning 13

the size of the encoding for various concepts. Other natural representa-
tion schemes that the reader may be familiar with include decision trees
and neural networks. As with boolean formulae, in these representation
schemes there is an obvious mapping from the representation (a decision
tree or a meural network) to the set or boolean function that is being
represented. There is also a natural measure of the size of a given repre-
sentation in the scheme (for instance, the number of nodes in the decision
tree or the number of weights in a neural network).

Since a PAC learning algorithm only sees examples of the functional
(that is, input-output) behavior of the target concept, it has absolutely
no information about which, if any, of the many possible representations
is actually being used to represent the target concept in reality. However,
it matters greatly which representation the algorithm chooses for its hy-
pothesis, since the time to write this representation down is obviously a
lower bound on the running time of the algorithm.

Formally speaking, a representation scheme for a concept class
C is a function R : ©* — C, where ¥ is a finite alphabet of symbols.
(In cases where we need to use real numbers to represent concepts, such
as axis-aligned rectangles, we allow R : (X UR)* — C.) We call any
string o € X* such that R(s) = ¢ a representation of ¢ (under R).
Note that there may be many representations of a concept ¢ under the
representation scheme R.

To capture the notion of representation size, we assume that associ-
ated with R there is a mapping size : * — N that assigns a natural
number size(h) to each representation h € %*. Note that we allow size(-)
to be any such mapping; results obtained under a particular definition
for size(-) will be meaningful only if this definition is natural. Perhaps
the most realistic setting, however, is that in which ¥ = {0,1} (thus,
we have a binary encoding of concepts) and we define size(h) to be the
length of k in bits. (For representations using real numbers, it is often
natural to charge one unit of size for each real number.) Although we
will use other definitions of size when binary representations are inconve-
nient, our definition of size(-) will always be within a polynomial factor

14 Chapter 1

of the binary string length definition. For example, we can define the size
of a decision tree to be the number of nodes in the tree, which is always
within a polynomial factor of the length of the binary string needed to
encode the tree in any reasonable encoding method.

So far our notion of size is applicable only to representations (that is,
to strings A € £*). We would like to extend this definition to measure
the size of a target concept ¢ € C. Since the learning algorithm has access
only to the input-output behavior of ¢, in the worst case it must assume
that the simplest possible mechanism is generating this behavior. Thus,
we define size(c) to be size(c) = ming(y)=c{size(s)}. In other words,
size(c) is the size of the smallest representation of the concept ¢ in the
underlying representation scheme R. Intuitively, the larger size(c) is, the
more “complex” the concept ¢ is with respect to the chosen representation
scheme. Thus it is natural to modify our notion of learning to allow more
computation time for learning more complex concepts, and we shall do
this shortly.

For a concept class C, we shall refer to the representation class C
to indicate that we have in mind some fixed representation scheme R for
C. In fact, we will usually define the concept classes we study by their
representation scheme. For instance, we will shortly examine the concept
class in which each concept is the set of satisfying assignments of some
conjunction of boolean variables. Thus, each concept can be represented
by a list of the variables in the associated conjunction.

It is often convenient to also introduce some notion of size or dimen-
sion for the elements of the instance space. For example, if the instance
space X, is the n-dimensional Euclidean space ®", then each example
is specified by n teal numbers, and so it is natural to say that the size
of the examples is n. The same comments apply to the instance space
X, = {0,1}". It turns out that these are the only two instance spaces
that we will ever need to consider in our studies, and in the spirit of
asymptotic analysis we will want to regard the instance space dimension
n as a parameter of the learning problem (for example, to allow us to
study the problem of learning axis-aligned rectangles in £" in time poly-

Probably Approximately Correct Learning 15

nomial in n). Now if we let C, be the class of concepts over X, and write
X = Up>1Xn and C = Up>1Cy, then X and C define an infinite family of
learning problems of increasing dimension.

To incorporate the notions of target concept size and instance space
dimension into our model, we make the following refined definition of
PAC learning:

Definition 2 (The PAC Model, Modified Definition) Let C, be a rep-
resentation class over X, (where X, is either {0,1}" or n-dimensional
FEuclidean space R"), and let X = Up>1X, and C = Up>1C,. The modi-
fied definition of PAC learning is the same as the preliminary definition
(Definition 1), ezcept that now we allow the learning algorithm time poly-
nomzal in n and size(c) (as well as 1/e and 1/§ as before) when learning
a target concept ¢ € C,,.

Since in our studies X,, will always be either {0, 1}" or n-dimensional
Euclidean space, the value n is implicit in the instances returned by
EX(c, D). We assume that the learner is provided with the value size(c)
as an input. (However, see Exercise 1.5.)

‘We emphasize that while the target concept may have many possible
representations in the chosen scheme, we only allow the learning algo-
rithm time polynomial in the size of the smallest such representation.
This provides a worst-case guarantee over the possible representations of
¢, and is consistent with the fact that the learning algorithm has no idea
which representation is being used for ¢, having only functional informa-
tion about c.

Finally, we note that for several concept classes the natural definition
of size(c) is already bounded by a polynomial in n, and thus we really
seek an algorithm running in time polynomial in just n. For instance, if
we look at the representation class of all DNF formulae with at most 3
terms, any such formula has length at most 3n, so polynomial dependence

16 Chapter 1

on the size of the target formula is the same as polynomial dependence
on n.

1.3 Learning Boolean Conjunctions

We now give our second result in the PAC model, showing that con-
junctions of boolean literals are efficiently PAC learnable. Here the
instance space is X,, = {0,1}". Each a € X,, is interpreted as an assign-

ment to the n boolean variables x4, ..., ,, and we use the notation a; to
indicate the ith bit of a. Let the representation class C,, be the class of
all conjunctions of literals over @1,...,%, (a literal is either a variable

z; or its negation Z;). Thus the conjunction z; A T3 A x4 represents the
set {a € {0,1}" : a; = 1,a3 = 0,as = 1}. It is natural to define the
size of a conjunction to be the number of literals in that conjunction.
Then clearly size(c) < 2n for any conjunction ¢ € C,. (We also note
that a standard binary encoding of any conjunction ¢ € C, has length
O(nlogn).} Thus for this problem, we seek an algorithm that runs in
time polynomial in n, 1/€ and 1/4.

Theorem 1.2 The representation class of conjunctions of boolean liter-
als is efficiently PAC learnable.

Proof: The algorithm we propose begins with the hypothesis conjunc-
tion
h=2s AT A~ Azy, ATy,

Note that initially h has no satisfying assignments. The algorithm simply
ignores any negative examples returned by EX(c,D). Let (a,1) be a
positive example returned by EX (e, D). In response to such a positive
example, our algorithm updates h as follows: for each i, if a; = 0, we
delete @; from h, and if a; = 1, we delete z; from h. Thus, our algorithm
deletes any literal that “contradicts” the positive data.

Probably Approximately Correct Learning 17

For the analysis, note that the set of literals appearing in h at any
time always contains the set of literals appearing in the target concept
c. This is because we begin with h containing all literals, and a literal
is only deleted from h when it is set to 0 in a positive example; such a
literal clearly cannot appear in ¢. The fact that the literals of A always
include those of ¢ implies that h will never err on a negative example of
¢ (that is, A is more specific than ¢).

Thus, consider a literal z that occurs in h but not in ¢. Then z causes
h to err only on those positive examples of ¢ in which z = 0; also note
that it is exactly such positive examples that would have caused our
algorithm to delete z from h. Let p(z) denote the total probability of
such instances under the distribution D, that is,

p(2) = Proeple(a) = 1A zis 0 in a.

Since every error of h can be “blamed” on at least one literal z of A, by
the union bound we have error(h) < ¥,cnp(2). We say that a literal
is bad if p(z) > €/2n. If h contains no bad literals, then error(h) <
Y.enp(2) < 2n(e/2n) = e. We now upper bound the probability that a
bad literal will appear in h.

For any fized bad literal z, the probability that this literal is not
deleted from h after m calls of our algorithm to EX(c, D) is at most
(1 — ¢/2n)™, because the probability the literal z is deleted by a single
call to EX (¢, D) is p(z) (which is at least ¢/2n for a bad literal). From
this we may conclude that the probability that there is some bad literal
that is not deleted from h after m calls is at most 2n(1 — €/2n)™, where
we have used the union bound over the 2n possible literals.

Thus to complete our analysis we simply need to solve for the value
of m satisfying 2n(1 — ¢/2n)™ < §, where 1 — ¢ is the desired confi-
dence. Using the inequality 1 — z < e™®, it suffices to pick m such that
2ne~™e/2n < § which yields m > (2n/€)(In(2n) + In(1/4)).

Thus, if our algorithm takes at least this number of examples, then
with probability at least 1 — & the resulting conjunction h will have error

18 Chapter 1

at most € with respect to cand D. Since the algorithm takes linear time to
process each example, the running time is bounded by mn, and hence is
bounded by a polynomial in n, 1/€ and 1/4, as required. [(Theorem 1.2)

1.4 Intractability of Learning 3-Term
DNF Formulae

We next show that a slight generalization of the representation class of
boolean conjunctions results in an intractable PAC learning problem.
More precisely, we show that the class of disjunctions of three boolean
conjunctions (known as 3-term disjunctive normal form (DNF) for-
mulae) is not efficiently PAC learnable unless every problem in NP can
be efficiently solved in a worst-case sense by a randomized algorithm —
that is, unless for every language A in NP there is a randomized algo-
rithm taking as input any string a and a parameter § € [0, 1], and that
with probability at least 1 — § correctly determines whether & € A in
time polynomial in the length of @ and 1/§. The probability here is
taken only with respect to the coin flips of the randomized algorithm. In
technical language, our hardness result for 3-term DNF is based on the
widely believed assumption that RP # NP.

The representation class C,, of 3-term DNF formulae is the set of all
disjunctions TV TV T3, where each T; is a conjunction of literals over the
boolean variables 21, ..., 2,. We define the size of such a representation
to be sum of the number of literals appeafing in each term (which is
always bounded by a fixed polynomial in the length of the bit string
needed to represent the 3-term DNF in a standard encoding). Then
size(c) < 6n for any concept ¢ € C,, because there are at most 2n literals
in each of the three terms. Thus, an efficient learning algorithm for this
problem is required to run in time polynomial in =, 1/¢ and 1/4.

Theorem 1.3 If RP #* NP, the representation class of 3-term DNF

Probably Approximately Correct Learning 19

formulae is not efficiently PAC learnable.

Proof: The high-level idea of the proof is to reduce an NP-complete
language A (to be specified shortly) to the problem of PAC learning 3-
term DNF formulae. More precisely, the reduction will efficiently map
any string o, for which we wish to determine membership in A, to a
set S, of labeled examples. The cardinality |S,| will be bounded by a
polynomial in the string length |a|. We will show that given a PAC
learning algorithm L for 3-term DNF formulae, we can run L on S,, in a
manner to be described, to determine (with high probability) if a belongs
to A or not.

The key property we desire of the mapping of a to S, is that a € A
if and only if S, is consistent with some concept ¢ € C. The notion
of a concept being consistent with a sample will recur frequently in our
studies.

Definition 3 Let S = {{(z1,b1),...,(Tm,bm)} be any labeled set of in-
stances, where each z; € X and each b; € {0,1}. Let ¢ be a concept
over X. Then we say that ¢ is consistent with S (or equivalently, S is
consistent with ¢) if for all 1 <1 <'m, c(z;) = b;.

Before detailing our choice for the NP-complete language A and the
mapping of a to S,, just suppose for now that we have managed to
arrange things so that a € A if and only if S, is consistent with some
concept in C. We now show how a PAC learning algorithm L for C can
be used to determine if there exists a concept in C that is consistent with
S« (and thus whether a € A) with high probability. This is achieved by
the following general method: we set the error parameter ¢ = 1/(2|S,/)
(where |S,| denotes the number of labeled pairs in S,), and answer each
request of L for a random labeled example by choosing a pair (z, b;)
uniformly at random from S,. Note that if there is a concept ¢ € C
consistent with S,, then this simulation emulates the oracle EX (e, D),
where D is uniform over the (multiset of) instances appearing in S,. In

20 Chapter 1

this case, by our choice of €, we have guaranteed that any hypothesis h
with error less that € must in fact be consistent with S,, for if & errs on
even a single example in S,, its error with respect to ¢ and D is at least
1/|Sa| = 2¢ > €. On the other hand, if there is no concept in C consistent
with S,, L cannot possibly find one. Thus we can simply check the
output of L for consistency with S, to determine with confidence 1 — §
if there exists a consistent concept in C.

Combined with the assumed mapping of a string a to a set S,, we
thus can determine (with probability at least 1 — §) the membership of
a in A by simulating the PAC learning algorithm on S,. This general
method of using a PAC learning algorithm to determine the existence of
a concept that is consistent with a labeled sample is quite common in
the computational learning theory literature, and the main effort comes
in choosing the right NP-complete language A, and finding the desired
mapping from instances a of A to sets of labeled examples S, which we
now undertake.

To demonstrate the intractability of learning 3-term DNF formulae,
the NP-complete language A that we shall use is Graph 3-Coloring:

The Graph 3-Coloring Problem. Given as input an undirected graph
G = (V, E) with vertex set V = {1,...,n} and edge set E C V x V,
determine if there is an assignment of a color to each element of V' such
that at most 3 different colors are used, and for every edge (,7) € E,
vertex 1 and vertex j are assigned different colors.

We now describe the desired mapping from an instance G = (V, E)
of Graph 3-Coloring to a set Sg of labeled examples. Sg will consist of a
set S¢ of positively labeled examples and a set Sg of negatively labeled
examples, so Sg = S& U Sg. For each 1 < i < m, S& will contain the
labeled example (v(i), 1}, where v(7) € {0,1}" is the vector with a 0 in the
ith position and 1’s everywhere else. These examples intuitively encode
the vertices of G. For each edge (i,7) € E, the set Sg will contain the
labeled example (e(%,7),0), where e(3,7) € {0,1}" is the vector with 0’s
in the ith and jth positions, and 1’s everywhere else. Figure 1.5 shows

Probably Approximately Correct Learning 21

+ —
SG SG
<011111,1> <001111,0>
<101111,1> <011011,0>
<110111,1> <011101,0>
<111011,1> <100111,0>
<111101,1> <101110,0>
<111110,1> <110110,0>

<111100,0>

TH=X2AXSI\X4I\X5

Tg =Xy AX3AXg

Ty =Xy AXy AXy AXg A Xg

Figure 1.5: A graph G with a legal 3-coloring, the associated sample, and
the terms defined by the coloring.

an example of a graph G along with the resulting sets S& and S5. The
figure also shows a legal 3-coloring of G, with R, B and Y denoting red,
blue and yellow.

We now argue that G is 3-colorable if and only if Sg is consistent
with some 3-term DNF formula. First, suppose G is 3-colorable and fix a
3-coloring of G. Let R be the set of all vertices colored red, and let T be
the conjunction of all variables in z,,...,z, whose index does not appear
in R (see Figure 1.5). Then for each 7 € R, v(z) must satisfy T because
the variable z; does not appear in Tx. Furthermore, no e(z, j) € Sz can
satisfy Tr because since both 7 and 7 cannot be colored red, one of z;
and z; must appear in Tr. We can define terms that are satisfied by
the non-blue and non-yellow v(z) in a similar fashion, with no negative
examples being accepted by any term.

For the other direction, suppose that the formula T V T V Ty 1is
consistent with Sg. Define a coloring of G as follows: the color of vertex
is red if v(2) satisfies Tg, blue if v(7) satisfies T'g, and yellow if v(z) satisfies
Ty (we break ties arbitrarily if v(z) satisfies more than one term). Since

22 Chapter 1

the formula is consistent with Sg, every v(z) must satisfy some term, and
so every vertex must be assigned a color by this process. We now argue
that it is a legal 3-coloring. To see this, note that if z and j (z # j) are
assigned the same color (say red), then both v(z) and v(j) satisfy Th.
Since the sth bit of v(7) is 0 and the sth bit of v(7) is 1, it follows that
neither z; nor Z; can appear in Tg. Since v(j) and e(s, 7) differ only in
their sth bits, if v(7) satisfies Tg then so does e(1, 7), implying e(z, 7) & Sg
and hence (z,7) ¢ E. O(Theorem 1.3)

Thus, we see that 3-term DNF formulae are not efficiently PAC learn-
able under the assumption that NP-complete problems cannot be solved
with high probability by a probabilistic polynomial-time algorithm (tech-
nically, under the assumption RP # NP). With some more elaborate
technical gymnastics, the same statement can in fact be made for 2-term
DNF formulae, and for k-term DNF formulae for any constant k > 2.

However, note that our reduction relied critically on our demand in
the definition of PAC learning that the learning algorithm output a hy-
pothesis from the same representation class from which the target for-
mula is drawn — we used each term of the hypothesis 3-term formula to
define a color class in the graph. In the next section we shall see that
this demand is in fact necessary for this intractability result, since its
removal permits an eflicient learning algorithm for this same class. This
will motivate our final modification of the definition of PAC learning.

1.5 Using 3-CNF Formulae to Avoid
Intractability

We conclude this chapter by showing that if we allow the learning algo-
rithm to output a more expressive hypothesis representation, then the
class of 3-term DNF formulae is efficiently PAC learnable. In combi-
nation with Theorem 1.3, this motivates our final modification to the
definition of PAC learning.

Probably Approximately Correct Learning 23

We can use the fact that for boolean algebra, V distributes over A
(that is, (u Av)V (wAz) = (uVw)A(uVa)A(vVw)A(vVe) for
boolean variables u,v,w, z) to represent any 3-term DNF formula over
1,...,2&n by an equivalent conjunctive normal form (CNF) formulae over
Z1,...,%n in which each clause contains at most 3 literals (we will call
such formulae 3-CNF formulae):

TivTavTz= A (uVoVaw).
u€T) weTH weTy

Here the conjunction is over all clauses choosing one literal from each
term.

We can reduce the problem of PAC learning 3-CNF formulae to the
problem of PAC learning conjunctions, for which we already have an
efficient algorithm. The high-level idea is as follows: given an oracle
for random examples of an unknown 3-CNF formula, there is a simple
and efficient method by which we can transform each positive or negative
example into a corresponding positive or negative example of an unknown
conjunction (over a larger set of variables). We then give the transformed
examples to the learning algorithm for conjunctions that we have already
described in Section 1.3. The hypothesis output by the learning algorithm
for conjunctions can then be transformed into a good hypothesis for the
unknown 3-CNF formula.

To describe the desired transformation of examples, we regard a 3-
CNF formula as a conjunction over a new and larger variable set. For
every triple of literals w,v,w over the original variable set zi1,...,2n,
the new variable set contains a variable v, , ., whose value is defined by
Yuvw = %V vV w. Note that when v = v = w, then y,,., = u, so all
of the original variables are present in the new set. Also, note that the
number of new variables y, .., is (2n)® = O(n?).

Thus for any assignment a € {0,1}" to the original variables z1,. .., z,,
we can in time O(n?®) compute the corresponding assignment a’ to the
new variables {y,, .} Furthermore, it should be clear that any 3-CNF
formula ¢ over 24, ..., 2, is equivalent to a simple conjunction ¢’ over the

24 Chapter 1

new variables (just replace any clause (u V v V w) by an occurrence of
the new variable y,,.). Thus, we can run our algorithm for conjunc-
tions from Section 1.3, expanding each assignment to zi,...,z, that is
a positive example of the unknown 3-CNF formula into an assignment
for the Yy 4,4, and giving this expanded assignment to the algorithm as a
positive example of an unknown conjunction over the y, ,.,. We can then
convert the resulting hypothesis conjunction k' over the ¥, ., back to a
3-CNF h in the obvious way, by expanding an occurrence of the variable
Yu,v,w bO the clause (u VvV w).

Formally, we must argue that if ¢ and D are the target 3-CNF for-
mula and distribution over {0,1}", and ¢’ and D’ are the corresponding
conjunction over the 9y, and induced distribution over assignments a’
to the y,4 ., then if A’ has error less than e with respect to ¢’ and T, h
has error less than e with respect to ¢ and D. This is most easily seen by
noting that our transformation of instances is one-to-one: if a; is mapped
to a} and ay is mapped to a}, then a; # a, implies a} # a}. Thus each
vector a’ on which &' differs from ¢’ has a unique preimage a on which A
differs from ¢, and the weight of @ under D is exactly that of o’ under D'
It is worth noting, however, that our reduction is exploiting the fact that
our conjunctions learning algorithm works for any distribution D, as the
distribution is “distorted” by the transformation. For example, even if D
was the uniform distribution over {0,1}", D' would not be uniform over
the transformed assignments a’.

We have just given an example of a reduction between two learn-
ing problems. A general notion of reducibility in PAC learning will be
formalized and studied in Chapter 7.

We have proven:

Theorem 1.4 The representation class of 3-CNF formulae is efficiently
PAC learnable.

Thus, because we have already shown that any 3-term DNF formula

Probably Approximately Correct Learning 25

can be written as a 3-CNF formula, we can PAC learn 3-term DNF for-
mulae if we allow the hypothesis to be represented as a 3-CNF formula,
but not if we insist that it be represented as a 3-term DNF formula!
The same statement holds for any constant k > 2 for k-term DNF for-
mulae and k-CNF formulae. This demonstrates an important principle
that often appears in learning theory: even for a fixed concept class from
which target concepts are chosen, the choice of hypothesis representation
can sometimes mean the difference between efficient algorithms and in-
tractability. The specific cause of intractability here is worth noting: the
problem of just predicting the classification of new examples of a 3-term
DNF formula is tractable (we can use a 3-CNF formula for this purpose),
but expressing the prediction rule in a particular form (namely, 3-term
DNF formulae) is hard.

This state of affairs motivates us to generalize our basic definition
one more time, to allow the learning algorithm to use a more expressive
hypothesis representation than is strictly required to represent the tar-
get concept. After all, we would not have wanted to close the book on
the learnability of 3-term DNF formulae after our initial intractability
result just because we were constrained by an artificial definition that
insisted that learning algorithms use some particular hypothesis repre-
sentation. Thus our final modification to the definition of PAC learning
lets the hypothesis representation used be a parameter of the PAC learn-
ing problem.

Definition 4 (The PAC Model, Final Definition) If C is a concept class
over X and H is a representation class over X, we will say that C is
(efficiently) PAC learnable using H if our basic definition of PAC
learning (Definition 2) is met by an algorithm that is now allowed to
output a hypothesis from H. Here we are implicitly assuming that H s
at least as expressive as C, and so there is a representation in H of every
function in C. We will refer to H as the hypothesis class of the PAC
learning algorithm.

While for the reasons already discussed we do not want to place un-

26 Chapter 1

necessary restrictions on H, neither do we want to leave H entirely uncon-
strained. In particular, it would be senseless to study a model of learning
in which the learning algorithm is constrained to run in polynomial time,
but the hypotheses output by this learning algorithm could not even be
evaluated in polynomial time. This motivates the following definition.

Definition 5 We say that the representation class H s polynomially
evaluatable if there is an algorithm that on input any instance z € X,
and any representation h € H,, outputs the value h(z) in time polynomial
inn and size(h).

Throughout our study, we will always be implicitly assuming that
PAC learning algorithms use polynomially evaluatable hypothesis classes.
Using our new language, our original definition was for PAC learning C us-
ing C, and now we shall simply say that C is efficiently PAC learnable
to mean that C is efficiently PAC learnable using H for some polynomially
evaluatable hypothesis class H.

The main results of this chapter are summarized in our new language
by the following theorem.

Theorem 1.5 The representation class of 1-term DNF formulae (con-
junctions) s efficiently PAC learnable using I-term DNF formulae. For
any constant k > 2, the representation class of k-term DNF formu-
lae s not efficiently PAC learnable using k-term DNF formulae (unless
RP = NP), but 1s efficiently PAC learnable using k-CNF formulae.

1.6 Exercises

1.1. Generalize the algorithm for the rectangle learning game to prove
that if C, is the class of all axis-aligned hyperrectangles in n-dimensional
Euclidean space R™, then C is efficiently PAC learnable.

Probably Approximately Correct Learning 27

1.2. Let f(-) be an integer-valued function, and assume that there does
not exist a randomized algorithm taking as input a graph G and a pa-
rameter 0 < § < 1 that runs in time polynomial in 1/§ and the size of
G, and that with probability at least 1 — & outputs “no” if G is not k-
colorable and outputs an f(k)-coloring of G otherwise. Then show that
for some k > 3, k-term DNF formulae are not efficiently PAC learnable
using f(k)-term DNF formulae.

1.3. Consider the following two-oracle variant of the PAC model: when
¢ € C is the target concept, there are separate and arbitrary distributions
D7 over only the positive examples of ¢ and D, over only the negative
examples of ¢. The learning algorithm now has access to two oracles
EX(¢,D;) and EX(¢,D:) that return a random positive example or
a random negative example in unit time. For error parameter ¢, the
learning algorithm must find a hypothesis satisfying Pr_ 5z [h(z) = 0] <
€ and Pr_ p-[h(z) = 1] < e. Thus, the learning algorithm may now
explicitly request either a positive or negative example, but must find a
hypothesis with small error on both distributions.

Let C be any concept class and H be any hypothesis class. Let hg
and h; be representations of the identically 0 and identically 1 functions,
respectively. Prove that C is efficiently PAC learnable using H in the
original one-oracle model if and only if C is efficiently PAC learnable
using H U {ho, b1} in the two-oracle model.

1.4. Let C be any concept class and H be any hypothesis class. Let A
and h; be representations of the identically 0 and identically 1 functions,
respectively. Show that if there is a randomized algorithm for efficiently
PAC learning C using H, then there is a deterministic algorithm for
efficiently PAC learning C using H U {ho, b1}

1.5. In Definition 2, we modified the PAC model to allow the learning
algorithm time polynomial in n and size(c), and also provided the value
size(c) as input. Prove that this input is actually unnecessary: if there is
an efficient PAC learning algorithm for C that is given size(c) as input,
then there is an efficient PAC learning algorithm for C that is not given

