A "Toy" ML Problem: Rectangles in \mathbb{R}^2

- Aliens arrive from outer space
- You’d like to teach them the concept of "medium build" for adult males (assume binary)
- You can label but not describe
Let's formalize this:

You (teacher): rectangle R in x-y plane:

- weight: 160 lbs
- weight: 180 lbs
- build: "medium"
- 5'9" - 6'10"
You generate data for aliens:

Assume: points drawn i.i.d from \(\mathcal{P} \) over \(\mathbb{R}^2 \)

Note: strong assumptions on \(\mathcal{R} \), no assumptions on \(\mathcal{P} \)
Players:

- Input domain: \mathbb{R}^2
- Model class: rectangles (binary functions)
- "Target" rectangle R
- Input distribution P

Data:
Alien (learner) goal: from data, learn a "good" hypothesis rectangle \hat{R}.

• What should "good" mean?
• What algorithm should alien use?
A Proposed Algo:

\[\hat{R} = \text{"tightest fit" to positive (+) examples.} \]

Note: exploiting our assumption that "ground truth" (R) is a rectangle!
What can we say about \hat{R}?

Claim: Viewed as sets, $\hat{R} \subseteq R$.

What about something stronger/more interesting?

Remember points are drawn i.i.d. from P.
Let's define the error of \hat{R} w.r.t. R & P:

$$\epsilon(\hat{R}) \triangleq \Pr \left[\hat{R}(x) \neq R(x) \right] \quad \text{as functions}$$

$$= P[\hat{R} \Delta R] \quad \text{as sets}$$

Claim: With "high probability", $\epsilon(\hat{R})$ is "small" as long as sample is "large enough".
Analysis

Two inputs/parameters:

- **small \(S > 0 \):**

 "with high prob" = with prob \(\geq 1 - S \) w.r.t. draw of sufficiently large sample \(S \)

- **small \(\varepsilon > 0 \):**

 "\(\varepsilon(\hat{R}) \) small" = \(\varepsilon(\hat{R}) \leq \varepsilon \)

Goal: Show that if Islam is large enough, then w.p. \(\geq 1 - S \), \(\varepsilon(\hat{R}) \leq \varepsilon \).
Remark: Note that

\[E_{S} \left[\epsilon(\hat{R}) \right] \leq (1-\delta) \epsilon + 0.1 \]

So why have both \(\epsilon \) and \(\delta \)?

\(S \): Bounds prob. of a wildly unrepresentative sample \(S \)

\(\hat{R} \): Bounds error on representative samples

\(\hat{R} \) is "probably \((\geq 1-\delta)\) approximately \((\leq \epsilon)\)"
Let's define 4 subsets of R (w.r.t. P):

\[P(\{ x \in \text{top} \}) = \frac{3}{4} \]

(Q: What if $P[R] < \frac{3}{4}$? Assume not for now.)
Similarly:

Similarly for right, bottom.

\[\text{Pr}_{x \in \text{left}} = \frac{3}{4} \]
If sample hits all of top, bottom, left, right:

Then $E(\hat{R}) \leq \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{3}{4} = 3$.
So let's define a bad sample S as one s.t. S misses any of e, r, t, b.

Goal: bound $\Pr[S \text{ is bad}]$ by δ.

- Let $m = |S| = \text{sample size}$
- Remember S i.i.d. wrt P

- $\Pr[S \text{ misses top}] = (1 - 3/4)^m$ (indep.)
- Same for b, l, r
\[\text{Pr}[S \text{ misses any of } t, l, c, r] \leq \text{Pr}[S \text{ misses top}] + \text{Pr}[S \text{ misses bottom}] + \text{Pr}[S \text{ misses left}] + \text{Pr}[S \text{ misses right}] \]

(union bound:)
\[\text{Pr}[A \text{ or } B] \leq \text{Pr}[A] + \text{Pr}[B] \]
\[\leq 4 \cdot (1 - \frac{3}{4})^m \]
So \(\Pr [s \text{ bad}] \leq \\
\left(1 - \frac{\epsilon}{4} \right)^m \), s.t. \(m \leq 8 \\
\left(1 - \frac{\epsilon}{4} \right)^m \leq 8 \\
m \ln \left(1 - \frac{\epsilon}{4} \right) \leq \ln(8/4) \\
\ln(1 - 2^{-\epsilon}) \\
= \pm 2^{-\epsilon} \) for \\
\epsilon \approx 0 \\
\therefore \ln \left(\frac{3}{4} \right) \approx \ln \left(1 - \frac{\epsilon}{4} \right) \
\[m^{3/4} \geq \frac{4}{3} \ln \left(\frac{4}{3} \right) \]

As long as \(S \) is this large, w.p. \(\geq 1-\delta \),
\[\mathbb{E}(\hat{R}) \leq \varepsilon. \]
Oh wait... what if e.g. \(P[R] < 3/4 \)?

So have a fast algo with small sample complexity and a rigorous analysis.
Proof overview:

- specify algo
- define “bad” events for algo
- bound prob. of each bad event
- take union bound
- set less than \(S \), do algebra
Extensions?

- Rectangles in \mathbb{R}^d?
- Parallelograms in \mathbb{R}^2?
- Circles? Triangles?
- Union of 2 rectangles?

Next Up:
A General Model.