"No-Regret" Learning

Imagine that...

- On each day t, we must predict on outcome $y_{t} \in\{0,1\}$
- We have a vector $X_{t} \in\{0,1\}^{n}$ of features/aduisors/experts we can use to help
- But now ve assume nothing about $\left\langle x_{t}, y_{t}\right\rangle$
- No $x_{t} \backsim p, n_{0} y_{t}=c\left|x_{t}\right\rangle$
- An arbitrary, even adversarial sequence

Detailed protocol
For $t=1, \ldots T$:

- Nature chooses $\left\langle x_{t}, y_{t}\right\rangle$
- We are showa x_{t} only
- We make prediction \hat{y}_{t}
- We are shown y_{t}
$\overline{\left\langle x_{t}, y_{t}\right\rangle \text { may dopend }}$ on all previous $\langle x, y\rangle$, our previous \hat{y}, current state our algo

Q: What could we possibly hope to dolsay?
A: When there's no link between past and future, say something about the past.

$$
\begin{aligned}
& \text { - Let } x_{t}^{i}=i^{\text {th }} \text { bit } \\
& \text { of } x_{t} \\
& \cdot l_{t}^{i}=I\left[x_{t}^{i} \neq y_{t}\right] \\
& \cdot L_{T}^{i}=\sum_{t=1}^{T} l_{t}^{i}=\text { total loss of } i
\end{aligned}
$$

Idea: On any sequence, let's try to compete with $\min \left\{\begin{array}{l}\text { 宣 } \\ \text { in }\end{array}\right.$ hindsight.

Multiplicatore Weights Algo

- Intialize $\omega_{1}^{i}=1, p_{1}^{i}=1 / n \forall i$
- For $t=1, \ldots T$:
- receive x_{t}
- draw jun Pt, predict $\tilde{y}_{t}=x_{t}^{j}$
- receive y_{t}, compute the l_{t}^{i}
$-\forall i: \omega_{t+1}^{i} \leq \omega_{t}^{i}\left(1-\eta l_{t}^{i}\right)$
$-\forall i: p_{t+1}^{i}-\omega_{t+1}^{i} / z_{t+1, w h e r e}$

$$
Z_{t+1}=\sum_{i} \omega_{t+1}^{i}
$$

- Lect

$$
\begin{aligned}
\operatorname{ct} l_{t}^{A} & =E_{P_{t}}\left[I\left[\hat{y}_{t} \neq y_{t}\right]\right] \\
L_{T}^{A} & =\sum_{t} l_{t}^{A}
\end{aligned}
$$

Idea of analysis

- L_{T}^{A} large $\Rightarrow Z_{T+1}$ small
- But $Z_{T+1} \geq$ largest weight at T (best x^{i})

Analyst's
For any t :

$$
\begin{aligned}
Z_{t+1} & =\sum_{i} \omega_{t+1}^{i} \\
& =\sum_{i} \omega_{t}^{i}\left(1-\eta l_{t}^{i}\right) \\
& =\sum_{i} \omega_{t}^{i}-\sum_{i} \omega_{t}^{i} \eta l_{t}^{i} \\
& =Z_{t}-n z_{t} \sum_{i} \frac{\omega_{t}^{i}}{Z_{t}} l_{t}^{i} \\
& =z_{t}\left(1-\eta \eta p_{t}^{i} \lambda_{t}^{i}\right) l_{t}^{n} \\
& =Z_{t}\left(1-\eta l_{t}^{A}\right) \\
\therefore Z_{T+1} & =z_{1} \prod_{t=1}^{T}\left(1-\eta l_{t}^{A}\right) \\
& =n \cdot \prod_{t}\left(1-\eta l_{t}^{A}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \ln \left(z_{T+1}\right)= \\
& \quad \ln (n)+\sum_{t} \ln \left(1-\eta l_{t}^{A}\right) \\
& \leq \ln (n)-\eta \sum_{t} l_{t}^{A}\binom{\ln (1-x))}{\leq-x} \\
& =\ln (n)-\eta L_{T}^{A}
\end{aligned}
$$

Now for any i :

$$
\left.\begin{array}{l}
Z_{T+1} \geqslant w_{T+1}^{i} \tag{2}\\
\ln \left(Z_{T+1}\right) \geqslant \ln \left(\omega_{T+1}^{i}\right) \\
=\ln \left(\prod_{t=1}^{T}\left(1-\eta l_{t}^{i}\right)\right) \\
=\sum_{t} \ln \left(1-\eta l_{t}^{i}\right) \\
\left.\geqslant \sum_{t}\left(-\eta l_{t}^{i}-\left(\eta l_{t}^{i}\right)^{2}\right)^{(l n}(1-x) \geq\right) \\
=-\eta \sum_{t}^{l} l_{t}^{i}-\eta^{2} \sum_{t}\left(l_{t}^{i}\right)^{2}\left(-x_{0}, 1, n\right.
\end{array}\right) .
$$

So:

$$
-\eta L_{T}^{i}-\eta^{2} Q_{T}^{i} \leq!\leq \ln (n)-\eta L_{T}^{A}
$$

for any:

$$
\begin{aligned}
& L_{T}^{A} \leq \frac{\ln (n)}{\eta}+L_{T}^{i}+\eta Q_{T}^{i} \\
& \leq \frac{\ln (n)}{\eta}+L_{T}^{i}+\eta T \\
& \therefore L_{T}^{A} \leq \min _{i}\left\{L_{T}^{i}\right\}+\frac{\ln (n)}{\eta}+\eta T \\
& \text { "regret" }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Now set } \frac{\ln (n)}{\eta}=\eta T \\
& \eta^{2}=\frac{\ln (n)}{T}, \eta=\sqrt{\frac{\ln (n)}{T}} \\
& \therefore \text { both terms }=\eta T \\
& =\sqrt{\frac{\ln (n)}{T}} \cdot T=\sqrt{T \ln (n)}
\end{aligned}
$$

Theorem For any sequence

$$
\begin{aligned}
& \operatorname{L}_{T}^{A} \leq \frac{\left.x_{i}, y_{t}\right\rangle,}{} \frac{\left.\left.\operatorname{Lin}_{\frac{A}{T}}^{T} \leq L_{T}^{i}\right\}+2 \sqrt{T \ln (n)} \frac{L_{T}^{i}}{T}\right\}}{\ln (n)}+\frac{\sqrt{\frac{\ln (n)}{T}}}{\text { "no regret" }} \\
& \text { "O }
\end{aligned}
$$

Discussion

- Sanity check: $n=2^{\top}$, all possible binary sequences
- If $\min \left\{L \frac{i}{T}\right\}$ is bad, we are to o
- Compare to building a model on top of x^{i}
- "BookKeeping" vs. "learning"?

Connection to PAC

- Suppose that each day
there is $\left\langle z_{t}, y_{t}\right\rangle$ up
and $x_{t}^{i}=h\left(z_{t}\right)$
- Here $h \in \mathcal{H}, \mathcal{H}$ finite
- Recall uniform convergence:
$m \backsim \frac{\log |\mathcal{H}|}{\varepsilon^{2}}$ or $\varepsilon n \sqrt{\frac{\log |z 1|}{m}}$
- $\mu \omega$ regret, $n=|\mathcal{H}|$:
$\sim \sqrt{\frac{\log 1 \mathcal{H 1}}{T}}$ (but must $\begin{gathered}\text { enumerate) }\end{gathered}$

More General Framework

- Before: $l_{t}^{i}=I\left[x_{t}^{i} \neq y_{t}\right]$
- But MW analysis only looked at lit
- So get rid of x_{t}, y_{t}
- Abstract actions $i \in\{1, \ldots n\}$
- Arbitrary $l_{t}^{i}=$ loss of ion dayltrile t
- MW just chooses an action i each day t, then learns all l_{t}^{j}, pays l_{t}^{i}.
- Identical analysis/rcsult
- l_{t}^{i} can also be real-valued

No-Regret Learning and Game Theory

Game Theory Basics

- Two players with
loss functions $l_{1}(i, j), l_{2}(i, j)$
- Player 1 chooses if chooses j
- One-shot, simultaneous move
- Players may randomize

R	P				
	0	0	1	-1	-1

Safety Levels

- /marine your opponent plays adversarially
Fact: Must exist values v_{1}, v_{2} $\$$ distributions $P_{1} P_{2}$ sit.

$$
\begin{aligned}
& \text { - } \forall Q \\
& E_{i \sim P_{1}}[l,(i, j)] \leqslant V_{1} \\
& j \sim Q \\
& \text { - } \forall \text { - } \forall Q \underset{\substack{i \sim Q \\
j \sim P_{2}}}{E}\left[l_{2}(i, j\rangle\right] \leqslant V_{2}
\end{aligned}
$$

Now imagine the game is played repeatedly for T rounds, with 1 playing no-regret and 2 arbitrarily.

What happens?

Theorem Suppose ploger 1 uses an algo A with cumulative regret $R(T)$ in T steps, and player 2 plays arbitrarily. Then the total loss $L \frac{1}{T}$ obeys:

$$
\frac{L_{T}^{\prime}}{T} \leqslant V_{1}+\frac{R(T)}{T} .
$$

Similarly

$$
\frac{L_{T}^{2}}{T} \leq V_{2}+\frac{R(T)}{T}
$$

Proof Let a_{t}^{2} be action of 2 at sk e t, and define:

$$
\hat{P}_{2}(j)=\frac{1}{T} \sum_{t} I\left[a_{t}^{2}=j\right]
$$

(empirical dist. of 2)
Then by l's safety level l,
$\nexists P_{1}$ sit. $\sum_{\substack{i=p_{1} \\ j \sim \hat{p}_{2}}}[l,(i, j)] \leqslant V_{0}$
\therefore \# fixed i^{*} sot.

$$
\frac{\operatorname{jn}_{\hat{P}_{2}}\left[l_{1}(i * j)\right]}{l}
$$

per-step loss of i^{*} in hindsight

$$
\begin{aligned}
\therefore & \text { total loss of } \\
& \text { is in hindsight } \\
& \leq V_{1} \cdot T \\
\Rightarrow & \frac{L_{T}^{\prime}}{T} \leqslant v_{1}+\frac{R(T)}{T}
\end{aligned}
$$

Zero-Sum Games

- $\forall i, j \quad l_{1}(i, j)=-l_{2}(i, j)$
- Define:

$$
\begin{aligned}
& \left.V_{1}^{\min } \triangleq \max \min E[l, l i, j)\right] \\
& P_{2} \quad i \quad j \sim P_{2} \\
& \text { (} 1 \text { moves last) } \\
& v_{1}^{\max } \triangleq \min _{P_{1}} \max _{j} E_{i n P_{1}}\left[l_{1}(i, j)\right] \\
& \text { (1 moves first) }
\end{aligned}
$$

Have $V_{1}^{\text {min }} \leqslant V_{1}^{\text {max }}, V_{2}^{\text {min }} \leqq V_{2}^{\text {max }}$

$$
\begin{aligned}
& V_{1}^{\min }=-V_{2}^{\operatorname{mox}} \\
& V_{2}^{\min }=-V_{1}^{\operatorname{mox}}
\end{aligned}
$$

Minimax Theorem:

$$
V_{1}^{\text {min }}=V_{1}^{\text {max }}, V_{2}^{\text {min }}=V_{2}^{\text {max }} \text {. }
$$

Pf. Suppose for $\Rightarrow \leftarrow$:

$$
v_{1}^{\max }=v_{1}^{\min }+\gamma, \gamma \geqslant 0 .
$$

Let both players use a no-regret algo with $R=R(T)$. Lect \hat{P}_{1}, \hat{P}_{2} be empirical distributions of algos. Note $L_{T}^{\prime}=-L_{T}^{2}$ always.

- \tilde{P}_{2} a possible chore fo-

$$
\begin{aligned}
& P_{2} \text { in } v_{1}^{\text {min }} \Rightarrow \\
& \text { total loss } \leq T_{v_{1}} \text { min possible } \\
& \left(\text { total } \leq T v_{2} \sim \text { in possible } \begin{array}{c}
\text { for } \\
\text { for }
\end{array}\right) \\
& L_{T}^{\prime} \leq T v_{i}^{u m i n}+R \text { (1) } \\
& L_{T}^{2} \leqslant T V_{2}^{m n}+R
\end{aligned}
$$

$$
\begin{aligned}
& L_{T}^{2} \leq T V_{2}^{m i n}+R \\
& -L_{T}^{\prime} \leq T V_{2}^{m i n}+R \\
& L_{T}^{\prime} \geq-T V_{2}^{m i n}-R \\
& L_{T}^{\prime} \geq T V_{1}^{m a x}-R \text { (2) } \\
& T V_{1}^{m-x}-R \leq L_{T}^{\prime} \leq T V_{6}^{m i n}+R \\
& V_{1}^{m \cdots x}-R \leq V_{1}^{m i n}+R / T \\
& V_{1}^{m+n}+r-R / T \leq V_{1}^{m i n}+R / T
\end{aligned}
$$

$$
\text { For R/Tr }{ }^{2} / 2 \text {, }=
$$

$$
L_{(. g . ~ m w a r g o)}
$$

Fur thenmore:
Against \tilde{P}_{2}, no P_{1} can beat best i, but \hat{P}_{1} almost as good Against \tilde{P}_{1}, no P_{2} can beat best j, but \hat{P}_{2} almost as good
$\therefore\left(\hat{P}_{1}, \hat{P}_{2}\right)$ is with in R / T of minimax solution ミ Nash equilibrium

Important Approximation quality depends only logarithmically on \# of actions!

