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Takeaways

There are many interesting and challenging algorithmic and modeling
problems in “traditional” financial markets
Many (online) machine learning problems driven by rich & voluminous data
Often driven by mechanism innovation & changes
Almost every type of trading operates under reasonably precise constraints
— high frequency trading: low latency, short holding period
— market-making: offers on both sides, low inventory

— optimized execution: performance tied to market data benchmarks (e.g. VWAP)
— proprietary trading/statistical arbitrage: many risk limits (Sharpe ratio, concentration, VAR)

These constraints provide structure
Yield algorithm, optimization and learning problems



Financial Markets Field Guide
(“Biodiversity” of Wall Street)

Retail traders
— individual consumers directly trading for their own accounts (e.g. EXTRADE baby)
“Buy” side
— large institutional traders: portfolio managers; mutual and pension funds; endowments
— often have precise metrics and constraints; e.g. tracking indices
— percentage-based management fee
“Sell” side
— brokerages providing trading/advising/execution services
— “program trading” - “algorithmic trading”: automated strategies for optimized execution
— profit from commissions/fees
Market-makers and specialists
— risk-neutral providers of liquidity
— (formerly) highly regulated
— profit from the “bid-ask bounce”; averse to strong directional movement
— automated market-making strategies in electronic markets (HFT)
Hedge funds and proprietary trading
— groups attempting to yield “outsized” returns on private capital (= beat the market)
— can take short positions
— relatively unregulated; but also have significant institutional investment
— heavy quant consumers: “statistical arbitrage”, modeling, algorithms
— typically take management fee and 20% of profits
All have different goals, constraints, time horizons, technology, data, connectivity...



Outline

 |. Market Microstructure and Optimized Execution
— online algorithms and competitive analysis
— reinforcement learning for optimized execution
— microstructure and market-making

 |l. Mechanism Innovation: a Case Study
— difficult trades and dark pools
— the order dispersion problem
censoring, exploration, and exploitation

 |ll. No-Regret Learning, Portfolio Optimization, and Risk
— no-regret learning and finance
— theoretical guarantees and empirical performance
— incorporating risk: Sharpe ratio, mean-variance, market benchmarks
— no-regret and option pricing



Outline

 |. Market Microstructure and Optimized Execution
— online algorithms and competitive analysis
— reinforcement learning for optimized execution
— microstructure and market-making

 |l. Mechanism Innovation: a Case Study
— difficult trades and dark pools
— the order dispersion problem
censoring, exploration, and exploitation

 |ll. No-Regret Learning, Portfolio Optimization, and Risk
— no-regret learning and finance
— theoretical guarantees and empirical performance
— incorporating risk: Sharpe ratio, mean-variance, market benchmarks
— no-regret and option pricing



Questions of Enduring Interest

How do (stock) prices “evolve™? How can we model this evolution?

— classical random walk, diffusion models + drift
* many recent empirical challenges [Lo & MacKinlay; Brock et al.]

— autoregressive time series models
« AR1, ARCH, GARCH, etc. - generalized Ito model

— computer science: adversarial/worst-case price sequences
 algorithms analyzed w.r.t. competitive ratios, regret

Can we design “adaptive” or “learning” algorithms for:
— executing difficult/large trades?
— predicting and profiting from movements of prices?
Models generally ignore market mechanism and liquidity issues
— at least in part because the data was unavailable and unreliable
This is changing rapidly... and presents challenges & opportunities



Background on Market Microstructure

Consider a typical exchange for some specific security N
Limit order: specify price (away from the market) [T MSFT w7 | (a0 ]
(Partially) Executable orders are filled immediately

— prices determined by standing orders in the book LASTMATCH  TODAY'S ACTIVITY
. . Price 23.7790 Orders 1630
— one order may execute at multiple prices Time  S0155514 Volume 44539
Non-executablle orders are placed in the buy or sell book = e
— sorted by prllcez top prlce§ are the bid and asfk SR R R
Market order: limit order with an extreme price 3087 237500 800 23.7990
- . . 200 237500 500 23.8000
Full order books visible in real time 100 237400 1720 238070
1720 237280 900 238190
What are they good for? 1
1,000 237000 1,000 23.8500
100 23.7000 1,000 23.8500
100 237000 1,000 23.8600
800 236970 200 24.0000
500 236500 500 24.0000
3,000 236500 1,000 24.0300
4300 236500 200 240300
2,000 236500 1,100 24.0400
200 236200 500 240500

(195 more) {219 more)



Optimized Trade Execution

« Canonical execution problem: sell V shares in T time steps
— must place market order for any unexecuted shares at time T
— also known as “one-way trading” (OWT)
— trade-off between price, time... and liquidity

* Problem is ubiquitous

* Multiple performance criteria:
— Maximum Price:

« compare revenue to max execution price in hindsight

* O(log(R)) competitive ratios in infinite liquidity, adversarial price model
— R =a priori bound on ratio of max to min execution price
— [El-Yaniv, Fiat, Karp & Turpin]

— Volume Weighted Average Price (VWAP):
« compare to per-share average price of executions in hindsight
« widely used on Wall Street; reduces risk sources to execution
* Dby definition, must track prices and volumes
— Implementation Shortfall:
« compare per-share price to mid-spread price at start of trading interval
* an unrealizable ideal



An Online Microstructure Model

« Market places a sequence of price-volume limit orders:
- M=p_1v.1),(p 2Vv 2),..,(p_Tyv_T) (+ordertypes)
— possibly adversarial; also consider various restrictions
— need to assume bound on p_max/p_min =R

« Algorithm is allowed to interleave its own limit orders:

Time  9:01:55.614 Yolume 44 839

— A=(q_1,w_1),(9_2,w_2),...,(q_T,w_T) (+ order types)

- Merged sequence determines executions and order boOoks—— =i ‘i
— merge(M,A)=(p_1,v_ 1), (q_1,w_1),...,(p_T,v.T), (g T,w_T) 100 28740 1720 225070

1,720 237280 900 23.8190

— assuming zero latency To00 227000 1000 235500
— now have complex, high-dimensional state 100 237000 1000 235000
« how to simplify/summarize? S0 220500 500 240000

3,000 236500 1,000 24.0300
4,300 236500 200 24.0300
2,000 236500 1,100 24.0400
200 236200 500 24.0500
{195 more) (219 more)



What Can Be Done?

[Kakade, K., Mansour, Ortiz ACM EC 2004]
 Maximum Price:
— O(log(R)) infinite liquidity model = O(log(R)log(V)) in limit order model
— quantifies worst-case market impact of large trades
— ifp_1>p_2>... are execution prices, randomly “guess” max{kp_k}
— note: optimal offline algorithm unknown!
- VWAP:
— O(log(Q)) in limit order model

» Q = ratio of max to min total executed volume on allowed sequences
* Q often small empirically; can exploit (entropic) distributional features

— Better: trade V over >= YV executed shares, Y is max order size
« VWAP “with volume” instead of “with time”
— Can approach competitive ratio of 1 for large V!

— Sketch of algorithm/analysis:
 divide time into equal (executed) volume intervals |_1,1 2,...

» place sell order for 1 share at ~ (1-€)*k nearest VWAP_j

« if all orders executed, are within (1-¢) of overall VWAP
« can't “strand” more than one order at any given price level

* optimize €
« None of these algorithms “look” in the order books!



Limitations of the Book?

Even offline revenue maximization is NP-complete

— advance knowledge of sequence of arriving limit orders
— [Chang and Johnson, WINE 2008]

Instability of limit order dynamics
— relative price formation model (market-making, HFT)

— small “tweaks” to order sequence can cause large changes in macroscopic quantities
— e.g. VWAP, volume traded

— “butterfly effects” and discrete chaos
— [Even-Dar, Kakade, K., Mansour ACM EC 2006]

What about empirically?



Reinforcement Learning for
Optimized Execution

« Basic idea: execution as state-based stochastic optimal control
— state: time and shares remaining... what else?
— actions: position(s) of orders within the book
— rewards: prices received for executions
— stochastic: because same state may evolve differently in time

« Large-scale application of RL to microstructure

* Related work:
— Bertsimas and Lo
— Coggins, Blazejewski, Aitken
— Moallemi, Van Roy



Experimental Details
[Nevmyvaka, Feng, K. ICML 2006]

Stocks: AMZN, NVDA, QCOM (varying liquidities)
Full OB reconstruction from historical data
V = 5K and 10K shares
— divided into 1, 4 or 8 levels of observed discretization
T =2 and 8 mins
— divided into 4 or 8 decision points
Explored a variety of OB state features
Learned optimal strategy on 1 year of INET training data
Tested strategy on subsequent 6 months of test data
Objective function:

— basis points compared to all shares traded at initial spread midpoint
« implementation shortfall; an unattainable ideal (infinite liquidity assumption)

Same basic RL framework can be applied much more broadly
— e.g. “‘market-making” strategies [Chan, Kim, Shelton, Poggio]



A Baseline Strategy: Optimized Submit-and-Leave
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Private State Variables Only: Time and Inventory Remaining
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T=41=1 |27.16% |T=8I=1 31.15%
T=41=4 |30.99% |T=81=4 34.90%

T=41=8 |31.59% |T=8 I=8 35.50%




Improvement From Order Book Features

Bid Volume -0.06% | Ask Volume -0.28%
Bid-Ask Volume Misbalance 0.13% | Bid-Ask Spread 7.97%
Price Level 0.26% | Immediate Market Order Cost 4.26%
Signed Transaction Volume 2.81% | Price Volatility -0.55%
Spread Volatility 1.89% | Signed Incoming Volume 0.59%
Spread + Immediate Cost 8.69% | Spread+ImmCost+Signed Vol | 12.85%




Microstructure and Market-Making

« Canonical market-making:
— always maintain outstanding buy & sell limit orders; can adjust spread
— if a buy-sell pair executed, earn the spread
— only one side executed: accumulation of risk/inventory
— may have to liquidate inventory at a loss at market close

* A simple model, algorithm and result:
— price time series p_O0,...,p_T, whered t=|p_{t+1} — p_t| < D, infinite liquidity
— algorithm maintains ladder of matched order pairs up to depth D
— letz=p T -p_0 (global price change) and K =\sum_t d_t (sum of local changes)
— then profit = K- z*2
— +/-1 random walk (Brownian): profit = 0
— but profit > 0 on any “mean-reverting” time series
— [Chakraborty and K., ACM EC 2011]

« Learning and market-making: Sanmay Das and colleagues
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Modern "Light” Exchanges

refresh | island home | disclaimer | help

Major disadvantage: executing very large orders ~ oerstonk
* distributing over time and venues insufficient ELL U T
* many buy-side parties are "compelled”

Thus the advent of ... Dark Pools LAST MATCH  TODAY'S ACTIVITY
* specify side and volume only T SOMSSSI Voums  44f
* no price, execution by time priority

BUY ORDERS SELL ORDERS

* pr'ice gener'ally pegged 1-0 Iigh* mideinT SHARES PRICE SHARES PRICE
* not seeking price improvement, just execution 1000 23.7600 100 23.7800

|

. . 3087 237500 800 237990
*only learn (partial) fill for your order 200 237500 500 238000
100 237400 1720 238070
1720 237280 900 238190
2000 237200 200 23.8500
1,000 237000 1,000 238500
100 237000 1,000 238500
100 237000 1,000 238600
800 236970 200 24.0000
500 236500 500 24.0000
3000 236500 1,000 240300
4300 236500 200 24.0300
2000 236500 1,100 24.0400
200 236200 500 240500

(195 more) (219 more)
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By SARAH N. LYNCH

WASHINGTON - The Securities and Exchange Commission unanimously agreed Wednesday
to consider three proposals aimed at shedding mare light on non-public electronic trading
entities including dark pools, which match big stock orders privately.

The proposals would reguire dark pools to make information about an investor's interest in

buying or selling a stock available to the public instead of only sharing it with a select group
operating with a dark pool. They would also require dark pools to publicly identify if their poal
executes a trade.

“We should never underestimate or take for granted the wide
spectrum of benefits that come from transparency," SEC Chairman
Mary Schapiro said. "Transparency plays a vital role in promating
public confidence in the honesty and integrity of financial markets."

Dark pools, a type of altemative trading system that doesnt display
quotes to the public, are just one part of a broader probe the SEC is
conducting into market structures. Recently, the SEC also voted to
consider banning flash orders, which let some traders get a sneak
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The Dark Pool (Allocation) Problem

Given a sequence or distribution of “client” or parent orders, how should we
distribute the desired volumes over a large number of dark pools?
(a.k.a. Smart Order Routing (SOR))

May initially know little about relative quality/properties of pools
* may be specific to name, volatility, volume,...
* ..a learning problem
* (related to "newsvendor problem” from OR)

To simplify things, will generally assume:
* client orders all on one side (e.g. selling)
* client orders come i.i.d. from a fixed distribution
..even though our "child" submissions to pools will not be i.i.d.
* statistical properties of a given pool are static

All can be relaxed in various ways, at the cost of complexity



Modeling Available Volume: Single Pool

v shares submitted

draw s ~ P
Z execute min(v,s)
5 censored observations
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Multiple Pools

Client volume V

Allocate...
..How?
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-

Pool 2
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A Statistical Sub-Problem

From a given pool P[s], we observe a sequence of censored executions
At time T, we submitted v(t) shares and s(t) <= v(t) were executed

Q: What is the maximum likelihood estimate of P[s]?
A: The Kaplan-Meier estimator from biostatistics and survival analysis
* start with empirical distribution of uncensored observations
* process censored observations from largest to smallest
* distribute over larger values proportional o their current weight
Known to converge to P[s] asymptotically under i.i.d. submissions
* also need support conditions on submission distribution
* for us, i.i.d. violated by dependence between venue submissions
Can prove and use a stronger lemma (paraphrased):
* for any volume s, [P[s] - P'[s]| ~ 1/sqrt(N(s))
* N(s) ~ number of times we have submitted > s shares
For analysis only, define a cut-off c[i] for each venue distribution P_i:
* we "know" P_i[s] accurately for s <= c[i]
* may know little or nothing above cf[i]
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The Learning Algorithm and Analysis
[Ganchev, K., Nevmyvaka, Wortman UAL, CACM]
Algorithm:
initialize estimated distributionsP'_1,P' 2,..,P' k
repeat:
* compute greedy optimal allocations to each venue given the P'_i
* use censored executions to re-estimate P'_i using optimistic K-M
Analysis:
* if allocation to every venue i is < c[i], already near-optimal;
know “enough” about the P_i to make this allocation ("exploit")
* if for some venue j, submitted volume > c[j], we "explore”;
so eventually c[j] will increase > improve P'_j
*optimistic: slight tail modification ensures always exploit/explore
* analogy to E"3/RMAX family for RL

Main Theorem: algorithm efficiently converges to near-optimal

* non-parametric and parametric versions
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Basic Framework

An underlying universe of K assets U ={S_1,...,S_K}

Goal: manage a “profitable” portfolio over U
— each trading period S_i grows/shrinks q_i = (1+r_i), r_i in [-1,infinity]
— we maintain a distribution w of wealth, fraction w_iin S_i
— all quantities indexed (superscripted) by time t

Traditionally: K assets are long positions in common stocks

More generally: K assets are any collection of investment instruments:

— long and short positions in common stocks, cash, futures, derivatives

— technical trading strategies, pairs strategies, etc.

— generally need instruments/performance to be “stateless”. can be entered at any time
How do we measure performance relative to U?

— average return (~“the market”): place 1/K of initial wealth in each S_i and leave it there

— Uniform Constant Rebalanced Portfolio (UCRP): set w_i = 1/K and rebalance every period
exponential growth (factor 9/8)on S_1=(1,1,1,1,1.....)and S_2 =(2,1/2,2,1/2,...); reversion effect

— Best Single Stock (BSS) in hindsight
— Best Constant Rebalanced Portfolio (BCRP) in hindsight
— Note: must place some restrictions on comparison class



Online Algorithms: Theory

Assume nothing about sequence of returns r_i (except maybe max loss)
On arbitrary sequence rM,...r*T, algorithm A dynamically adjusts portfolio w”1,...,w”t
Compare cumulative return of A to BSS or BCRP (in hindsight)
Powerful families of no-regret algorithms: for all sequences,
— Return(A)/T >= Return(BSS)/T — O(sqrt(log(K)/T))
— orlog(A’s wealth)/T >= log(BCRP wealth)/T — O(K/T) (Cover’s algorithm; exponential growth)
— ‘“complexity penalty” for large K; per-step regret is vanishing with T
How is this possible?

— note: for this to be interesting, need BSS or BCRP to strongly outperform the average



Cover’s Algorithm

K stocks, T periods
W_t(p) = wealth of portfolio/distribution p after t periods
Invest initial wealth uniformly across all CRPs and leave it
Equivalent:

— initial portfolio p_1 = (1/K,...,1/K)

—  p_{t+1} =\integral_{p} W_t(p)p dpAintegral_{p} W _t(p) dp
Learning at the stock level, but not at the portfolio level!
Now let p* maximize W(p*) = W_T(p*) (BCRP in hindsight)

Then for any c: W(A) >= r*K (1-n)*T W(p*)
— r*K: amount of weight in r-ball around p*
—  (1-nAT: if p is within r of p*, must make at worst factor (1-r) less at each period
Picking r = 1/T: W(A) >= (1/T)*K (1 = 1/T) T W(p*) ~ (1/T)*K W(p*)
So log W(A) >=log W(p*) —Klog T
Only interesting for exponential growth



Tractable Algorithms

Most update weights multiplicatively, not additively
Flavor of a typical algorithm (e.g. Exponential Weights):
— Ww_i € exp(n*r_i)w_i, renormalize
One (crucial) parameter: learning rate n
— for the theory, need to optimize n ~ 1/sqrt(T)
— generally are assuming momentum rather than mean reversion
— note: 1 =0 (no learning) is UCRP; a form of mean reversion
— value of n also strongly influences portfolio concentration = variance/risk

Let’s look at some empirical performance



Data Period: early 2005 — end 2011 (~7 years)

Underlying Instruments: stocks in S&P 500 (selection bias)
Daily (closing) returns
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long and short position
UCRP long only: magenta
UCRP short only: yellow
Cover’s algorithm: red
Exponential Weights: green
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What About Risk?

Sharpe Ratio = (mean of returns)/(standard deviation of returns)
Mean-Variance (MV) criterion = mean — variance

Maximum Drawdown; Value at Risk (VaR)

Concentration limits

Market index/average as a lower bound



Some Relevant Theory

What about no regret compared to BSS in hindsight w.r.t. risk-return metrics?
— e.g. BSS Sharpe, BSS M-V,...
— can prove any online algorithm must have constant regret...
— ...in fact, even offline competitive ratio must be constant
— variance constraints introduce switching costs or state
— [Even-Dar, K., Wortman ALT 2006]
But can preserve traditional no-regret with benchmarking to average
— additive reward setting
— guarantee O(sqrt(T)) cumulative regret to best, O(1) to average
— ldea: only increase m as data “proves” best will beat average

— worst case: track the market
— [Even-Dar, K, Mansour, Wortman COLT 2007]

“State” generally ruins no-regret theory
Lots of room for innovation/improvement



No-Regret and Option Pricing

Option (European call): right, but not obligation, to purchase shares at a fixed
price and future time

E.g. AAPL now trading ~$546; option to purchase at $600 in a year

Option should cost something --- but what?
— depends on uncertainty/fluctuations

Black-Scholes:
— assume future price evolution follows geometric Brownian motion
— B: borrow money to buy options now; if options “in the money”, exercise and pay back loan
— S: sell options now for cash; if options in the money, pay counterparty
— correct option price: neither B nor S has positive expected profit

What if the future price evolution is arbitrary?

DeMarzo, Kremer, Mansour STOC 06:

— hedging strategy that has no regret to option payoff
— multiplicative weight update algorithm

Abernethy, Frongillo, Wibisono STOC 2012:

— view option pricing as an adversarial game
— minimax price is same as Black-Sholes under Brownian motion!

More complex derivatives with asymmetric info may be intractable to price
— “pay 13 if AAPL price increases x% where x matches last two digits of a prime factor of N”

— intractability of planted dense subgraph - difficulty in pricing natural derivatives (e.g. CDS)
— Arora, Barak, Brunnermeier, Ge



Conclusions

Many algorithmic challenges in modern finance

Lower level: market microstructure, optimized execution metrics & problems
Higher level: portfolio optimization, option pricing, no-regret algorithms

New market mechanisms lead to new algorithmic challenges (e.g. dark pools)









