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Takeaways 
•  There are many interesting and challenging algorithmic and modeling 

problems in “traditional” financial markets 
•  Many (online) machine learning problems driven by rich & voluminous data 
•  Often driven by mechanism innovation & changes 
•  Almost every type of trading operates under reasonably precise constraints 

–  high frequency trading: low latency, short holding period 
–  market-making: offers on both sides, low inventory 
–  optimized execution: performance tied to market data benchmarks (e.g. VWAP) 
–  proprietary trading/statistical arbitrage: many risk limits (Sharpe ratio, concentration, VAR) 

•  These constraints provide structure 
•  Yield algorithm, optimization and learning problems 



Financial Markets Field Guide 
(“Biodiversity” of Wall Street) 

•  Retail traders 
–  individual consumers directly trading for their own accounts (e.g. E*TRADE baby) 

•  “Buy” side 
–  large institutional traders: portfolio managers; mutual and pension funds; endowments 
–  often have precise metrics and constraints; e.g. tracking indices 
–  percentage-based management fee 

•  “Sell” side 
–  brokerages providing trading/advising/execution services 
–  “program trading”  “algorithmic trading”: automated strategies for optimized execution 
–  profit from commissions/fees  

•  Market-makers and specialists 
–  risk-neutral providers of liquidity 
–  (formerly) highly regulated 
–  profit from the “bid-ask bounce”; averse to strong directional movement 
–  automated market-making strategies in electronic markets (HFT) 

•   Hedge funds and proprietary trading 
–  groups attempting to yield “outsized” returns on private capital (= beat the market) 
–  can take short positions 
–  relatively unregulated; but also have significant institutional investment 
–  heavy quant consumers: “statistical arbitrage”, modeling, algorithms 
–  typically take management fee and 20% of profits 

•  All have different goals, constraints, time horizons, technology, data, connectivity… 



Outline 

•  I. Market Microstructure and Optimized Execution 
–  online algorithms and competitive analysis 
–  reinforcement learning for optimized execution 
–  microstructure and market-making 

•  II. Mechanism Innovation: a Case Study 
–  difficult trades and dark pools 
–  the order dispersion problem 
–  censoring, exploration, and exploitation 

•  III. No-Regret Learning, Portfolio Optimization, and Risk 
–  no-regret learning and finance 
–  theoretical guarantees and empirical performance 
–  incorporating risk: Sharpe ratio, mean-variance, market benchmarks 
–  no-regret and option pricing 
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Questions of Enduring Interest 
•  How do (stock) prices “evolve”? How can we model this evolution? 

–  classical random walk, diffusion models + drift 
•  many recent empirical challenges [Lo & MacKinlay; Brock et al.] 

–  autoregressive time series models 
•  AR1, ARCH, GARCH, etc.  generalized Ito model 

–  computer science: adversarial/worst-case price sequences 
•  algorithms analyzed w.r.t. competitive ratios, regret 

•  Can we design “adaptive” or “learning” algorithms for: 
–  executing difficult/large trades? 
–  predicting and profiting from movements of prices? 

•  Models generally ignore market mechanism and liquidity issues 
–  at least in part because the data was unavailable and unreliable 

•  This is changing rapidly… and presents challenges & opportunities 



Background on Market Microstructure 

•  Consider a typical exchange for some specific security 
•  Limit order: specify price (away from the market) 
•  (Partially) Executable orders are filled immediately 

–  prices determined by standing orders in the book 
–  one order may execute at multiple prices 

•  Non-executable orders are placed in the buy or sell book  
–  sorted by price; top prices are the bid and ask 

•  Market order: limit order with an extreme price 
•  Full order books visible in real time 
•  What are they good for? 



Optimized Trade Execution 
•  Canonical execution problem: sell V shares in T time steps 

–  must place market order for any unexecuted shares at time T 
–  also known as “one-way trading” (OWT) 
–  trade-off between price, time… and liquidity 

•  Problem is ubiquitous 
•  Multiple performance criteria: 

–  Maximum Price: 
•  compare revenue to max execution price in hindsight 
•  O(log(R)) competitive ratios in infinite liquidity, adversarial price model 

–  R = a priori bound on ratio of max to min execution price 
–  [El-Yaniv, Fiat, Karp & Turpin] 

–  Volume Weighted Average Price (VWAP): 
•  compare to per-share average price of executions in hindsight 
•  widely used on Wall Street; reduces risk sources to execution 
•  by definition, must track prices and volumes 

–  Implementation Shortfall: 
•  compare per-share price to mid-spread price at start of trading interval 
•  an unrealizable ideal 



An Online Microstructure Model 

•  Market places a sequence of price-volume limit orders: 
–  M = (p_1,v_1),(p_2,v_2),…,(p_T,v_T)   (+ order types) 
–  possibly adversarial; also consider various restrictions 
–  need to assume bound on p_max/p_min = R 

•  Algorithm is allowed to interleave its own limit orders: 
–  A = (q_1,w_1),(q_2,w_2),…,(q_T,w_T) (+ order types) 

•  Merged sequence determines executions and order books: 
–  merge(M,A) = (p_1,v_1), (q_1,w_1),…, (p_T,v_T), (q_T,w_T) 
–  assuming zero latency 
–  now have complex, high-dimensional state 

•  how to simplify/summarize? 



What Can Be Done? 
[Kakade, K., Mansour, Ortiz ACM EC 2004] 

•  Maximum Price: 
–  O(log(R)) infinite liquidity model  O(log(R)log(V)) in limit order model 
–  quantifies worst-case market impact of large trades 
–  if p_1 > p_2 >… are execution prices, randomly “guess” max{kp_k} 
–  note: optimal offline algorithm unknown! 

•  VWAP: 
–  O(log(Q)) in limit order model 

•  Q = ratio of max to min total executed volume on allowed sequences  
•  Q often small empirically; can exploit (entropic) distributional features 

–  Better: trade V over >= γV executed shares, γ is max order size 
•  VWAP “with volume” instead of “with time” 

–  Can approach competitive ratio of 1 for large V ! 
–  Sketch of algorithm/analysis: 

•  divide time into equal (executed) volume intervals I_1, I_2,… 
•  place sell order for 1 share at ~ (1-ε)^k nearest VWAP_j 

•  if all orders executed, are within (1-ε) of overall VWAP 
•  can’t “strand” more than one order at any given price level 
•  optimize ε 

•  None of these algorithms “look” in the order books! 



Limitations of the Book? 

•  Even offline revenue maximization is NP-complete 
–  advance knowledge of sequence of arriving limit orders 
–  [Chang and Johnson, WINE 2008] 

•  Instability of limit order dynamics 
–  relative price formation model (market-making, HFT) 
–  small “tweaks” to order sequence can cause large changes in macroscopic quantities 
–  e.g. VWAP, volume traded 
–  “butterfly effects” and discrete chaos 
–  [Even-Dar, Kakade, K., Mansour ACM EC 2006] 

•  What about empirically? 



Reinforcement Learning for  
Optimized Execution 

•  Basic idea: execution as state-based stochastic optimal control 
–  state: time and shares remaining… what else? 
–  actions: position(s) of orders within the book 
–  rewards: prices received for executions 
–  stochastic: because same state may evolve differently in time 

•  Large-scale application of RL to microstructure 
•  Related work: 

–  Bertsimas and Lo 
–  Coggins, Blazejewski, Aitken 
–  Moallemi, Van Roy 



Experimental Details 
[Nevmyvaka, Feng, K. ICML 2006] 

•  Stocks: AMZN, NVDA, QCOM (varying liquidities) 
•  Full OB reconstruction from historical data 
•  V = 5K and 10K shares 

–  divided into 1, 4 or 8 levels of observed discretization 
•  T = 2 and 8 mins 

–  divided into 4 or 8 decision points 
•  Explored a variety of OB state features 
•  Learned optimal strategy on 1 year of INET training data 
•  Tested strategy on subsequent 6 months of test data 
•  Objective function:  

–  basis points compared to all shares traded at initial spread midpoint 
•  implementation shortfall; an unattainable ideal (infinite liquidity assumption) 

•  Same basic RL framework can be applied much more broadly 
–  e.g. “market-making” strategies [Chan, Kim, Shelton, Poggio] 



A Baseline Strategy: Optimized Submit-and-Leave 

Shortfall vs. Limit Price 

Risk vs. Limit Price 

Efficient Frontier 

deep in OB M.O. at start 

[Nevmyvaka, K., Papandreou, Sycara IEEE CEC 2005] 



Private State Variables Only: Time and Inventory Remaining 

T=4 I=1 27.16% T=8 I=1 31.15% 

T=4 I=4 30.99% T=8 I=4 34.90% 

T=4 I=8 31.59% T=8 I=8 35.50% 

Average Improvement Over Optimized Submit-and-Leave 



Bid Volume -0.06% Ask Volume -0.28% 

Bid-Ask Volume Misbalance 0.13% Bid-Ask Spread 7.97% 
Price Level 0.26% Immediate Market Order Cost 4.26% 

Signed Transaction Volume 2.81% Price Volatility -0.55% 

Spread Volatility 1.89% Signed Incoming Volume 0.59% 

Spread + Immediate Cost 8.69% Spread+ImmCost+Signed Vol 12.85% 

Improvement From Order Book Features 



Microstructure and Market-Making 

•  Canonical market-making: 
–  always maintain outstanding buy & sell limit orders; can adjust spread 
–  if a buy-sell pair executed, earn the spread 
–  only one side executed: accumulation of risk/inventory 
–  may have to liquidate inventory at a loss at market close 

•  A simple model, algorithm and result: 
–  price time series p_0,…,p_T, where d_t = |p_{t+1} – p_t| < D, infinite liquidity 
–  algorithm maintains ladder of matched order pairs up to depth D 
–  let z = p_T – p_0 (global price change) and K = \sum_t d_t (sum of local changes) 
–  then profit = K – z^2 
–  +/-1 random walk (Brownian): profit = 0 
–  but profit > 0 on any “mean-reverting” time series 
–  [Chakraborty and K., ACM EC 2011] 

•  Learning and market-making: Sanmay Das and colleagues 
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Modern “Light” Exchanges 
Major disadvantage: executing very large orders 

* distributing over time and venues insufficient 
* many buy-side parties are “compelled” 

Thus the advent of… Dark Pools 
* specify side and volume only  
* no price, execution by time priority 
* price generally pegged to light midpoint 
* not seeking price improvement, just execution 
* only learn (partial) fill for your order 





   TORA Crosspoint 
    Instinet 
    SmartPool 
    Posit/MatchNow from Investment Technology Group (ITG) 
    Liquidnet 
    NYFIX Millennium 
    Pulse Trading BlockCross 
    RiverCross 
    Pipeline Trading Systems 
    Barclays Capital - LX Liquidity Cross 
    BNP Paribas 
    BNY ConvergEx Group 
    Citi - Citi Match 
    Credit Suisse - CrossFinder 
    Fidelity Capital Markets 
    GETCO - GETMatched 
    Goldman Sachs SIGMA X 
    Knight Capital Group - Knight Link, Knight Match 
    Deutsche Bank Global Markets - DBA(Europe), SuperX ATS (US) 
    Merrill Lynch – MLXN 
    Morgan Stanley 
    Nomura - Nomura NX 

    UBS Investment Bank 
    Ballista ATS Ballista Securities LLC 
    BlocSec[citation needed] 
    Bloomberg Tradebook (an affiliate of Bloomberg L.P.) 
    Daiwa – DRECT 
    BIDS Trading - BIDS ATS 
    LeveL ATS 
    International Securities Exchange 
    NYSE Euronext 
    BATS Trading 
    Direct Edge 
    Swiss Block 
    Nordic@Mid 
    Chi-X 
    Turquoise 
    Bloomberg Tradebook 
    Fidessa - Spotlight 
    SuperX+ – Deutsche Bank 
    ASOR – Quod Financial 
    Progress Apama 
    ONEPIPE – Weeden & Co. & Pragma Financial 
    Xasax Corporation 
    Crossfire – Credit Agricole Cheuvreux 



The Dark Pool (Allocation) Problem 
Given a sequence or distribution of “client” or parent orders, how should we 

distribute the desired volumes over a large number of dark pools? 
(a.k.a. Smart Order Routing (SOR)) 

May initially know little about relative quality/properties of pools 
* may be specific to name, volatility, volume,… 
* …a learning problem 
* (related to “newsvendor problem” from OR) 

To simplify things, will generally assume: 
* client orders all on one side (e.g. selling) 
* client orders come i.i.d. from a fixed distribution 

…even though our “child” submissions to pools will not be i.i.d. 
* statistical properties of a given pool are static 

All can be relaxed in various ways, at the cost of complexity 
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Modeling Available Volume: Single Pool 

P[s] 

 v shares submitted 
 draw s ~ P 
 execute min(v,s) 
 censored observations 



Pool 1 

Pool 2 

Pool 3 

Pool 4 

Multiple Pools 

Client volume V 
v2 shares 

Allocate… 
…How? 



A Statistical Sub-Problem 

From a given pool P[s], we observe a sequence of censored executions 
At time t, we submitted v(t) shares and s(t) <= v(t) were executed 

Q: What is the maximum likelihood estimate of P[s]? 
A: The Kaplan-Meier estimator from biostatistics and survival analysis 

* start with empirical distribution of uncensored observations 
* process censored observations from largest to smallest 
* distribute over larger values proportional to their current weight 

Known to converge to P[s] asymptotically under i.i.d. submissions 
* also need support conditions on submission distribution 
* for us, i.i.d. violated by dependence between venue submissions 

Can prove and use a stronger lemma (paraphrased): 
* for any volume s, |P[s] – P’[s]| ~ 1/sqrt(N(s)) 
* N(s) ~ number of times we have submitted > s shares 

For analysis only, define a cut-off c[i] for each venue distribution P_i:  
* we “know” P_i[s] accurately for s <= c[i]  
* may know little or nothing above c[i] 





The Learning Algorithm and Analysis 
[Ganchev, K., Nevmyvaka, Wortman UAI, CACM] 

Algorithm: 
initialize estimated distributions P’_1, P’_2,…, P’_k 
repeat: 

* compute greedy optimal allocations to each venue given the P’_i 
* use censored executions to re-estimate P’_i using optimistic K-M 

Analysis: 
* if allocation to every venue i is < c[i], already near-optimal; 

know “enough” about the P_i to make this allocation (“exploit”) 
* if for some venue j, submitted volume > c[j], we “explore”; 

so eventually c[j] will increase  improve P’_j 
* optimistic: slight tail modification ensures always exploit/explore 
* analogy to E^3/RMAX family for RL 

Main Theorem: algorithm efficiently converges to near-optimal 
* non-parametric and parametric versions 



Algorithm vs. Uniform Allocation 



Algorithm vs. Ideal Allocation 



Algorithm vs. Bandits* 

* Nice no-regret follow-up: Agarwal, Barlett, Dama AISTATS 2010 
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Basic Framework 
•  An underlying universe of K assets U = {S_1,…,S_K} 
•  Goal: manage a “profitable” portfolio over U 

–  each trading period S_i grows/shrinks q_i = (1+r_i), r_i in [-1,infinity] 
–  we maintain a distribution w of wealth, fraction w_i in S_i 
–  all quantities indexed (superscripted) by time t 

•  Traditionally: K assets are long positions in common stocks 
•  More generally: K assets are any collection of investment instruments: 

–  long and short positions in common stocks, cash, futures, derivatives 
–  technical trading strategies, pairs strategies, etc.  
–  generally need instruments/performance to be “stateless”: can be entered at any time 

•  How do we measure performance relative to U? 
–  average return (~“the market”): place 1/K of initial wealth in each S_i and leave it there 
–  Uniform Constant Rebalanced Portfolio (UCRP): set w_i = 1/K and rebalance every period 

•  exponential growth (factor 9/8) on S_1 = (1,1,1,1,1…..) and S_2 = (2,1/2,2,1/2,…); reversion effect 
–  Best Single Stock (BSS) in hindsight 
–  Best Constant Rebalanced Portfolio (BCRP) in hindsight 
–  Note: must place some restrictions on comparison class 



Online Algorithms: Theory 
•  Assume nothing about sequence of returns r_i (except maybe max loss) 
•  On arbitrary sequence r^1,…r^T, algorithm A dynamically adjusts portfolio w^1,…,w^t 
•  Compare cumulative return of A to BSS or BCRP (in hindsight) 
•  Powerful families of no-regret algorithms: for all sequences, 

–  Return(A)/T >= Return(BSS)/T – O(sqrt(log(K)/T)) 
–  or log(A’s wealth)/T >= log(BCRP wealth)/T – O(K/T) (Cover’s algorithm; exponential growth) 
–  “complexity penalty” for large K; per-step regret is vanishing with T 

•  How is this possible? 
–  note: for this to be interesting, need BSS or BCRP to strongly outperform the average 



Cover’s Algorithm 

•  K stocks, T periods 
•  W_t(p) = wealth of portfolio/distribution p after t periods 
•  Invest initial wealth uniformly across all CRPs and leave it 
•  Equivalent:  

–  initial portfolio p_1 = (1/K,…,1/K) 
–  p_{t+1} = \integral_{p} W_t(p)p dp/\integral_{p} W_t(p) dp 

•  Learning at the stock level, but not at the portfolio level! 
•  Now let p* maximize W(p*) = W_T(p*) (BCRP in hindsight) 
•  Then for any c: W(A) >= r^K (1-r)^T W(p*) 

–  r^K: amount of weight in r-ball around p* 
–  (1-r)^T: if p is within r of p*, must make at worst factor (1-r) less at each period 

•  Picking r = 1/T: W(A) >= (1/T)^K (1 – 1/T)^T W(p*) ~ (1/T)^K W(p*) 
•  So log W(A) >= log W(p*) – K log T 
•  Only interesting for exponential growth 



Tractable Algorithms 

•  Most update weights multiplicatively, not additively 
•  Flavor of a typical algorithm (e.g. Exponential Weights): 

–  w_i  exp(η*r_i)w_i, renormalize 
•  One (crucial) parameter: learning rate η	



–  for the theory, need to optimize η ~ 1/sqrt(T) 
–  generally are assuming momentum rather than mean reversion 
–  note: η = 0 (no learning) is UCRP; a form of mean reversion 
–  value of η also strongly influences portfolio concentration  variance/risk 

•  Let’s look at some empirical performance 



Data Period: early 2005 – end 2011 (~7 years) 
Underlying Instruments: stocks in S&P 500 (selection bias) 
Daily (closing) returns 
Wealth of investing $1 in each stock 



long positions only 
UCRP: magenta 
Cover’s algorithm: red 
Exponential Weights (optimized): green 



long and short position 
UCRP long only: magenta 
UCRP short only: yellow 
Cover’s algorithm: red 
Exponential Weights: green 





What About Risk? 

•  Sharpe Ratio = (mean of returns)/(standard deviation of returns) 
•  Mean-Variance (MV) criterion = mean – variance 
•  Maximum Drawdown; Value at Risk (VaR) 
•  Concentration limits 
•  Market index/average as a lower bound 



Some Relevant Theory 
•  What about no regret compared to BSS in hindsight w.r.t. risk-return metrics? 

–  e.g. BSS Sharpe, BSS M-V,… 
–  can prove any online algorithm must have constant regret… 
–  …in fact, even offline competitive ratio must be constant 
–  variance constraints introduce switching costs or state 
–  [Even-Dar, K., Wortman ALT 2006] 

•  But can preserve traditional no-regret with benchmarking to average 
–  additive reward setting 
–  guarantee O(sqrt(T)) cumulative regret to best, O(1) to average 
–  Idea: only increase η as data “proves” best will beat average 
–  worst case: track the market 
–  [Even-Dar, K, Mansour, Wortman COLT 2007] 

•  “State” generally ruins no-regret theory 
•  Lots of room for innovation/improvement 



No-Regret and Option Pricing 
•  Option (European call): right, but not obligation, to purchase shares at a fixed 

price and future time 
•  E.g. AAPL now trading ~$546; option to purchase at $600 in a year 
•  Option should cost something --- but what?  

–  depends on uncertainty/fluctuations 
•  Black-Scholes:  

–  assume future price evolution follows geometric Brownian motion 
–  B: borrow money to buy options now; if options “in the money”, exercise and pay back loan 
–  S: sell options now for cash; if options in the money, pay counterparty 
–  correct option price: neither B nor S has positive expected profit 

•  What if the future price evolution is arbitrary? 
•  DeMarzo, Kremer, Mansour STOC 06: 

–  hedging strategy that has no regret to option payoff 
–  multiplicative weight update algorithm 

•  Abernethy, Frongillo, Wibisono STOC 2012: 
–  view option pricing as an adversarial game 
–  minimax price is same as Black-Sholes under Brownian motion! 

•  More complex derivatives with asymmetric info may be intractable to price 
–  “pay 1$ if AAPL price increases x% where x matches last two digits of a prime factor of N” 
–  intractability of planted dense subgraph  difficulty in pricing natural derivatives (e.g. CDS) 
–  Arora, Barak, Brunnermeier, Ge 



Conclusions 
•  Many algorithmic challenges in modern finance 
•  Lower level: market microstructure, optimized execution metrics & problems 
•  Higher level: portfolio optimization, option pricing, no-regret algorithms 
•  New market mechanisms lead to new algorithmic challenges (e.g. dark pools) 






