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Abstract

We give the first rigorous upper bounds on the error of temporal differenge (
algorithms for policy evaluation as a function of the amount of experience. These
upper bounds prove exponentially fast convergence, with both the rate of conver-
gence and the asymptote strongly dependent on the length of the backupse
parameteA. Our bounds give formal verification to the long-standingitidn that

TD methods are subject to a “bias-variance” trade-off, and they lead to schedules
for k and A that are predicted to be better than any fixed values for these parame-
ters. We give preliminary experimental confirmation of our theory for a version of
the random walk problem.

1 Introduction

In the policy evaluatiorproblem, we must predict the expected discounted returmajoe

for a fixed policyr, given only the ability to generate experience in an unknown Markov
decision process (MDR)/. A family of well-studiedtemporal differencéor To) [3] algo-
rithms have been developed for this problem that make use of repeated trajectories under
from the state(s) of interest, and perform iterative updates to the value function. The main
difference between thep variants lies in how far they look ahead in the trajectories. The
TD(k) family of algorithms use the first rewards and the (current) value prediction at the

(k + 1)st state reached in making itpdate. The more commonly used () family of al-
gorithms use exponentially weighted sumsrof 4) updates (with dcay parametek). The
smaller the value fok or A, the less the algorithm depends on the actual rewards received
in the trajectory, and the more it depends on the current predictions for the value function.
Conversely, the larger the value feror A, the more the algorithm depends on the actual
rewards obtained, with the current value function playing a lessened role. The extreme cases
of Tn(k = o) andTD(A = 1) become the Monte Carlo algorithm, which updagesh
prediction to be the average of the discounted returns in the trajectories.

A long-standing question is whether it is better to use large or small values of the parameters
k andA. Watkins [5] informally discusses the trade-off that this decision gives rise to: larger
values for therp parameters suffer larger variance in the updates (since more stochastic
reward terms appear), but also enjoy lower bias (since the error in the current value function
predictions have less influence). This argument has largely remained an intuition. However,
some conclusions arising from this intuition— for instance, that intermediate valliesaf

often yield the best performance in the short term — have been borne out experimentally [4, 2].

In this paper, we provide the first rigorous upper bounds on the error in the value functions of



theTp algorithms as a function of the number of trajectories used. In other words, we give
bounds on théearning curvesof Tp methods that hold for any MDP. These upper bounds
decay &ponentially fast, and are obtained by first deriving a one-step recurrence relating the
errors before and afterep update, and then iterating this recurrence for the desired number
of steps. Of particular interest is the form of our bounds, since it formalizes the trade-off
discussed above — the bounds consist of terms that are monotonically growingamith
(corresponding to the increased variance), and terms that are monotonically shrinkikhg with
and A (corresponding to the decreased influence of the current error).

Overall, our bounds provide the following contributions and predictions:

1. A formal theoretical explanation of the bias-variance trade-off in multi-stepp-
dates;

2. A proof of exponentially fast rates of convergence for any fikeud A;

3. A rigorous upper bound that predicts that larger valueg ahd A lead to faster
convergencebut tohigherasymptotic errror;

4. Formal explanation of the superiority of intermediate valuek afid A (U-shaped
curves) for any fixed number of iterations;

5. Derivation of a decreasingcheduleof & and A that our bound predicts should beat
any fixed value of these parameters.

Furthermore, we provide some preliminary experimental confirmation of our theory for the
random walk problem. We note that some of the findings above were conjectured by Singh
and Dayan [2] through analysis of specific MDPs.

2 Technical Preliminaries

Let M = (P, R) be an MDP consisting of thransition probabilitiesP(-|s, a) and the
reward distributionsR(-|s). For any policyr in M, and any start state,, a trajectory
generated byr starting froms, is a random variable that is an infinite sequence of states
and rewardsrT = (sp,70) — (s1,71) — (s2,72) — ---. Here each redom reward-; is
distributed according t&(-|s; ), and each statg_; is distributed according t8(-|s;, 7(s;)).

For simplicity we will assume that the support 8f-|s;) is [—1, +1]. However, all of our
results easily generalize to the case of bounded variance.

We now recall the standartb (k) (also known as:-step backupandtp(A) methods for
updating an estimate of the value function. Given a trajectaygnerated by from s,, and
given an estimat& ™ (-) for the value functio’™(-), for any natural numbet we define

Dk, 7, V7 () = (1= )V (s0) + a (ro+9m 49"t 95V (1) )

The to(k) update based on is simply V™ (sq) < To(k, 7, V7(-)). Itis implicit that the
update is always applied to the estimate at the initial state of the trajectand we regard
the discount factofy and thelearning rate« as being fixed. For any € [0, 1], theTn ()
update can now be easily expressed as an infinite linear combinationmb thg updates:

DA, 7, V() = > (1= WAl o(k, 7, V().
k=1
Given a sequence, ™, 73, . . ., We can simply apply either type abb update sequentially.
In either case, as eithérbecomes large ok approaches 1, the updates approach a Monte
Carlo method, in which we useach trajectory; entirely, and ignore our current estimate
V7 (). Ask becomes small ok approaches 0, we rely heavily on the estiniéfy-), and



effectively use only a few steps of eagh The common intuitionis that early in the sequence
of udpates, the estimaté™(-) is poor, and we are better off choosikdarge or\ near 1.
However, since the trajectoriesdo obey the statistics af, the value function estimates will
eventually improve, at which point we may be better off “bootstrapping” by choosing small
korA.

In order to provide a rigorous analysis of this intuition, we will study a framework which
we call phasedrp updates. This framework is intended to simplify the complexities of the
moving average introduced by the learning ratén each phase, we are givertrajectories
underr from every states, wheren is a parameter of the analysis. Thus, phasensists

of a setS(t) = {7/ (¢))}s:, wheres ranges over all statesranges froml to n, andr} ()

is an independent random trajectory generated btarting from state. In phase, phased

TD averages ath of the trajectories irf(¢) that start from state to obtain its update of the
value function estimate for. In other words, thep(%) updates become

V/-TH(S) « (1/n) Z (rf) 4 T+ 'kat”(sZ))
i=1
where thejj» are the rewards along trajector§(t), ands:, is thekth state reached along that
trajectory. Thern(\) updates become

Vi)  (1m) 3 (zu A (L wv;wsz)))
i=1 \k=1

Phasedrp updates with a fixed value of are analogous to standarth updates with a

constant learning rate [1]. In the ensuing sections, we provide a rigorous upper bound on

the error in the value function estimates of phasedipdates as a function of the number of

phases. This upper bound clearly captures the intuitions expressed above.

3 Bounding the Error of Tp Updates

Theorem 1 (Phasedrp (k) Error Recurrence) Lef(t) be the set of trajectories generated
by = in phaset (n trajectories from each state), 1&{"(-) be the value function estimate of

phasedrp (k) after phase, and letA; = max, {|V;" (s)—V " (s)|}. Thenforany > § > 0,
with probability at least — §,

1—~% [3log(k/é
A < 1 i 8lk/9) + A1 1)
— \ n

Here the errorA,_, after phase — 1 is fixed, and the probability is taken over only the
trajectories inS(t).

Proof: (Sketch) We begin by writing

VW(S) = E[T0+’yr1+...+»}/k_1rk_1+,ykvﬂ'(8k)]
= E[ro] +E[r]+ 4+ v T Elrec1] + FE[V (s)).

Here the expectations are over a random trajectory undgnsE[r,] (¢ < k — 1) denotes

the expected value of théh reward received, whil&[V ™ (s )] is the expected value of

the true value function at theth state reached. The phased(k) update sums the terms

v (1/n) Y 1, %, whose expectations are exactly #féE[r,] appearing above. By a stan-
dard large deviation analysis (omitted), the probability that any of these terms deviate by
more thane = /3 log(k/d)/n from their expected values is at mast If no such devi-

ation occurs, the total contribution to the error in the value function estimate is bounded



by ((1 — v*)/(1 — 7))e, giving rise to the “variance” term in our overall bound above.
The remainder of the phaseaw (k) update is simplyy*(1/n) >, V;™(si). But since

|V, L (si) — V7™ (si)| < A;_; by definition, the contribution to the error is at me&tA,_,

which is the “bias” term of the bound. We note that a similar argument leads to bounds in
expectation rather than the PAC-style bounds given here. O

Let us take a brief moment to analyze the qualitative behavior of Equation (1) as a function of
k. For large values of, the quantityy* becomes negligible, and the bound is approximately
(1/(1—~))y/3log(k/d)/n, giving almost all the weight to the error incurred by variance in
the firstk rewards, and negligible weight to the error in our current value function. At the
other extreme, wheh = 1 our reward variance contributes error oRJi8 log(1/6)/n, but

the error in our current value function has weightThus, the first term increases with

while the second term decreases within a manner that formalizes the intuitive trade-off
that one faces wherhoosing between longer or shorter backups.

Equation (1) describes the effect of a single phasendk) backups, but we can iterate this
recurrence over many phases to derive an upper bound on the full learning curve for any value
of k. Assuming that the recurrence holds fazonsecutive steps, and assuming\, = 1
without loss of generality, solution of the recurrence (details omitted) yields

1‘7“ kt
A € S Blog(k[A) [+, )

This bound makes a number of predictions about the effects of different valuds for
First of all, ast approaches infinity, the bound aoft; approaches the valuél /(1 —
¥))+/ 3 log(k/8)/n, which increases witlk. Thus, the bound predicts thtite asymptotic

error of phasedrp(k) updates is larger for largek. On the other hand, thate of con-
vergence to this asymptote44’, which is always exponentially fast, biatsterfor largerk.

Thus, in choosing a fixed value &f we must choose between having either rapid conver-
gence to a worse asymptote, or slower convergence to a better asymptote. This prediction is
illustrated graphically in Figure 1(a), where with all of the parameters besidesl¢ fixed
(namely,y, 4, andrn), we have plotted the bound of Equation (2) as a functiorfof several
different choices ok.

Note that while the plots of Figure 1(a) were obtained by chooBikegl values fork and
iterating the recurrence of Equation (1), at each phliage can instead use Equation (1) to
choose the value of that maximizes the predicted decrease in efxpr— A;.;. In other
words, the recurrence immediately yieldscheduldor &, along with an upper bound on the
learning curve for this schedule that outperforms the upper bound on the learning curve for
any fixed value of. The learning curve for the schedule is also shown in Figure 1(a), and
Figure 1(b) plots the schedule itself.

Another interesting set of plots is obtained by fixing the number of phasasl computing

for eachk the error aftert phases usingp(k) updates that is predicted by Equation (2).
Such plots are given in Figure 1(c), and they clearly predict a uniqgue minimum — that is, an
optimal value of% for each fixedt (this can also be verified analytically from equation 2).
For moderate values of values ofk that are too small suffer from their overemphasis on a
still-inaccurate value function approximation, while values ttfiat are too large suffer from
their refusal to bootstrap. Of course,tascreases, the optimal value bfdecreases, since
small values of have time to reach their superior asymptotes.

We now go on to provide a similar analysis for the(\) family of updates, beginning with
the analogue to Theorem 1.

'Formally, we can apply Theorem 1 by choosing: §'/(¢tN), whereN is the number of states in
the MDP. Then with probability at least— ¢’, the bound of Equation (1) will hold at every state for
consecutive steps.



(b)

Optimal k
Error N

scheduled k

w15 w0 _® a0 s w0 % 1z s 4 5 6 7 s 95 w0 % s 10 15 20 %
Number of Phases Number of Phases k

Figure 1: (a) Upper bounds on the learning curuas of phasedrn(k) for several values of, as

a function of the number of phasegparameters: = 3000,y = 0.9, 6 = 0.1). Note that larger

values ofk lead to more rapid convergence, but to higher asymptotic errors. Both the theory and the
curves suggest a (decreasing) schedulé fantuitively obtained by always “jumping” to the learning

curve that enjoys the greatest one-step decrease from the current error. This schedule can be efficiently
computed from the analytical upper bounds, and leads to the best (lowest) of the learning curves plotted,
which is significantly better than for any fixéd (b) The schedule fok derived from the theory as a
function of the number of phases(c) For several values of the number of phaisése upper bound

on A, for Tp(k) as a function ok. These curves show the predicted trade-off, with a unique optimal
value fork identified until¢ is sufficiently large to permit 1-step backups to converge to their optimal
asymptotes.

Theorem 2 (Phasedrp()) Error Recurrence) Lef(t) be the set of trajectories generated
by = in phaset (n trajectories from each state), 18" (-) be the value function estimate of

phasedrp () after phase, and letA; = max,{|V,"(s)—V " (s)|}. Thenforany > § > 0,
with probability at least — §,

{1—<~M 3log(k/3) (4N }+ U=y .

A; < min

k 1—~A n 1—~A 1—~A

Here the errorA,_, after phase — 1 is fixed, and the probability is taken over only the
trajectories inS(t).

We omit the proof of this theorem, but it roughly follows that of Theorem 1. That proof
exploited the fact that irrp(k) updates, we only need to apply large deviation bounds to
the rewards of a finite numbek) of averaged trajectory steps. tm(A), all of the rewards
contribute to the update. However, we can always choose to bound the deviations of the first
k steps, for any value df, and assume maximum variance for the remainder (whose weight
diminishes rapidly as we increagg¢. This logic is the source of theiin, {-} term of the
bound. One can view Equation (3) as a variational upper bound, in the sense that it provides
a family of upper bounds, one feachk, and then minimizes over the variational parameter

k.

The reader can verify that the terms appearing in Equation (3) exhibit a trade-off as a function
of A analogous to that exhibited by Equation (1) as a functioh df the interest of brevity,

we move directly to thep(A) analogue of Equation (2). It will be notationally convenient

to definek, = argmin,{F ()}, whereF () is the function appearing inside thein,{-}

in Equation (3). (Here we regard all parameters other than fixed.) It can be shown that

for Ay = 1, repeated iteration of Equation (3) yields thphase inequality

(4)

where
_ L=(y)" [3log(kr/d) N (yA)Fr

a) =

b= LAy
1—~A n 1—~A A 1—~A
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Figure 2:(a) Upper bounds on the learning curss of phasedrp () for several values of, as a
function of the number of phasegparameterss = 3000,y = 0.9, § = 0.1). The predictions are
analogous to those fam (k) in Figure 1, and we have again plotted the predicted best learning curve
obtained via a decreasing schedule\of(b) For several values of the number of phasabe upper
bound onA; for TD(A) as a function of\.

While Equation (4) may be more difficult to parse thanritg k) counterpart, the basic pre-
dictions and intuitions remain intact. Asapproaches infinity, the bound @xy asymptotes
atay/(1 — by), and the rate of approach to this asymptote is sindgly which is again
exponentially fast. Analysis of the derivative if with respect tok confirms that for all

~ < 1, by is a decreasing function of— that is, the larger thg, the faster the convergence.
Analytically verifying that the asymptote, /(1 — b, ) increases withk is more difficult due

to the presence df,, which involves a minimization operation. However, the learning curve
plots of Figure 2(a) clearly show the predicted phenomena — increasireids faster con-
vergence to a worse asymptote. As we did forthék) case, we use our recurrence to derive

a schedule foh; Figure 2(a) also shows the predicted improvement in the learning curve by
using such a schedule. Finally, Figure 2(b) again shows the non-monotonic predicted error
as a function of for a fixed number of phases.

4 Some Experimental Confirmation

In order to test the various predictions made by our theory, we have performed a number
of experiments using phaseu (k) on a version of the so-calledndom walkproblem [4].

In this problem, we have a Markov process with 5 states arranged in a ring. At each step,
there is probability 0.05 that we remain in our current state, and probability 0.95 that we
advance one state clockwise around the ring. (Note that since we are only concerned with the
evaluation of a fixed policy, we have simply defined a Markov process rather than a Markov
decision process.) Two adjacent states on the ring have rewhrahd —1 respectively,

while the remaining states have reward 0. The standard random walk problem has a chain
of states, with an absorbing state at each end; here we chose a ring structure simply to avoid
asymmetries in the states induced by the absorbing states.

To test the theory, we ran a series of simulations computingtf{é) estimate of the value
function in this Markov process. For several different valuek,afe computed the errak,

in the value function estimate as a function of the number of phagas is easily computed,

since we can compute the true value function for this simple problem.) The resulting plot in
Figure 3(a) is the experimental analogue of the theoretical predictions in Figure 1(a). We see
that these predictions are qualitatively confirmed — lavgégads to faster convergence to

an inferior asymptote.

Given these empirical learning curves, we can then compute the “empirical schedule” that
they suggest. Namely, to determine experimentally a scheduletfat should outperform

(at least) the values of we tested in Figure 3(a), we used the empirical learning curves
to determine, for any given value df, which of the empirical curves enjoyed the greatest
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Figure 3: (a) Empirical learning curved for Tn(k) for several values of on the random walk
problem (parametens = 40 and~y = 0.98). Each plot is averaged over 5000 runstaf{k). Also

shown is the learning curve (averaged over 5000 runs) for the empirical schedule computed from the
TD(k) learning curves, which is better than any of these curves. (b) The empirical schedule.

one-step decrease in error when its current error was (approximateliis is simply the
empirical counterpart of the schedule computation suggested by the theory described above,
and the resulting experimental learning curve for this schedule is also shown in Figure 3(a),
and the schedule itself in Figure 3(b). We see that there are significant improvements in the
learning curve from using the schedule, and that the form of the schedule is qualitatively
similar to the theoretical schedule of Figure 1(b).

5 Conclusion

We have given the first provable upper bounds on the errepahethods for policy evalu-
ation. These upper bounds have exponential rates of convergence, and clearly articulate the
“bias-variance” trade-off that such methods obey.
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