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ABSTRACT

Cells respond to variable environments by changing
gene expression and gene interactions. To study
how human cells response to stress, we analyzed
the expression of >5000 genes in cultured B cells
from nearly 100 normal individuals following endo-
plasmic reticulum stress and exposure to ionizing
radiation. We identified thousands of genes that
are induced or repressed. Then, we constructed
coexpression networks and inferred interactions
among genes. We used coexpression and machine
learning analyses to study how genes interact with
each other in response to stress. The results
showed that for most genes, their interactions with
each other are the same at baseline and in response
to different stresses; however, a small set of genes
acquired new interacting partners to engage in
stress-specific responses. These genes with
altered interacting partners are associated with
diseases in which endoplasmic reticulum stress
response or sensitivity to radiation has been
implicated. Thus, our findings showed that to under-
stand disease-specific pathways, it is important to
identify not only genes that change expression
levels but also those that alter interactions with
other genes.

INTRODUCTION

Human cells exist in dynamic environments where proper
function depends on coordinated responses to stresses.
These responses include changes in gene expression and
gene interactions. Ineffective responses can lead to the de-
velopment of diseases. Knowing how genes are induced
and how they interact is important for modulating stress
response for disease prevention and treatment. In
addition, effective therapies rely on knowing which part
of the response network to target and how that interven-
tion will be propagated through gene networks.
In different cellular states, genes change how they

interact with each other. Although studies have identified
genes that constitute stress responses, changes in gene
interaction in response to stress are less well known. In
particular, there is a paucity of information on the extent
to which gene interactions are specific to various stimuli.
In this study, we focused on the response of human cells to
two different stresses: endoplasmic reticulum (ER) stress
and exposure to ionizing radiation (IR). We examined
changes in gene expression and gene interactions in
human cultured B cells from �100 normal individuals.
Previous studies examined changes in the expression
level in response to stressful stimuli (1–3), but not in
gene interactions. Here, we took advantage of individual
differences in human gene expression to infer interactions
among thousands of genes at baseline and in response to
these two stresses (4). We compared the results to
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determine changes in gene interactions and to identify the
changes that are generalized and those that are stress-
specific. To our knowledge, these analyses are the first
genome-wide examination of gene interactions in human
cells before and after stress.
We examined cellular responses to two different

stresses: ER stress and IR. The ER is the organelle in
which secreted or transmembrane proteins are folded.
When the demand for protein-folding machinery exceeds
capacity, cells activate a complex set of gene pathways in a
process known as ER stress response. These processes
include attenuation of global translation and increased
expression of protein-folding machinery. Second, we
examined cellular response to IR, which is present in the
environment and commonly used in medicine for diagnos-
tic and therapeutic purposes. Radiation induces DNA
double-strand breaks and damages cellular structures
(5,6). In response, cells repair the damages or undergo
cell death. Failure to respond properly to radiation
exposure or protein load has been implicated in many
human diseases from cancers to neurodegenerative
diseases (7) and immunodeficiencies (8); thus, a better
understanding of stress response should allow for more
precise approaches to disease prevention and treatment.

MATERIALS AND METHODS

Cells and gene expression experiments

Cultured B cells were obtained from Coriell Cell
Repositories. Cell lines were treated with dimethyl sulfox-
ide (DMSO)/tunicamycin (N=131) or IR (N=95).
There were 56 individuals who were studied in both
experiments. Gene expression was measured as described
previously. Briefly, cells were grown in RPMI 1640 with
15% fetal bovine serum, 2mM L-glutamine and 100U/ml
penicillin–streptomycin. RNA was extracted using the
RNeasy Mini-Kit (Qiagen), amplified, labeled and
hybridized as per the manufacturer’s instructions.
Expression levels of genes were measured using Human
Genome U133 Plus 2.0 or Affymetrix Human U133A
2.0 Arrays (Affymetrix, CA, USA). Gene expression
signals were normalized using the MAS 5.0 algorithm
(Affymetrix, CA, USA). Expression intensity was scaled
to 500 and log2-transformed. Some genes are represented
multiple times on the Human Genome U133 Plus 2.0
Arrays (ER dataset) and Affymetrix Human U133A 2.0
Arrays (IR dataset). If a gene was represented more than
once, only one of the probesets was selected (randomly) to
include in our analysis. Probesets annotated as ‘x_at’ were
excluded from this analysis.
Statement of ethical approval: all the cells used in this

study are from anonymized donors and have been
approved for exception by the Human Subject Review
Board of the University of Pennsylvania.

Tunicamycin treatment

Cells were treated with 4 mg/ml of tunicamycin (T7765
Sigma, MO, USA) in DMSO or DMSO alone (vehicle
control) for 8 h. The dose and time points were optimized
in our previous study (9).

IR treatment

Cells were harvested before radiation and at 2 and 6 h
following exposure to IR (10Gy in a 137Cs irradiator).

Gene correlation and construction of
coexpression networks

There were 12 660 unique genes that were represented on
both the Human Genome U133 Plus 2.0 and Affymetrix
Human U133A 2.0 Arrays. Of these, 6775 genes were called
‘present’ by the MAS 5.0 algorithm in at least 80% of
samples in either the DMSO- or tunicamycin-treated
samples. There were 5975 genes called ‘present’ in at least
80% of samples at 0, 2 or 6 h after radiation treatment. We
considered these genes as ‘expressed’ and focused on these
for all analyses. For all possible pairs of genes, we
calculated the Pearson correlation of expression levels
across individuals. This calculation was done separately
for each treatment or time point. The distributions of cor-
relations were normal. Fisher’s test of homogeneity was
used to identify correlations that significantly differed
(Bonferroni corrected P< 0.05) between treatments or
among time points. Correlated gene pairs were connected
to construct a coexpression network. We constructed
multiple networks using different thresholds and
measured topological properties of the resulting networks.
Correlations and topological properties of the network
were analyzed using MATLAB (The MathWorks, Inc,
Natick, MA, USA). Networks were represented as adja-
cency matrices in MATLAB, and standard MATLAB
functions were used to calculate the number of genes, the
number of connections and the distribution of connections
in each network. MATLAB functions for determining the
clustering coefficient (10), gamma (11) and scale-free
topology criteria (12) were implemented as previously
described. Code will be provided on request.

A similar series of analyses was done examining fold
changes across individuals, so that changes in expression
levels are normalized against each person’s baseline. This
type of analysis reduces the number of genes included in
the network: only those genes showing changes in expres-
sion levels are included when examining correlation in fold
changes. This method also eliminates the baseline or 0-h
time point, which is used for normalization, as a basis for
comparison. Nonetheless, we found similar findings using
these smaller networks and present the results of the more
inclusive analysis here.

Random gene pairs and networks

Random gene pairs were genes that were paired randomly
as opposed to being paired based on correlation patterns.
These random gene pairs were generated from random
networks described later. Random gene pairs were used
to assess frequency of shared GO biological terms by
chance alone.

Random networks were constructed as described previ-
ously (13). MATLAB code provided by S. Maslov (http://
www.cmth.bnl.gov/�maslov/matlab.htm) was used to
generate random networks. Briefly, random networks con-
sisted of the same number of genes as in the observed
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networks and were constructed to have the same topology
as observed networks. To do this, a gene in the random
network had the same number of connections as in the
observed network, but its connections to other genes
were random instead of being based on correlation
patterns.

Significance testing

For genes examined in tunicamycin-treated samples,
changes in expression levels were assessed by Student’s
paired t-test with Bonferroni correction for 6775 tests
(denoted Pc< 0.05). For genes examined in samples
treated with IR, changes in gene expression levels were
assessed by Student’s paired t-test with Bonferroni correc-
tion for 5975 tests (denoted Pc< 0.05). Significant results
after correction are denoted as ‘Pc’ throughout the text.

Caspase assays

Cells from 95 unrelated individuals were irradiated at
10Gy in a 137Cs irradiator. Cellular response to radiation
exposure was measured 24 h after irradiation using the
Caspase-Glo 3/7 assay (Promega). Caspase activity levels
were log2-normalized for comparison with log2-trans-
formed gene expression levels.

THAP1 small interfering RNA knockdown

Primary fibroblasts were transfected with Silencer Select
siRNAs (Applied Biosystems) directed against THAP1 or
a non-target control using the RNAiMAX reagent accord-
ing to the manufacturer’s instructions (Invitrogen).
Primary skin fibroblasts were selected to provide an add-
itional cell type for replication. Cells were treated for 8 h
with DMSO or tunicamycin 24 h after transfection. RNA
was harvested to assess knockdown efficiency. Effect of
small interfering RNA (siRNA) on gene expression was
analyzed by quantitative polymerase chain reaction (PCR;
7900HT Analyzer, Applied Biosystems). Expression of
NDUFA4 was used as a control for normalization, and
expression levels were calculated relative to NDUFA4.
Sequences of PCR primers were as follows: ATF4
(forward–CCAACAACAGCAAGGAGGAT, reverse–G
TGTCATCCAACGTGGTCAG), DDIT3 (forward–TC
ACCTCCTGGAAATGAAGA, reverse–CTCCTCCTCA
GTCAGCCAAG), HSPA5 (forward–GGAAAGAAGGT
TACCCATGC, reverse–CCGTAGGCTCGTTGATGAT),
THAP1 (forward–TGCTGTGCCCACAATATTTC,
reverse–AGGAGGCGGTAAAGGAGGT) and NDUFA4
(forward–GTCAGGCCAAGAAGCATCC, reverse–GC
TCCAGTAGCTCCAGTTCC). We pooled three
siRNAs against THAP1: sense 5’-AGGACAAGCCCG
UUUCUUUtt-3’, antisense 5’-AAAGAAACGGGCUU
GUCCUtg-3’; sense 5’-ACUUAAAAUUAGUACUGU
Utt-3’, antisense 5’-AACAGUACUAAUUUUAAGUtt-
3’; and sense: 5’-UGAUUAUCAUCACAGCAGAtt-3’,
antisense: 5’-UCUGCUGUGAUGAUAAUCAaa-3’.
Protein levels of THAP1 were assessed using rabbit
antibody directed against Thap1 (ProteinTech, IL, USA)
and normalized to glyceraldehyde 3-phosphate dehydro-
genase (sc-137179, Santa Cruz Biotechnology, CA, USA).

ARHGAP1 and RAB35 siRNA knockdown

Cultured B cells from two individuals were transfected
with Accell SMARTpool siRNAs (Thermo Scientific)
directed against ARHGAP1, RAB35 or a non-target
control according to the manufacturer’s instructions.
One hundred twenty hours after transfection, cells were
treated for 8 h with DMSO or tunicamycin and then har-
vested for RNA. Effect of siRNA on gene expression was
analyzed by quantitative PCR (7900HT Analyzer, Applied
Biosystems).
Expression levels were normalized to NDUFA4.

Sequences of PCR primers for ATF4, DDIT3, HSPA5
and NDUFA4 are the same as those used for THAP1
siRNA knockdown. Sequences of PCR primers were as
follows: ARHGAP1 (forward–GGTGGGCTTCCTCAA
CATTG, reverse–CAGTCAGGAAACGAAGCACC)
and RAB35 (forward–GATCGCGAGGCCAGTACC,
reverse–CTCTTGCCCACACCGCTG). The pooled
siRNA against ARHGAP1 targeted the following se-
quences: 5’-CUGGUAGCUUGGAUGACAU-3’, 5’-UC
AUCAGCCUUCAUGUUCU-3’, 5’-CCUUUGUGUA
UCAAGUGUC-3’ and 5’-GCCAAGUGCUCAAAUA
UGA-3’. The pooled siRNA against RAB35 targeted the
following sequences: 5’-GGAGUAUUUCUGUAUUGA
A-3’, 5’-GGAUUAUUUUAACAGAUCA-3’, 5’-GUUU
CGUGCCGUUAUUUAA-3’ and 5’-CCCUGAGGUU
UGAUUGGCA-3’.

Enrichment analysis

Enrichment analysis of Gene Ontology Biological
Processes was done using DAVID NIH (14,15). Default
parameters were used except the background was modified
to be the genes examined here (either 6775 genes for the
ER dataset or 5975 for the IR dataset). Enrichment results
that were significant after Benjamini–Hochberg (16) are
noted. We performed functional annotation clustering
using ‘GOTERM-BP’ categories.

Literature mining

To determine whether a gene has been previously
implicated in ER or IR stress, PubMed was searched
with the following queries:

. Gene symbol and (‘unfolded protein response’ or
‘endoplasmic reticulum stress’).

. Gene symbol and (‘ionizing radiation’ or ‘DNA
damage’).

The number of PubMed abstracts returned indicated
the number of times the gene has been implicated in the
specific stress response. We note there are limitations to
searching the literature this way, especially when the
official gene symbol is not the common symbol used by
investigators.

ConsensusPathDB mining

ConsensusPathDB is an online database that integrates
interaction networks in humans and includes protein–
protein, genetic, metabolic, signaling, gene regulatory
and drug–target interactions as well as biochemical
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pathways. Using their ‘shortest interaction paths’ tool, we
queried the shortest interaction paths between gene pairs
of interest. We focused on 284 and 50 gene pairs that
change interactions following ER and IR stress, respect-
ively. Gene symbols were used in the analysis, and each
gene in a pair was used as the path start or path end. The
top interaction generated by the database was used in our
analysis.

Machine learning using support vector machines

Support vector machine (SVM) linear regression models
were trained to capture quantitative relationships between
a given target gene and all other genes. For each gene, an
expression prediction model was developed using baseline
samples only. If gene interactions change on stress, then
a model developed from baseline data would not be
expected to produce accurate predictions in stressed
samples. In such cases, a decline in model performance
is a proxy for a target gene that alters interactions on
stress. Model prediction performance was assessed using
R2, the square of the correlation between the predicted
and actual expression level of the target gene. Details of
SVM training, testing and parameter selection are given
later.
We developed models to predict the expression of a

‘target’ gene using the expression levels of all other
genes in each individual:

E gt
� �
¼ wtx � E gx

� �
+. . .+wtn � E gn

� �
,

where ‘E(gx)’ represents the ‘expression level of gene x’
and where the learned weight, ‘wtx’, captures the relation-
ship between the target gene t and gene x. A model was
developed for a gene using baseline samples only (not
stressed samples).
Each gene was treated as a target gene whose expression

was predicted using the other genes as ‘predictor vari-
ables.’ Expression was modeled using SVM regression
with a linear kernel. Standard least-squares fit linear re-
gressions were also used, but SVM linear regression out-
performed standard linear regression. The amount of
tolerated error was set to 0.1 (epsilon=0.1), with remain-
ing parameters set to their default. SVM performance was
assessed using alternative parameters (varying epsilon or
using non-linear kernel), and those that performed best
(epsilon=0.1 and linear kernel) were used in the present
analyses. For each of the 6775 genes in the ER dataset, the
remaining 6774 genes were used to train an SVM using
unstressed (DMSO) samples. For each of the 5975 genes
in the IR dataset, the remaining 5974 genes were used to
train an SVM using unstressed (0 h) samples. To train and
test the SVM models, individuals were randomly divided
into training and testing datasets. In the ER dataset, 66
individuals were used to train each SVM and the remain-
ing 65 were used to test it. In the IR dataset, 48 individuals
were used for training and 47 individuals for testing.
Models were then tested on stressed samples.
For modeling analyses, expression of each gene was

normalized to have a mean of 0 and standard deviation
of 1 in each dataset (training and testing sets were
normalized separately). SVM performance was assessed

by calculating R2 (square of the correlation coefficient)
between expected and observed expression levels in indi-
viduals. In the ER dataset, R2 was calculated across 65
individuals in unstressed samples and across 131 samples
in stressed samples. In the IR dataset, R2 was calculated in
47 individuals at 0 h and 95 individuals at 2 and 6 h.

Permutation and randomization procedures

We assessed the significance of the difference in R2

between baseline and stressed samples for each SVM
gene model empirically by permutation test. Using
baseline (testing samples only) and stressed samples, we
randomly assigned each sample to one of the two groups;
we then calculated the R2 of model performance on each
group and computed the difference between the two
groups (�R2). After repeating the procedure 1000 times,
we had a distribution of �R2. For each gene model, we
determined whether the real �R2 fell among the largest
1% of values resulting from permutation. P-value was
assigned by counting how frequently a difference in R2

greater than or equal to that seen in the real data was
seen in the permuted data. False discovery rates (FDR)
were also calculated from the permuted data.

RESULTS

Stress induces extensive changes in gene expression levels

First, we studied human cultured B cells following ER
stress and exposure to radiation. We induced ER stress
in cultured human cultured B cells from 131 unrelated
individuals with tunicamycin, a drug that prevents
N-glycosylation and leads to accumulation of proteins in
the ER (17). We then measured gene expression at baseline
and 8 h following treatment (9). Second, we exposed
human cultured B cells from 95 unrelated individuals to
IR. Gene expression was measured before irradiation,
and 2 and 6 h after radiation as described previously and
extended here (18). We focused our analysis on 6775 and
5975 genes that were expressed at baseline and in response
to ER and IR stress, respectively (see Methods). ER and
IR stress both led to extensive changes in gene expression
levels. ER stress induced changes in 71% of the genes
(4801/6775) (Supplementary Table S1, Pc< 0.05, t-test
with Bonferroni correction), and IR caused changes in
23% (1381/5975) and 32% (1902/5975) of genes at 2 and
6 h, respectively (Supplementary Table S2, Pc< 0.05, t-test
with Bonferroni correction).

We identified a large number of ER and IR responsive
genes. Some of them showed >1.5-fold change in expres-
sion levels, but the majority (>80%) of genes showed
changes that were <1.5-fold, including those known to
play critical roles in the stress response (Figure 1A). For
example, well-characterized genes in ER stress such as
ATF6 and ERN1 (also called IRE1) showed 1.4- and
1.3-fold increase, respectively (Figure 1B; Pc< 0.05) (19),
and in response to IR stress, genes such as XPA and
CDC25B showed 1.2- and 1.3-fold change, respectively
(Figure 1B; Pc< 0.05) (20,21). This suggests that modest
changes (<1.5-fold) may be biologically important but
may require larger sample sizes, such as those used here
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(131 individuals in ER stress and 95 individuals in IR
stress), to be identified. However, the modest changes
could be a result of large individual variation in expression
response where some individuals showed positive fold

changes and others showed negative response, thus
giving a misleadingly small average fold change. We
examined these genes closely and did not find this artifact.
This is illustrated in Figure 1B, where all individuals
showed modest yet consistent changes in expression.
This led us to ask whether modest changes in gene ex-

pression affect cellular processes. Previously, using the
same individuals studied here, we measured IR-induced
cell death as an indicator of IR stress response (18). We
used these data to determine whether the 183 genes that
showed modest and variable changes in expression (fold
change 1.2–1.3 at 6 h after irradiation and variance across
individuals >0.02) are associated with cell death. We found
14 genes that showed significant correlation with cell death
(P< 0.05; Pearson’s correlation >0.17). An example is the
expression response of the cell cycle gene CCNB1IP1,
which increased by an average of 1.2-fold on IR treatment
(Pc< 10�23 at 6 h, t-test) (Figure 1C). Individuals with the
most induction of CCNB1IP1 showed more cell death than
those with less induction (P=0.02, t-test, Figure 1C).
Similarly, cystathionine gamma-lyase (CTH) increased by
an average of 1.2-fold following radiation (Figure 1D); in
individuals who repressed CTH following IR, cell death
was less extensive (Figure 1D) (P=0.02, t-test). These
findings suggest that the expression responses of
CCNB1IP1 and CTH correlate with cellular changes fol-
lowing radiation exposure. Although these two genes were
not known to be involved in IR response, they are
associated with clinical outcomes in cancer: low levels of
CCNB1IP1 are associated with poor prognosis in breast
and lung cancer (22), and high levels of CTH are correlated
with resistance to anti-tumor drugs, such as methotrexate
and cisplatin, which affect DNA synthesis or repair (23).
These findings illustrate that our sample sizes are suffi-
ciently large to allow us to identify genes with subtle yet
biologically relevant roles in stress responses.

Stress induces limited changes in gene
interaction networks

Next, we assessed whether correlations among genes
change in response to stress. We built correlation
networks, measured global properties of these networks
and then studied the connections among genes. First, we
calculated gene correlation using their expression levels
across unrelated individuals (9,24,25). We analyzed each
treatment separately; for each perturbation we examined
all possible gene pairs (22 946 925 and 17 847 325 pairs for
ER and IR stress, respectively). An example of a gene pair
is shown in Figure 2A, which shows the coexpression of
ATF3 and FAS across 131 individuals before and after ER
stress. Previously, we demonstrated that coexpression
interactions capture known associations between genes
and provide information on gene functions (4).
Similarly, in this study, we found >20 000 genes that are
significantly correlated (jrj> 0.60) and are involved in
similar biological processes (significantly more than
random pairs of genes, P< 10�16) (see Methods).
Pairwise coexpression interactions were assembled to

construct gene networks, and network properties were
measured. We built separate networks for different
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Figure 1. Extensive changes in gene expression following ER stress
and exposure to radiation. (A) Many of the genes that showed signifi-
cant changes in expression are only modestly up- or downregulated
(<1.5-fold). (B) ATF6, XPA and CDC25B show modest but consistent
expression changes on stress. (C) Panel 1: The expression of CCNB1IP1
is induced among 95 individuals on IR stress. Panel 2: Individuals with
less upregulation of CCNB1IP1 (N=10) show less cell death than
high-inducers (N=10). (D) Panel 1: Expression of CTH in 95 individ-
uals before and 6 h after exposure to IR. Panel 2: Changes in CTH are
associated with IR-induced cell death (N=10 in each sample). Error
bars represents S.E.M.
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conditions and then compared the networks. We
measured global network properties of coexpression
networks constructed using different correlation thresh-
olds (Supplementary Table S3). Figure 2B shows two
coexpression networks: before and following ER stress.
The clustering coefficient (10) of the ER stress response
network is only slightly higher than that of the baseline
network (0.56 versus 0.55, P=0.03, Supplementary Table
S3). The clustering coefficient measures the amount of
‘cliquishness’ among genes and represents the probability
that two genes that are connected to a common gene are
also connected to each other. The higher clustering coef-
ficient in the gene network of ER stress suggests that genes
may function in tighter gene clusters or ‘cliques’ on stress.

Similarly, the gene network for cells after radiation
exposure also had a slightly higher clustering coefficient
than the network at baseline (0.51 versus 0.49, P=0.001).
Next, we examined ‘hub’ genes and found that many of
the most highly connected genes at baseline remained as
hubs after stress, consistent with the idea that there is
limited remodeling of gene networks in response to
stress. Of the 1000 most-connected genes at baseline,
79% of them are still among the 1000 most-connected
genes after ER stress. Similarly, in the IR study, at least
75% of the hubs in the post-radiation exposure network
are the same as those in baseline cells. Thus, gene
networks representing stressed states had similar
properties as those of cells at baseline.
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Figure 2. Coexpression analysis of ER stress-induced changes in gene expression. (A) FAS and ATF3 are positively correlated among 131 individuals
at baseline and on ER stress. (B) Coexpression network at baseline and on ER stress. Nodes represent genes and edges represent correlations between
genes.
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We then focused on pairwise coexpression interactions
and found most gene interactions are not altered following
stress. Of 22 946 925 (6775 choose 2) gene pairs examined,
we found the correlation coefficient for >99% did not
change significantly before and after ER stress
(Pc> 0.05; Fisher’s test of homogeneity with Bonferroni
correction) (Figure 3A) (26). In the example mentioned
earlier, ATF3 and FAS show positive correlations both
before and after ER stress, and these correlations
were not significantly different (rbaseline=0.76;

rER stress=0.75; P> 0.01; Figure 2A). Similarly on IR
stress, >99% of the 17 847 325 gene pairs showed no
evidence of altered coexpression patterns (Pc> 0.05)
(Figure 3B, Supplementary Figure S1).
After examining pairwise interactions, we extended our

analysis to study the interactions of each gene with all
other genes by a machine learning method involving
SVMs. Briefly, a support vector regression was used to
learn the relationships between each gene and all other
genes and to predict expression level based on these
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relationships. A model that learns relationships from un-
stressed samples is expected to produce accurate predic-
tions of the expression level of a gene following stress
unless gene relationships change on stress. In such cases,
a decline in model performance, measured using R2, is a
proxy for identifying a gene that alters interactions on
stress. Using non-parametric permutation testing to deter-
mine whether predictions were significantly worse in
stressed samples, we found that the expression levels for
>90% of genes in stressed samples were predicted with
gene relationships at baseline (Supplementary Tables S4
and S5, P> 0.01), suggesting that most interactions are
maintained on both ER and IR stress. For example,
Figure 3C shows that the SVM model predicts PSEN1
expression levels equally well for samples at baseline and
following ER stress (R2=0.85 versus R2=0.87; P> 0.01)
(ER stress); similarly, the prediction of RAD21 expression
(Figure 3D) is nearly the same for samples examined at 0,
2 and 6 h after IR treatment (R2 of 0.77, 0.76 and 0.72 at 0,
2 and 6 h, respectively; P> 0.01) (IR stress), implying that
following stress, these genes maintain their relationships
with other genes. We found 434 (6%, Supplementary
Table S4) and 165 (3%, Supplementary Table S5) gene
models showed significantly decreased performance fol-
lowing ER stress and IR stress, respectively (P< 0.01, per-
mutation test; FDR=14% for ER and FDR=33% for
IR as determined by permutation testing). Together, the
findings suggest that although there are extensive changes
in gene expression following ER stress and IR exposure,
there are only limited changes in gene interactions.

Genes that alter interactions are critical to stress response

Next, we examined those gene interactions that change in
response to cellular stress. Coexpression analysis identified
284 gene pairs (comprising 257 unique genes) that altered
interactions following ER stress (Pc< 0.05, Fisher’s test of
homogeneity with Bonferroni correction; Supplementary
Table S6, Figure 4 and Supplementary Figure S2). Given
that differences in the extent of individual variation in
expression levels can influence gene correlations, we
compared the variances of expression levels for the 257
genes that altered interactions in response to ER stress.
We found that the variances of expression levels before
and after stress were highly similar (average differences
in their variance are �0.01), suggesting that changes in
interactions are not due to differences in individual vari-
ability. Among the genes that changed interactions, there
are 43 genes previously implicated in ER stress, including
HSPA5 (BIP) (Figure 4A), PDIA4 (ERp72), GADD34,
VCP (p97), EDEM2 and TRIB3 (Figure 4B) (19,27–31).
Gene Ontology (GO) analysis of these 257 genes showed
enrichment for ‘protein folding’ (P< 9.3� 10�6,
Benjamini–Hochberg correction). Machine learning
analysis identified 434 genes with altered interactions
(P< 0.01, permutation test; FDR=14%), with 47 genes
implicated in ER stress. These genes showed GO func-
tional enrichment for ‘response to unfolded protein’
(P=0.005, Benjamini–Hochberg correction). Examining
the overlap between results from coexpression and
machine learning, we found a significant number of

genes altered interactions using both methods (50 genes
total; hypergeometric test, P=5� 10�13). These 50 genes
showed specific enrichment for ‘response to unfolded
protein’ (P=8.4� 10�4). ER stress has been implicated
in neurodegenerative diseases such as Alzheimer’s and
Parkinson’s, and genes associated with these diseases are
among those with altered interactions. For example,
DHCR24 and PIN1 are associated with Alzheimer’s
disease. DHCR24 encodes seladin�1, which protects
against amyloid-beta peptide-induced toxicity, and is
downregulated in affected neurons of patients with
Alzheimer’s disease (32). PIN1 is involved in processing
of tau protein (33) and amyloid precursor protein (34) that
accumulate in AD lesions. TRAF6 is an ubiquitin ligase
that has been shown to bind misfolded proteins and
promote accumulation of protein aggregates in patients
with Parkinson’s disease (35). Thus, some of the genes
that acquired new correlation partners following ER
stress have been associated with ER stress-related diseases.

Similarly, on IR stress, 50 gene pairs (comprising 46
unique genes) alter coexpression interactions (Pc< 0.05,
Fisher’s test of homogeneity with Bonferroni correction;
Supplementary Table S7; as above the extent of individual
differences in gene expression before and after IR
exposure is similar and therefore cannot explain the
changes in interactions). These included 13 genes previ-
ously implicated in IR stress, such as BNIP3, FADD,
DDB2 and BIRC5 (Figure 5A and B) (36–40). Increased
expression of BIRC5, which encodes antiapoptotic protein
survivin, has been associated with increased resistance to
IR therapy in rectal cancer (41) and is a potential drug
target of lung cancer (42). Machine learning analysis
identified 165 genes with altered interactions (P< 0.01,
permutation test; FDR=33%), with 47 previously
implicated in IR stress, including cyclin B1 (CCNB1),
BNIP3, GADD45A, FAS, PLK1, ATF3, CDC20, DDB2
and CDKN1A (also called p21) (36,40,43–49). Genes
that changed the most were enriched for ‘mitotic cell
cycle’ (P=0.004, Benjamini–Hochberg correction) and
‘microtubule-based process’ (P=0.04, Benjamini–
Hochberg correction); both processes are critical in the
response to IR. These processes have also been targeted
therapeutically to induce cell death in cancer cells (50).

To investigate the nature of interactions between 284
gene pairs that change following ER stress, we mined a
database of human interactions using ConsensusPathDB,
which compiles known protein–protein, genetic, signaling,
drug–target, gene regulatory and metabolic pathway
interactions (51). We found some gene pairs (�9%,
Supplementary Table S8) produce proteins that directly
interact, such as PDIA4 and HSP90B1, which are both
known to function in the unfolded protein response. The
remaining gene pairs interact through a third gene, via
co-regulation, signaling or protein–protein interaction.
For example, many gene pairs (25%, Supplementary
Table S9) interact through UBC3 that encodes an E2 ubi-
quitin-conjugating enzyme. It is known that the yeast
homolog of XBP1 (Hac1p) is regulated by UBC3 (Pal
et al. 2007); we postulate that altered interactions
between genes in response to ER stress may be occurring
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either directly through UBC3 or through UBC3’s effect on
XBP1.

Of the 50 gene pairs that alter interactions in response
to IR stress, we found that CENPE and BIRC5 directly
interact at the protein level via formation of a kinetochore
complex, whereas the remaining gene pairs interact
through a third gene. For example, the interaction
between KDM3A and BNIP3 was found to be altered in
our study. HIF1A interacts with both of these genes and is
known to be activated on IR stress. HIF1A physically
interacts with KDM3A, a histone demethylase, to
regulate expression of various genes (52) including
BNIP3 (53,54). Thus, the interaction between KDM3A
and BNIP3 may be altered via the activation of HIF1A
in response to IR stress. Interestingly, although KDM3A is
not known to play a role in IR stress, we found that in
irradiated cells, it alters interactions with many genes (e.g.
DDIT4, P4HA1, PGM1, ALDOC, SLC16A3, TPI1 and
CLK1); thus, it may be important in IR stress through
its physical interaction with HIF1A. These analyses
do not identify the exact nature of interactions; how-
ever, they enable us to select candidates for functional
follow-ups.

After finding that many genes with altered interactions
have known roles in stress response, we asked whether the
remaining genes might also play key roles. We focused on
35 genes that showed altered interactions following ER
stress (Supplementary Table S4), but without changes in
messenger RNA levels (Supplementary Table S1). THAP1
was the top candidate showing the greatest changes in
gene interactions, so we studied it experimentally. First,
we determined whether THAP1 induction is also found in
other human cells besides cultured B cells by measuring its
protein levels in primary skin cells. Results from immuno-
blotting confirmed that THAP1 protein expression
increased following ER stress in human skin cells
(Figure 6A) (P=0.008, one-tailed t-test). Then, to
examine the role of THAP1 in ER stress, we knocked
down THAP1 by RNA interference and measured the ex-
pression of three well-known mediators of the ER stress
response: HSPA5, ATF4 and DDIT3. We found that
knockdown of THAP1 resulted in attenuated ER stress
response where induction of ATF4 and DDIT3 was
reduced compared with non-target control (Figure 6B)
(P< 0.005). Thus, data on gene interactions rather than
expression levels allowed us to identify a role for THAP1
in ER stress response. In addition to THAP1, we
examined two additional genes that are part of the Ras/
Raf/Rho pathway: ARHGAP1 and RAB35. These were
also among the genes that change interactions without
changing expression. We examined B cells from two dif-
ferent individuals and knocked down ARHGAP1 and
RAB35 using siRNA; then we assessed response to ER
stress by measuring HSPA5, ATF4 and DDIT3.
Knockdown of RAB35 led to an increase in the induction
of ATF4 and DDIT3 in response to ER stress (Figure 6C)
(P� 0.05), suggesting that RAB35 negatively regulates ER
stress response. Knockdown of ARHGAP1 showed
similar trends, but the effects on ATF4 and DDIT3 were
not significant with just two samples. Together, these ex-
perimental results show that genes can be involved in the

ER stress response by altering their interacting gene
partners but without changing their expression levels.
Thus, studying gene expression levels alone may not
provide a comprehensive view of the ER stress response.
Similarly, we examined genes that alter their inter-

actions with other genes following IR stress
(Supplementary Table S5). We compared radiation-
induced changes in expression of these genes with
caspase measurements of radiation-induced cell death
from the same subjects. We found that among 165 genes
showing altered interactions, the induction or repression
of 19 (12%) of these genes is significantly correlated with
the extent of cell death following radiation exposure
(P< 0.05). One of these genes, PSMC3IP, is a factor
that ensures proper homologous pairing during meiosis
(55). It has not been linked to DNA damage or response
to IR. In our data, it interacts with different sets of genes
at baseline and post-radiation (Supplementary Table S5).
PSMC3IP was correlated (jrj> 0.6) with 27 genes at
baseline, and these genes showed no significant enrich-
ment for any biological process (Pc=0.56). However,
6 h after IR, PSMC3IP was correlated to 25 genes that
are enriched for roles in DNA replication (Pc=0.08),
including RFC4, RPA3 and PRIM1. We find that cells
from individuals who downregulated the expression of
PSMC3IP show less cell death compared with those
who upregulated its expression (Figure 6D) (P=0.002,
t-test). Taken together, these findings suggest that genes
that alter interactions have important roles in the human
stress response.

Stress-specific alterations in gene interactions

We next examined whether changes in gene expression and
interactions are stress-specific. We compared genes that
change expression following IR or ER stress and found
that the expression levels of �1500 genes (25% of the
genes studied) changed in response to both stresses. The
shared genes were not enriched for any particular func-
tions. Previous studies have also demonstrated that �25–
30% of changed genes are shared across multiple stressors
(56). Next, we compared the genes that changed inter-
actions following IR and ER stress. In contrast to genes
that change expression, none of the genes that changed
coexpression interactions were shared between the two
stresses, suggesting that changes in gene interactions are
highly stress-specific. As described earlier, there were 257
genes that were correlated with a different set of genes
(Supplementary Table S6) specifically following ER
stress; these genes showed enrichment for ‘response to
unfolded protein’. And there were 46 genes that changed
interactions only following IR exposure (Supplementary
Table S7); these include known IR-stress response genes
DDB2, FADD and BIRC5. When we looked at genes
identified using machine learning analysis (SVM), we
saw the same pattern; only 23 genes (<1% of the genes
studied) changed interactions following both ER and IR
stress (Supplementary Table S10). Compared with the
25% of genes that showed changes in expression levels
following ER or IR stress, far fewer genes changed inter-
actions (<1%) following both stresses; however, the genes
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that changed interactions were enriched for those that are
critical to the stress response and unique to each stress.
Together, these data suggest that genes that alter inter-
actions are predominantly stress-specific.

DISCUSSION

Cells respond to perturbations by changing gene expres-
sion levels and altering interactions among genes.
Studying changes in expression levels is straightforward,
but examining the extent to which cells rewire gene
network connections is more difficult. However, know-
ledge of these gene interactions provides a more compre-
hensive view of cellular response and is important for the
development of interventions that improve response to
perturbations. Here, we identified genes that changed in
expression levels and in their interactions with other genes
following ER stress or exposure to IR. These cellular
stresses have clinical relevance with respect to diseases in
which ER stress has been implicated and to the use of IR
as a treatment for cancer.

Our analyses revealed that many genes change expres-
sion levels, and fewer genes change interactions, but genes
that change interactions tend to be specific to the particu-
lar stress response. First, our results show extensive
changes in gene expression following perturbation; many
(>80%) of the stress-responsive genes showed consistent
but modest levels of induction or repression across
our �100 individuals. Second, coexpression network
analysis revealed that hubs (genes with numerous links)
maintained many of their connections, and there was an
increase in clustering among genes following stress. Third,
although many genes did not change interactions, those
that did played critical and specific roles in ER and IR
stress response. Moreover, genes with key roles in ER
stress-related diseases such as Alzheimer’s disease and
Parkinson’s disease showed altered gene interactions in
response to ER stress.

Finally, we identified genes that alter interactions
without altering expression. These stress-responsive
genes would have been missed if we had focused only on
gene expression changes. One of these genes, THAP1,
which we showed, promotes ER stress response through
ATF4 and DDIT3. This gene is mutated in patients with
dystonia, and initial studies suggest the pathogenesis may
involve ER stress (57). Taken together, for the most part,
cells use preexisting network connections to respond to
stress. However, some new connections are made.
Identifying genes with altered connections may provide
specific therapeutic targets for diseases that result from
dysfunction in cellular responses to stress.

Our results are in agreement with findings in yeast
where genes that altered epistasis interactions were
found to be critical (58). Bandyopadhyay et al. examined
changes in epistasis interactions in 418 yeast genes in
response to MMS-induced DNA damage. These 418
genes were selected to give coverage of kinases, phosphat-
ases, transcription factors and known DNA repair factors.
They found 873 differential interactions of �80 000
examined (1% of interactions change), with many

interactions showing enrichment for genes functioning in
the DNA damage response. Although they identified a
slightly higher percentage of altered interactions in yeast
compared with our study in humans, this difference may
be due to the genes included in their analysis: they selected
genes with known roles in DNA damage response,
whereas our study analyzed all expressed genes in the
B cell transcriptome. Nevertheless, the main finding in
yeast is recapitulated in humans: genes showing altered
interactions tend to be enriched for critical players in the
stress response.
Our findings in two distinct stresses suggest that cells

respond to stress by inducing extensive changes in gene
expression and selective changes in gene interactions.
While many genes that change expression are shared
between the two stresses, the subset of genes engaging in
dynamic interactions tends to be stress-specific. Diseases
can result from inefficient responses to stresses. Therapies
that augment appropriate stress response could be effect-
ive long-term treatments. However, developing such
therapies has been difficult, as many of the response
pathways are shared across stresses. Our findings that
identified stress-specific responsive genes provide potential
candidates for therapeutic interventions.
Our results illustrate that individual variation in gene

expression response uncovers the complexity of cellular
responses. Future work that elucidates these complex
interactions will be important for development of inter-
ventions based on understanding disease-specific
pathways rather than genes in isolation.
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