
Fast Planning in Stochastic Games

Michael Kearns

AT&T Labs
Florham Park, New Jersey
mkearns@research.att.com

Yishay Mansour

Tel Aviv University
Tel Aviv, Israel

mansour@math.tau.ac.il

Satinder Singh

AT&T Labs
Florham Park, New Jersey
baveja@research.att.com

Abstract

Stochastic games generalize Markov decision
processes (MDPs) to a multiagent setting
by allowing the state transitions to depend
jointly on all player actions, and having
rewards determined by multiplayer matrix
games at each state. We consider the prob-
lem of computing Nash equilibria in stochas-
tic games, the analogue of planning in MDPs.
We begin by providing a generalization of
�nite-horizon value iteration that computes
a Nash strategy for each player in general-
sum stochastic games. The algorithm takes
an arbitraryNash selection function as input,
which allows the translation of local choices
between multiple Nash equilibria into the se-
lection of a single global Nash equilibrium.

Our main technical result is an algorithm for
computing near-Nash equilibria in large or in-
�nite state spaces. This algorithm builds on
our �nite-horizon value iteration algorithm,
and adapts the sparse sampling methods of
Kearns, Mansour and Ng (1999) to stochas-
tic games. We conclude by describing a coun-
terexample showing that in�nite-horizon dis-
counted value iteration, which was shown by
Shapley to converge in the zero-sum case (a
result we give extend slightly here), does not
converge in the general-sum case.

1 INTRODUCTION

There has been increasing interest in arti�cial intel-
ligence in multi-agent systems and problems. Fueled
by the expanding potential for large-scale populations
of autonomous programs in areas as diverse as on-
line trading and auctioning, personalized web crawl-
ing, and many other areas, such work seeks to pro-

vide both algorithms and mathematical foundations
for agents in complex, distributed environments.

Given the detailed theoretical and practical under-
standing of single-agent planning and learning in
Markov decision processes (MDPs) that has been built
over the last decade, one natural line of research is the
extension of these algorithms and analyses to a multi-
agent setting (Boutilier, Goldszmidt, and Sabata 1999;
Brafman and Tennenholtz 1999; Hu and Wellman
1998). The work presented here is a contribution to
this line. We consider the problem of computing Nash
equilibria in stochastic games. Stochastic games gen-
eralize MDPs to a multi-agent setting by allowing the
state transitions to depend jointly on all agent actions,
and having the immediate rewards at each state de-
termined by a multi-agent general-sum matrix game
associated with the state. If we view the computation
of an optimal policy in a given MDP as the problem
of planning for a single agent's interaction with its
�xed stochastic environment, the natural analogue in
a stochastic game would be the computation of a Nash
equilibrium allowing all agents to simultaneously enjoy
a best response policy to the others.

We begin by providing a generalization of �nite-
horizon value iteration in MDPs that computes, in
time polynomial in the number of states, a Nash strat-
egy for each player in any given two-player 1 general-
sum stochastic game. We introduce the notion of a
Nash selection function, which is simply a way of ex-
tracting local Nash equilibria from the matrix games
stored at each state. Perhaps the key insight behind
our value iteration generalization is that local appli-
cation of any Nash selection function to the appro-
priate backup matrices will yield a global Nash equi-
librium for the stochastic game. Di�erent global so-
lutions can be found by varying the underlying Nash

1For simplicity, we present all of our results for the two-
player case. They can be generalized to the k-player case
at the cost of a factor exponential in k, which cannot be
avoided without special assumptions on the game.

selection function used by the algorithm.

We then proceed to present our central technical con-
tribution, which is an online sparse sampling algo-
rithm for computing near-Nash equilibria in general-
sum stochastic games. In the same way that recent
work of Kearns, Mansour and Ng (1999) provided an
online planning algorithm for large or in�nite MDPs,
we build on our �nite-horizon value iteration and give
a randomized algorithm for computing each half of a
Nash policy in a stochastic game for which we have
only a generative model (the ability to sample the
state transition distributions). Like the sparse sam-
pling algorithm of Kearns et al. for the MDP case, the
per-state running time of our algorithm has no depen-
dence on the state space size, but is exponential in the
horizon time. This provides a rather di�erent trade-o�
than our basic value iteration algorithm, whose depen-
dence on the state space size is quadratic, but whose
dependence on the horizon time is linear. Like the ear-
lier work, one can view the new algorithm as greatly
reducing the width or degree (from linear in state space
size to constant) of a full look-ahead tree, while leaving
the depth unchanged.

The strong guarantee we prove for our algorithm
is that it computes a near-Nash equilibrium in any
stochastic game: as long as one player chooses to play
their half of the output of the algorithm at each state,
the other player provably has little incentive to de-
viate from playing their half. Since our algorithm is
randomized (due to the sparse sampling), and because
of the potential sensitivity of Nash equilibria to small

uctuations in the game, it is important that both
players play according to a common copy of the al-
gorithm. (Technically, this is known as a correlated
equilibrium.) Our algorithm can thus be viewed as
providing a centralized solution for the players that is
near-Nash.

We close with a discussion of value iteration in the in-
�nite horizon discounted case. We give a small gener-
alization of Shapley's proof of convergence in the zero-
sum case, but then provide a rather strong counterex-
ample to convergence in the general sum case, high-
lighting an interesting di�erence between planning in
MDPs and planning in stochastic games.

2 DEFINITIONS AND NOTATION

We adopt standard terminology and notation from
classical game theory. A two-player game is de�ned
by a matrix pair (M1;M2), specifying the payo�s for
the row player (player 1) and the column player (player
2), respectively. We shall assume without loss of gen-
erality throughout the paper that all game matrices
M1 and M2 are n by n, and that their indices thus

range from 1 to n. If the row player chooses the index
(or pure strategy) i and the column player chooses the
index j, the former receives payo� M1(i; j) and the
latter M2(i; j). More generally, if � and � are distri-
butions (or mixed strategies) over the row and column
indices, the expected payo� to player k 2 f1; 2g is
Mk(�; �)

:
= Ei2�;j2�[Mk(i; j)]. We say that the game

(M1;M2) is zero-sum if M2 = �M1.

The mixed strategy pair (�; �) is said to be a Nash
equilibrium (or Nash pair) for the game (M1;M2) if (i)
for any mixed strategy �0, M1(�

0; �) �M1(�; �), and
(ii) for any mixed strategy �0, M2(�; �

0) � M2(�; �).
In other words, as long as one player plays their
half of the Nash pair, the other player has no in-
centive to switch from their half of the Nash pair.
We will also need the standard notion of approxi-
mate Nash equilibria. Thus, we say that (�; �) is �-
Nash for (M1;M2) if (i) for any mixed strategy �0,
M1(�0; �) �M1(�; �)+�, and (ii) for any mixed strat-
egy �0, M2(�; �0) �M2(�; �) + �.

It is well-known (Owen 1995) that every game has
at least one Nash pair in the space of mixed (but
not necessarily pure) strategies, and many games have
multiple Nash pairs. Furthermore, in the zero-sum
case, if (�; �) and (�0; �0) are both Nash pairs, then
M1(�; �) =M1(�

0; �0), and (�; �0) and (�0; �) are also
Nash pairs. In other words, the payo� to the play-
ers is always the same under any Nash pair, and Nash
pairs can be freely \mixed" together to form new Nash
pairs. Since in the zero-sum case the payo� to the col-
umn player is always the negative of the row player,
we can unambiguously refer to the value of the game
v(M1)

:
= M1(�; �), where (�; �) is any Nash pair. In

the general-sum case, di�erent Nash pairs may yield
di�erent payo�s to the players, and in general Nash
pairs cannot be mixed in the manner described.

The security level for the row player is de�ned as
s1(M1;M2) = s1(M1)

:
= max�min�M1(�; �) and

for the column player as s2(M1;M2) = s2(M2)
:
=

max� min�M2(�; �). A mixed strategy achieving the
maximum in each case is referred to as a security strat-
egy for the player. The security level for a player is the
payo� that player can ensure for themselves regardless
of their opponent's behavior. In the zero-sum case,
the notion of Nash pair coincides with that of security
pair, and the value of a game is simply the security
level for the row player; in the general case, however,
the security level of a player may be lower than their
payo� in a Nash pair.

A stochastic game G over a state space S consists
of a designated start state s0 2 S, a matrix game
(M1[s];M2[s]) for every state s 2 S, and transition
probabilities P (s0js; i; j) for every s; s0 2 S, every pure

row strategy i, and every pure column strategy j. Each
step of play in a stochastic game proceeds as follows.
If play is currently in state s and the two players
play mixed strategies � and �, then pure strategies
i and j are chosen according to � and � respectively,
the players receive immediate payo�s M1[s](i; j) and
M2[s](i; j) (and thus have expected immediate pay-
o�s M1[s](�; �) and M2[s](�; �)), and the next state
s0 is drawn according to the transition probabilities
P (�js; i; j). Thus both the immediate payo�s to the
players and the state transition depend on the actions
of both players. If the game matrices at every state of
G are zero-sum we say that G is zero-sum.

We shall consider two di�erent standard measures of
the overall total return received by the players. In
the in�nite-horizon discounted case, play begins at
s0 and proceeds forever; if a player receives pay-
o�s r0; r1; r2; : : :, they are credited with total return
r0 +
r1 +
2r2 + � � �, where 0 �
 < 1 is the discount
factor . In the �nite-horizon undiscounted (also called
the T-step average) case, which is our main interest,
play begins at s0 and proceeds for exactly T steps;
if a player receives payo�s r0; r1; r2; : : : ; rT�1 they are
credited with total return (1=T)(r0+r1+� � � rT�1). We
shall use Rmax to denote the largest absolute value of
any element in the matrices Mk[s]. For ease of exposi-
tion we will often make the assumption that Rmax � 1
without loss of generality. The goal of each player in
a stochastic game is to maximize their expected total
return from the designated start state.

A policy for a player in a stochastic game G is a map-
ping �(s) from states s 2 S to mixed strategies to
be played at the matrix game at s. A time-dependent
policy �(s; t) allows the mixed strategy chosen to de-
pend on the number t of steps remaining in the T -
step game. It is known (Owen 1995) that we can
restrict attention to policies (in the in�nite-horizon
discounted case) or time-dependent policies (in the
�nite-horizon case) without loss of generality | that
is, no advantage can be gained by a player by con-
sidering the history of play. If �1 and �2 are policies
in a matrix game G with designated start state s0,
we use Gk(s0; �1; �2), k 2 f1; 2g, to denote the ex-
pected in�nite-horizon discounted return to player k,
and Gk(T; s0; �1; �2) to denote the expected T -step
average return. The notion of Nash pairs extends
naturally to stochastic games: we say that (�1; �2)
is a Nash pair if for any start state s0 and any �01,
G1(s0; �

0

1; �2) � G1(s0; �1; �2), and for any start state
s0 and any �02, G2(s0; �1; �

0
2) � G2(s0; �1; �2) (with

the obvious generalization for the T -step case, and
the obvious generalization to the notion of �-Nash).
Again, it is known (Owen 1995) that for the in�nite
discounted case, a Nash pair always exists in the space

of policies, and for the average return case, a Nash pair
always exists in the space of time-dependent policies.
The notions of security level and security policies in a
stochastic game are de�ned analogously. The subject
of this paper is the computation of Nash and �-Nash
policy pairs in stochastic games, including stochastic
games with large or in�nite state spaces.

Since the matrix game at any given state in a stochas-
tic game may have many Nash equilibria, it is easy
to see that there may be exponentially many Nash
equilibria in policy space for a stochastic game. Of
central interest in this paper is the question of how to
turn local decisions at each state into a global Nash
or near-Nash policy pair. For this we introduce the
notion of a Nash selection function. For any matrix
game (M1;M2), a Nash selection function f returns a
pair of mixed strategies f(M1;M2) = (�; �) that are
a Nash pair for (M1;M2). We denote the payo� to
the row player under this Nash pair by v1f (M1;M2)

:
=

M1(f(M1;M2)) and the payo� to the column player
by v2f (M1;M2)

:
= M2(f(M1;M2)). Thus, a Nash se-

lection function | which we allow to be arbitrary in
most of our results | is simply a speci�c way of mak-
ing choices of how to behave in isolated matrix games.
Looking ahead slightly, we will show how the appli-
cation of any Nash selection function to the appropri-
ate backup matrices yields a Nash policy pair for the
global stochastic game.

Similarly, a security selection function f returns a pair
of mixed strategies f(M1;M2) = (�; �) that are a secu-
rity pair for (M1;M2). In this case we use vkf (M1;M2)
to denote the security level of player k in the game
(M1;M2). For both Nash and security selection func-
tions, we denote the row and column strategies re-
turned by f by f1(M1;M2) and f2(M1;M2), respec-
tively.

3 FINITE VALUE ITERATION IN

GENERAL STOCHASTIC GAMES

We begin by describing a �nite-horizon, undiscounted
value iteration algorithm for general-sum stochastic
games, given in Figure 1. This algorithm takes as
input a horizon time T . It outputs a pair of time-
dependent policies �k(s; t), k 2 f1; 2g, mapping any
state s and the time remaining t � T to a mixed strat-
egy for player k. The algorithm assumes access to
an arbitrary, �xed stochastic game G (specifying the
payo� matrices (M1[s];Ms[s]) and the transition prob-
abilities P (s0js; i; j) for every state), and an arbitrary,
�xed Nash selection function f . We will show that the
algorithm outputs a pair of policies that are a Nash
equilibrium for the T -step stochastic game from any
start state. The running time is quadratic in the num-

Algorithm FiniteVI(T):
Initialization:

For all s 2 S, k 2 1; 2:
Qk[s; 0] Mk[s];
�k(s; 0) fk(M1[s];M2[s]);

Iteration t = 1 : : :T :
For all s 2 S, k 2 f1; 2g:
For all pure strategies i and j:
Qk[s; t](i; j) Mk[s](i; j) +

P
s0 P (s0js; i; j)vkf (Q1[s0; t� 1]; Q2[s0; t� 1]);

�k(s; t) fk(Q1[s; t]; Q2[s; t]);
Return the policy pair (�1; �2);

Figure 1: Algorithm FiniteVI for computing Nash equilibria in �nite-horizon undiscounted stochastic games. Recall
that f is an arbitrary Nash selection function, fk extracts the mixed strategy selected by f for player k, and vkf extracts
the value of the selected Nash to player k.

ber of states.

The algorithm is similar to classical �nite-horizon
value iteration in Markov decision processes, but now
we must maintain backup matrices at each step rather
than just backup values. A key insight behind this
algorithm is the fact that choices between the many
global Nash equilibria for the T -step stochastic game
can be implicitly made by careful application of an
arbitrary Nash selection function. The algorithm
also bears similarity to the in�nite-horizon discounted
value iteration algorithm studied by Shapley (1953),
which we revisit in Section 5. While Shapley proved
that the in�nite-horizon discounted algorithm con-
verges to a Nash equilibrium in the zero-sum case
(and indeed, as we shall show, does not converge in
the general-sum case), the main result of this section
shows that our �nite-horizon algorithm converges to
Nash in the general-sum setting.

Theorem 1 Let G be any stochastic game, and let f
be any Nash selection function. Then the policy pair
�k(s; t) output by FiniteVI(f) is a Nash pair for the
T -step stochastic game G from any start state.

Proof: The proof is by induction on the number of
steps T . The base case T = 0 is straightforward. If the
start state is s0, and this is the only step of play, then
clearly the players should play a Nash pair for the game
(M1[s0];M2[s0]) de�ned at s0. Since the initialization
step given in algorithm FiniteVI explicitly speci�es
that the �k(s0; 0) are simply the Nash pair identi�ed
by the Nash selection function f , this will be satis�ed.

Now suppose the theorem holds for all T < T0. Let
us �x the policy played by player 2 to be �2(s; t) for
all states s and time remaining t � T0, and con-
sider whether player 1 could bene�t by deviating from
�2(s; t). By the inductive hypothesis, player 1 cannot
bene�t by deviating at any point after the �rst step

of play at s0. At the �rst step of play, since player 2
is playing according to �2(s0; T0), he will play his half
of the Nash pair for the game (Q1[s0; T0]; Q2[s0; T0])
chosen by the Nash selection function f . Furthermore,
since play after the �rst step must be the Nash pair
computed by the algorithm for the T0 � 1 step game,
the matrices Qk[s0; T0] contain the true total average
return received by the players under any choice of ini-
tial actions at s0. Therefore player 1 cannot bene-
�t by deviating from the choice of action dictated by
�(s0; T0), and the theorem is proved. (Theorem 1)

4 A SPARSE SAMPLING

ALGORITHM IN LARGE GAMES

Algorithm FiniteVI computes full expectations over
next states in order to compute the backup matri-
ces Q̂k[s; t], and thus has a running time that scales
quadratically with the number of states in the stochas-
tic game. In contrast, in this section we present
a sparse sampling algorithm for on-line planning in
stochastic games. The per-state running time of this
algorithm has no dependence on the state space size,
and thus can be applied even to in�nite state spaces,
but it depends exponentially on the horizon time T .
This is exactly the trade-o� examined in the work of
Kearns, Mansour and Ng (1999) (see also McAllester
and Singh (1999)), who gave an on-line algorithm for
the simpler problem of computing near-optimal poli-
cies in large Markov decision processes. The algorithm
presented here can be viewed as a generalization of al-
gorithm FiniteVI that extends the sparse sampling
methods of these earlier works to the problem of com-
puting Nash equilibria in large or in�nite state spaces.

Algorithm SparseGame, which is presented in Fig-
ure 2, takes as input any state s and time T . It
assumes access to an arbitrary, �xed Nash selection
function f . Rather than directly accessing full transi-

tion distributions for the underlying stochastic game
G, the algorithm only assumes access to the immedi-
ate payo� matrices Mk[s], and the ability to sample
P (�js; i; j) for any (i; j). This is sometimes referred to
as a generative model or simulator for the stochastic
game. The algorithm returns a mixed strategy pair
(�; �) to be played at s, along with values Q̂1 and Q̂2,
whose properties we will discuss shortly.

The only aspect of the algorithm that has been left
unspeci�ed is the sample size m of next states drawn.
Note that due to the recursion, a call to SparseGame

will build a recursive tree of size mT , so the overall
running time of the algorithm will be exponential in
T . The question of interest is how large we must make
m.

Algorithm SparseGame is an on-line or local algo-
rithm in the sense that it takes a single state s and
the amount of time remaining T , and produces a mixed
strategy pair (�; �). This algorithm, however, de�nes
an obvious (global) policy for player k in the stochas-
tic game: namely, upon arriving in any state s with
T steps left in the �nite-horizon game, play the mixed
strategy for player k output by SparseGame(s; T).
Our goal is to prove that for a choice of m with no de-
pendence on the state space size, these global policies
are near-Nash | that is, if one player chooses to al-
ways play their half of the mixed strategy pairs output
by the algorithm at each state visited, then the other
player cannot bene�t much by deviating from the same
policy. This result will be derived via a series of techni-
cal lemmas. We begin with some necessary de�nitions.

For any s and T , we de�ne Vk[s; T] to be the expected
return to player k in the T -step game starting at s
when both players play according to SparseGame at
every step. For any pure strategy pair (i; j), we de�ne
Vk[s; T](i; j) to be the expected return to player k in
the T -step game starting at s when the �rst step play
at s is restricted to be (i; j), and both players play
according to SparseGame at every step afterwards.
It will be fruitful to view the values Q̂k returned by
the call SparseGame(s; T) as approximations to the
Vk[s; T], and to view the related matrices Q̂k[s; T](i; j)
computed by this call as approximations to the matri-
ces Vk[s; T](i; j). This view will be formally supported
by a lemma shortly.

We de�ne Bk[s; T] to be the expected return to player
k when we �x their opponent to play according to
SparseGame at every step, and player k plays the
best response policy | that is, the policy that maxi-
mizes their return given that their opponent plays ac-
cording to SparseGame. (It is not important that
we be able to compute this best response, since it is
merely an artifact of the analysis.) Similarly, we de-

�ne Bk[s; T](i; j) to be the expected return to player
k when the �rst step of play at s is restricted to be
(i; j), we �x the opponent of player k to play accord-
ing to SparseGame afterwards, player k plays the
best response policy afterwards.

In this terminology, the main theorem we would like
to prove asserts that for any s and T , the Vk[s; T]
(the values the players will receive by following the
algorithm) are near the Bk[s; T] (the values the players
could obtain by deviating from the algorithm if their
opponent follows the algorithm), for a su�ciently large
sample size that is independent of the state space size.

Theorem 2 For any s and T , and for any � > 0,
provided the sample size m in algorithm SparseGame

obeys

m > c
�
(T 3=�2) log(T=�) + T log(n=�)

�

for some constant c (where n is the number of pure
strategies available to both players at any state), then
jBk[s; T]� Vk[s; T]j � 2T�. In other words, the policy
of always playing according to SparseGame is 2T�-
Nash for the T -step game starting at s.

Proof: All expectations in the proof are over
all the random samples generated by the call
SparseGame(s; T) (including the random samples
generated by the recursive calls). We begin by not-
ing:

jBk[s; T]� Vk[s; T]j = E [jBk[s; T]� Vk[s; T]j]

� E
h
jBk[s; T]� Q̂k[s; T]j

i
+

E
h
jQ̂k[s; T]� Vk[s; T]j

i

by the triangle inequality and linearity of expectation.
We now state a lemma bounding the second expecta-
tion in this sum, and also bounding a related quantity
that we will need later.

Lemma 3 For any s and T , and for any � > 0, pro-
vided the sample size m in algorithm SparseGame

obeys

m > c
�
(T 3=�2) log(T=�) + T log(n=�)

�

for some constant c (where n is the number of pure
strategies available to both players at any state), then

E
h
jQ̂k[s; T]� Vk[s; T]j

i
� �

and

E

�
max
(i;j)
fjVk[s; T](i; j)� Q̂k[s; T](i; j)jg

�
� �:

Algorithm SparseGame(s; T):
If T = 0 (base case):
� f1(M1[s];M2[s]);
� f2(M1[s];M2[s]);
For k 2 f1; 2g, Q̂k Mk[s](�; �);
Return (�; �; Q̂1; Q̂2);

/* Else need to recurse below */
For each pure strategy pair (i; j):
Sample s01; : : : ; s

0
m from P (�js; i; j);

For ` = 1; : : : ;m:
(�0; �0; Q̂1[s0`; T � 1]; Q̂2[s0`; T � 1]) SparseGame(s0`; T � 1);

For k 2 f1; 2g, Q̂k[s; T](i; j) Mk[s] + (1=m)
Pm

`=1 Q̂k[s0`; T � 1];

� f1(Q̂1[s; T]; Q̂2[s; T]);
� f2(Q̂1[s; T]; Q̂2[s; T]);
For k 2 f1; 2g, Q̂k = Q̂k[s; T](�; �);
Return (�; �; Q̂1; Q̂2);

Figure 2: Algorithm SparseGame for computing one step of an approximate Nash equilibrium in a large stochastic
game. The algorithm assumes only access to a generative model of the game. Recall that f is an arbitrary Nash selection
function, fk extracts the mixed strategy selected by f for player k, and vkf extracts the value of the selected Nash to
player k.

Proof: By induction on T , we show that the prob-
ability that jQ̂k[s; T] � Vk[s; T]j � �T is bounded by
some quantity �T , and that for any �xed (i; j), the
probability that jQ̂k[s; T](i; j)� Vk[s; T](i; j)j � �T is
bounded by some quantity �0T . These bounds will then
be used to bound the expectations of interest.

For the base case T = 0, we have �T = �0T = 0.
Assume the inductive hypothesis holds for horizon
times 1; : : : ; T � 1. We de�ne the random variable
Uk[s; T](i; j)

:
= (1=m)

Pm

`=1 Vk[s
0

`; T � 1], where the s0`
are the states sampled in the call SparseGame(s; T).
By the triangle inequality we may write

jQ̂k[s; T](i; j)� Vk[s; T](i; j)j

� jQ̂k[s; T](i; j)� Uk[s; T](i; j)j+

jUk[s; T](i; j)� Vk[s; T](i; j)j:

For the second term in this sum, the probability of the
event jUk[s; T](i; j)�Vk[s; T](i; j)j � � can be bounded

by e��
2m via a standard Cherno� bound analysis. In

order to bound the �rst term in the sum, we note that
by de�nition,

Q̂k[s; T](i; j)� Uk[s; T](i; j) =

(1=m)
mX
`=1

Q̂k[s
0

`; T � 1]� Vk[s
0

`; T � 1]:

By the inductive hypothesis, for each state s0`, we have

jQ̂k[s
0

`; T � 1]� Vk[s
0

`; T � 1]j � �(T � 1)

with probability 1��T�1. This implies that with prob-
ability 1�m�T�1, the bound applies to all the sampled

states s0`. In such a case we have that for any �xed (i; j)

jQ̂k[s; T](i; j)� Uk[s; T](i; j)j � �(T � 1):

Therefore, with probability

1� �0T
:
= 1� (m�T�1 + e��

2m)

we have that

jQ̂k[s; T](i; j)� Vk[s; T](i; j)j � �T:

This completes the proof for the second half of the
inductive hypothesis. For the �rst half of the inductive
hypothesis we have

jQ̂k[s; T]� Vk[s; T]j � max
(i;j)
jQ̂k[s; T](i; j)� Vk[s; T](i; j)j:

This implies that with probability 1� �T
:
= 1 � n2�0T

we have

jQ̂k[s; T]� Vk[s; T]j � �T

which completes the proof of the �rst half inductive
hypothesis.

We would like to use the inductive hypothesis to prove
the lemma. By the de�nition of �T we have

E
h
jQ̂k[s; T]� Vk[s; T]j

i
� �T + �T:

Here we have used the assumption that Rmax � 1.
Now we need to solve for �T in the recurrence set up
above:

�T = n2�0T = n2(m�T�1 + e��
2m) � (n2m)Tn2e��

2m:

To complete the proof we set � = �=2T and

m > (2T=�2) log(T=�2) + T log(2n2=�) + 2 log(n):

Thus

m = O((T 3=�2) log(T=�) + T log(n=�)):

The second bound of the lemma follows since with
probability at most n2�0T we have

max
(i;j)
fjVk[s; T](i; j)� Q̂k[s; T](i; j)jg � �T

which completes the proof of the lemma. (Lemma3)

Returning to the main development, we have in-
curred an approximation cost � by applying Lemma 3,
and in exchange have reduced the task of bound-
ing jBk[s; T] � Vk[s; T]j to the problem of bounding

E
h
jBk[s; T]� Q̂k[s; T]j

i
. For this we need the follow-

ing general lemma.

Lemma 4 Let (M1;M2) and (M̂1; M̂2) be general-
sum matrix games such that for all pure strategy
pairs (i; j), jMk(i; j) � M̂k(i; j)j � � for k 2 f1; 2g.
Then if the mixed strategy pair (�; �) is a Nash in
(M̂1; M̂2), for any mixed strategy pair (�0; �) we have
M1(�0; �) � M̂1(�; �) � �.

Proof: It is easy to see that for any (�; �) and k 2
f1; 2g, jMk(�; �) � M̂k(�; �)j � �. Now �x (�; �) to
be some Nash pair in (M̂1; M̂2). This implies that for
any �0 we have M̂1(�0; �) � M̂1(�; �). Combining the
two observations we have that

M1(�
0; �) � M̂1(�

0; �) + �

� M̂1(�; �) + �:

(Lemma 4)

Recall that by de�nition of SparseGame, Q̂k[s; T]
is obtained by computing a Nash equilibrium (�; �)
(determined by the �xed Nash selection function) of
the matrices Q̂k[s; T](i; j), and setting (for example)
Q̂1[s; T] = Q̂1[s; T](�; �). Application of Lemma 4
now lets us write

E
h
jBk[s; T]� Q̂k[s; T]j

i

� E

�
max
(i;j)
fjBk[s; T](i; j)� Q̂k[s; T](i; j)jg

�

� E

�
max
(i;j)
fjBk[s; T](i; j)� Vk[s; T](i; j)jg

�

+E

�
max
(i;j)
fjVk[s; T](i; j)� Q̂k[s; T](i; j)jg

�
:

The second expectation in this sum, by Lemma 3, is
bounded by �, incurring our second � approximation

cost. The �rst expectation no longer involves any ran-
dom variables, so we may remove the expectation and
concentrate on bounding

max
(i;j)
fjBk[s; T](i; j)� Vk[s; T](i; j)jg:

For each �xed (i; j), the di�erence

jBk[s; T](i; j)� Vk[s; T](i; j)j

is just like the quantity we are attempting to bound
in the theorem, but now we have �xed the �rst step
of play to be (i; j) and there are only T � 1 steps af-
terwards. Thus we may apply a simple inductive ar-
gument:

jBk[s; T](i; j)� Vk[s; T](i; j)j

=

�����
X
s0

P (s0js; i; j)(Bk[s
0; T � 1]� Vk[s

0; T � 1])

�����
� max

s0

fjBk[s
0; T � 1]� Vk[s

0; T � 1]jg:

This implies that we have

max
s
fjBk[s; T]� Vk[s; T]jg

� 2�+max
s
fjBk[s; T � 1]� Vk[s; T � 1]gj

� 2T�:

(Theorem 2)

To apply Theorem 2, note that if we set � = �0=T
in the statement of the theorem and compute the re-
sulting m (which is polynomial in T and 1=�0), then
the policies computed by the algorithm will be �0-Nash
for the T -step stochastic game, and as already empha-
sized, the total per-state running time will be mT . As
mentioned in the introduction, it is important that the
players play their respective halves of a common copy
of the algorithm (a correlated equilibrium); playing an
independent copy may not be a Nash strategy in some
games. Brie
y, the reason for this is that small vari-
ations in sampling may result in instabilities in the
backup matrices computed. This instability is not a
problem as long as both players adhere to a common
run of the algorithm.

5 INFINITE VALUE ITERATION

IN STOCHASTIC GAMES

So far we have presented an exact algorithm for com-
puting Nash policy pairs in stochastic games with
small state spaces, and a sparse sampling algorithm for
computing approximately Nash policy pairs in large
stochastic games. Both of these algorithms applied
to the T -step average return setting. In this section,

Algorithm In�niteVI(T):
Initialization: for all s 2 S, k 2 1; 2:
Qk[s; 0] Mk[s];
�k(s) fk(M1[s];M2[s]);

Iteration t = 1; : : : ; T : for all s 2 S, k 2 f1; 2g:
For all pure strategies i and j:
Qk[s; t](i; j) Mk[s](i; j) +

P
s0 P (s0js; i; j)vkf (Q1[s0; t� 1]; Q2[s0; t� 1]);

�k(s) fk(Q1[s; t]; Q2[s; t]);
Return the policy pair (�1; �2);

Figure 3: Algorithm In�niteVI for computing a security pair in in�nite-horizon discounted stochastic games. Here f
is an arbitrary security selection function, fk extracts the mixed strategy selected by f for player k, and vkf extracts the
security level of the selected strategy to player k.

we examine the situation for the in�nite horizon dis-
counted return setting, and �nd some curious di�er-
ence with the �nite horizon case. In particular, we
provide a small generalization of the classical result
of Shapley on value iteration in the zero-sum case,
but also provide a counterexample proving that the
algorithm cannot (in a fairly strong sense) converge to
Nash in the general-sum setting.

In Figure 3, we present a value iteration algorithm for
the in�nite-horizon discounted setting. This algorithm
is quite similar to FiniteVI, except that the output
policies �k(s) are now independent of time, and the
discount factor is incorporated into the backup matri-
ces computed at each step.

We now present a slight generalization of a classical re-
sult of Shapley (1953) on the convergence of in�nite-
horizon value iteration. Shapley proved the conver-
gence in the case of zero-sum stochastic games, where
the notions of Nash and security coincide. Here we
give a more general analysis proving convergence to a
security strategy in the general-sum setting.

Theorem 5 Let G be any stochastic game, and let f
be any security selection function. Then as T ! 1,
the policy pair �k(s) output by In�niteVI(T) con-
verges to a security pair for the in�nite-horizon dis-
counted stochastic game G from any start state.

A very natural question to ask about algorithm In-

�niteVI is: if we allow the arbitrary security selection
function f to be replaced by an arbitrary Nash selec-
tion function, can we prove the generalization of The-
orem 5 in which convergence to a security pair is re-
placed by convergence to a Nash pair? This would pro-
vide the in�nite-horizon discounted analogue to The-
orem 1 for the �nite-horizon case.

In the full paper, we provide a counterexample prov-
ing that such a generalization is not possible. The
counterexample is rather strong in several dimensions.
First, it applies even to any �xed choice of Nash se-

lection function. In other words, the di�culty does
not lie in the generality of the Nash selection function,
and particular choices or conditions on this function
will not help. Second, the counterexample is such that
there will be in�nitely many time steps at which the
policies currently computed by the algorithm are not
even an approximate Nash pair. Thus, unlike the MDP
setting, in stochastic games there is a signi�cant dif-
ference in the convergence status of value iteration in
the �nite-horizon and in�nite-horizon cases.

6 REFERENCES

Boutilier C., Goldszmidt M., and Sabata B. (1999) Contin-
uous Value Function Approximation for Sequential Bidding
Policies. In Proceedings of the 15th Conference on Uncer-
tainty in Arti�cial Intelligence.

Brafman R.I. and Tennenholtz M. (1999). A Near-
Optimal Polynomial Time Algorithm for Learning in Cer-
tain Classes of Stochastic Games. In Proceedings of the
16th International Joint Conference on Arti�cial Intelli-

gence.

Hu J. and Wellman M.P. (1998). Multiagent reinforce-
ment learning: Theoretical framework and an algorithm.
In Proceedings of the Fifteenth International Conference

on Machine Learning, pages 242-250.

Kearns M., Mansour Y., and Ng A. (1999). A Sparse
Sampling Algorithm for Near-Optimal Planning in Large
Markov Decision Processes. In Proceedings of the 16th In-

ternational Joint Conference on Arti�cial Intelligence.

McAllester D. and Singh S. (1999). Approximate Planning
for Factored POMDPs using Belief State Simpli�cation.
In Proceedings of the 15th Conference on Uncertainty in

Arti�cial Intelligence.

Owen G. (1995). Game Theory. Academic Press, UK.

Shapley L.S. (1953). Stochastic Games. Proceedings of
the National Academy of Sciences of the United States of

America, 39:1095-1100.

