
Reinforcement Learning for Optimized Trade Execution

Yuriy Nevmyvaka yuriy.nevmyvaka@lehman.com

Lehman Brothers, 745 Seventh Av., New York, NY 10019, USA

Yi Feng fengyi@cis.upenn.edu

Michael Kearns
1
 mkearns@cis.upenn.edu

University of Pennsylvania, Philadelphia, PA 19104, USA

—————
Portions of this work were conducted while the authors were in the Equity Strategies department of Lehman Brothers in New York City. Appearing in

Proceedings of the 23 rd International Conference on Machine Learning, Pittsburgh, PA, 2006. Copyright 2006 by the author(s)/owner(s).

Abstract

We present the first large-scale empirical
application of reinforcement learning to the
important problem of optimized trade execution
in modern financial markets. Our experiments
are based on 1.5 years of millisecond time-scale
limit order data from NASDAQ, and
demonstrate the promise of reinforcement
learning methods to market microstructure
problems. Our learning algorithm introduces and
exploits a natural "low-impact" factorization of
the state space.

1. Introduction

In the domain of quantitative finance, there are many
common problems in which there are precisely specified
objectives and constraints. An important example is the
problem of optimized trade execution (which has also
been examined in the theoretical computer science
literature as the one-way trading problem). Previous work
on this problem includes (Amgen and Chriss, 2002),
(Bertsimas and Lo, 1998), (Coggins et al., 2003), (El-
Yaniv et al., 2001), (Kakade et al., 2004), and
(Nevmyvaka et al., 2005). In this problem, the goal is to
sell (respectively, buy) V shares of a given stock within a
fixed time period (or horizon) H, in a manner that
maximizes the revenue received (respectively, minimizes
the capital spent). This problem arises frequently in
practice as the result of "higher level" investment
decisions. For example, if a trading strategy – whether
automated or administered by a human – decides that
Qualcomm stock is likely to decrease in value, it may
decide to short-sell a block of shares. But this "decision"
is still underspecified, since various trade-offs may arise,
such as between the speed of execution and the prices
obtained for the shares (see Section 2). The problem of
optimized execution can thus be viewed as an important
horizontal aspect of quantitative trading, since virtually

every strategy's profitability will depend on how well it is
implemented.

For most of the history of the U.S. equity markets, the
only information available to an agent attempting to
optimize trade execution was the sequence of prices of
already-executed trades, and the current bid and ask (the
best outstanding buy and sell prices offered). But in recent
years, electronic markets such as NASDAQ have begun
releasing, in real time, all of the outstanding buy and sell
limit order prices and volumes (often referred to as order
book or market microstructure data). It is not difficult to
see that such data might be extremely valuable for the
problem of optimized execution, since the distribution of
outstanding limit orders may help predict short-term price
direction, likelihood of execution at a given price, buy or
sell side imbalances, and so on.

In this paper, we report on the first extensive empirical
application of reinforcement learning (RL) to the problem
of optimized execution using large-scale NASDAQ
market microstructure data sets. Our basic experimental
methodology (detailed in Section 3) consists of the
following steps:

1. The identification of a set of (observed) state variables
that can be derived from the microstructure data and the
RL algorithm's own actions. These variables are divided
into "private" variables (such as the amount of time and
shares remaining for the algorithm in the execution
problem) and "market" variables (which reflect various
features of the trading activity in the stock).

2. The application of a customized RL algorithm, which
exploits the structure of the execution optimization
problem to improve computational efficiency, to
extremely large datasets. Our empirical results are based
on 1.5 years of very high-frequency (millisecond time
scale) microstructure data for several NASDAQ stocks.

3. The empirical comparison of the RL-optimized
execution policy to a variety of natural baseline execution
strategies.

Our main contributions are:

1. A careful experimental demonstration that RL
approaches are well-suited for optimized execution, and
can result in substantial improvements in performance.
For instance, we show that the execution policies learned
by RL can improve relative performance by as much as
50%.

2. An efficient RL algorithm that is carefully crafted to
take advantage of the structural features of order book
trade execution. It fuses Q-learning and dynamic
programming and exploits the approximate independence
between private and market variables.

3. A study of the relative value of a variety of market
variables, including several that require and exploit the
recent revelation of microstructure data. An example of a
valuable microstructure variable is the current cost of a
market order submission.

4. A detailed analysis of the policies learned by RL, and
how they depend on the observed state variables. We
show that these policies can be interpreted naturally in
terms of the state variables and the constraints of the
execution problem.

We note that while several previous works have proposed
the use of RL to various problems in quantitative finance,
including optimized execution and market-making – see
(Bertsimas and Lo, 1998), (Chan et al, 2001), (Tesauro
and Bredin, 2002), and (Kim and Shelton, 2002) – this is
the first large-scale empirical application, and the first to
employ microstructure data.

2. Limit Order Trading and Market Simulation

 In this section we provide only the briefest background
on limit orders and microstructure necessary to
understand our results. Modern financial markets such as
the NASDAQ are limit order markets. By this we mean
that buyers and sellers specify not only their desired
volumes, but their desired prices as well. A limit order to
buy (respectively, sell) V shares at price p may partially or
completely execute at prices at or below p (at or above p).

For example, suppose that NVIDIA Corp. (NVDA) is
currently trading at roughly $27.22 a share (see Figure 1,
which shows an actual snapshot of an NVDA order book),
but we are only willing to buy 1000 shares at $27.13 a
share or lower. We can choose to submit a limit order
with this specification, and our order will be placed in the
buy order book, which is ordered by price, with the
highest price at the top (this price is referred to as the bid;
the lowest sell price is called the ask). In the example
provided, our order would be placed immediately after the
extant order for 109 shares at $27.13; though we offer the
same price, this order has arrived before ours. If an
arriving limit order can be immediately executed with
orders on the opposing book, the executions occur. For

example, a limit order to buy 2500 shares at $27.27 will
cause execution with the limit sell orders for 713 shares at
$27.22, and the 1000-share and 640-share sell orders at
$27.27, for a total of 2353 shares executed. The remaining
(unexecuted) 147 shares of the arriving buy order will
become the new bid at $27.27. It is important to note that
the prices of executions are the prices specified in the
limit orders already in the books, not the prices of the
incoming order that is immediately executed. Thus we
receive successively worse prices as we consume orders
deeper in the opposing book.

Figure 1. Snapshot of NVDA order book.

In our study, we used historical records from the INET
Electronic Communication Network, an electronic,
completely automated stock exchange, which accounts for
a significant volume of trading in NASDAQ stocks. We
have developed a simulator (or a generative model in RL
terminology) that combines the real world INET order
flow with artificial orders generated by our execution
strategies. It executes orders and maintains priorities in
order books in the way we have just described. Such a
setup allows us to run simulations in historical order
books, and capture all costs and uncertainties of trade
execution: the bid-ask spread, market impact, and the risk
of non-execution. Our experiments are based on three
stocks: Amazon (AMZN), Qualcomm (QCOM), and
NVIDIA (NVDA). These stocks were chosen to examine
how the performance and policies found by RL vary with
stock properties such as liquidity, volume traded, and
volatility. Because of the frequency and detailed nature of
our data, market datafiles are extremely large –
transaction records in each stock take up several GBs of
disk space. We separated the available data into disjoint
training and test sets (12 and 6 months respectively).

3. An RL Formulation of Optimized Execution

From the discussion of the last section, the implications of
order book dynamics for the problem of optimized trade
execution should be immediately apparent. In particular,

if our goal is to sell V shares in time horizon H, one
option is to submit a market order immediately at the
beginning of the time interval – that is, effectively place a
limit order to sell all V shares at price 0, which will have
the effect of giving us the V best prices in the buy book at
that moment. However, if V is large we will be receiving
progressively worse prices for subsequent shares as we
churn through the buy book – a visceral form of market
impact.

A potentially more intelligent class of strategies are the
submit and leave (S&L) policies. Here we pick a fixed
limit order price p, and place a sell order for all V shares
at price p. After H minutes, we go to the market with any
remaining (unexecuted) shares. Such strategies provide a
simple framework for trading off the likelihood of
execution with the prices obtained. And even though S&L
appears simplistic, it captures the important reality of
costly monitoring. Most real-world traders deal with large
diversified portfolios and thus do not have the luxury of
devoting all their attention to a single stock. In the S&L
setting, orders cannot be monitored continuously and
revised instantaneously, which realistically exposes them
to market fluctuations and adverse selection. See
(Nevmyvaka et al., 2005) for an extensive empirical study
of this restricted but interesting class of strategies. Of
course, we would like to be able to entertain considerably
richer classes of execution strategies. It is very natural to
consider state-based strategies – strategies that can
examine salient features of the current order books and
our own activity – in order to decide what to do next. We
now give the RL formulation of optimized execution we
employed in our experiments, describing the state, action
and reward structure, as well as the algorithm.

States. Each state x ∈ X is a vector of attributes (state
variables) that describes the current configuration of our
system. We note that where we say state we more
precisely mean observed state; we in no way suggest that
our state representations are sufficient to render a system
as complex as modern financial markets truly Markovian.
In what follows we will essentially be treating a partially
observable environment as if it were fully observable to
us; the test of this assumption will lie in our empirical
evaluation.

While we will explore a number of different state
representations, there are two important variables that
appear in all of them. These are the elapsed time t and the
remaining inventory i, which represent how much time of
the horizon H has passed and how many shares we have
left to execute in the target volume V. Different
resolutions of accuracy will be investigated for these
variables, which we refer to as private variables, since
they are essentially only known and of primary concern to
our execution strategy. More precisely, we pick I and T,
which are the resolutions (maximum values) of the private
variables i and t, respectively. I represents the number of

inventory units our policy can distinguish between – if V
= 10,000 shares, and I = 4, our remaining inventory is
represented in rounded units of V/I = 2,500 shares each.
Similarly, we divide the time horizon H into T distinct
points at which the policy is allowed to observe the state
and take an action; for H = 2 min and T = 4 we can submit
a revised limit order every 30 seconds, and the time-
remaining variable t can assume values from 0 (start of
the episode) down to 4 (last decision point of the
episode).

We will also examine a number of additional state
variables we refer to as market variables, which compute
various properties of interest of the limit order books and
recent activity in the stock. Thus, a state has the form xm
= <t, i, o1, …, oR>, where the oj are market variables. We
describe our selection of market variables in Section 4.

Actions. As is standard, policies will map states to
actions, but we also need to place some limits on the
action space. Our action space can be thought of as a
simple limit order price at which to reposition all of our
remaining inventory, relative to the current ask or bid. In
other words, for the problem of selling V shares, action a
corresponds to placing a limit order for all of our
unexecuted shares at price ask - a. Thus we are effectively
withdrawing any previous outstanding limit order we may
have (which is indeed supported by the actual exchanges),
and replacing with a new limit order. Thus a may be
positive or negative, with a=0 corresponding to coming in
at the current ask, positive a corresponding to "crossing
the spread" towards the buyers, and negative a
corresponding to placing our order in the sell book. For
the problem of buying, a is interpreted relative to the
current bid. For either buying or selling, more positive
actions mean movement towards the opposing book, and
more negative actions mean placement deeper within our
own book.

Rewards. An action from a given state may produce
immediate rewards, which are essentially the proceeds
(cash inflows or outflows, depending on whether we are
selling or buying) from any (partial) execution of the limit
order placed. Furthermore, since we view the execution of
all V shares as mandatory, any inventory remaining at the
end of time H is immediately executed at market prices ---
that is, we eat into the opposing book to execute, no
matter how poor the prices, since we have run out of time
and have no choice.

In order to permit comparisons of policies and
performance across stocks, which may have very different
per-share prices, we always measure the execution prices
achieved by a policy relative to the mid-spread price
(namely, (ask+bid)/2) at the start of the episode in
question. Thus, we are effectively comparing performance
to the idealized policy which can execute all V of its
shares immediately at the mid-spread, and thus are

assuming infinite liquidity at that point. Since this
idealized policy cannot in general be realized, we always
expect to do worse, but this provides a convenient
common baseline for the comparison of multiple policies
that can be realized. We define the trading cost of a
policy as the underperfomance compared to the mid-
spread baseline, measured in the standard financial unit of
basis points, or 1/100 of a percent. Our reward function
captures the most important aspects of execution – bid-
ask spread, market impact, opportunity cost, etc. As our
study is primarily aimed at large institutional investors,
we assume that commissions and exchange fees are
negligible. We also assume direct and fast access to
exchanges – i.e. we do not account for possible order
arrival delays.

Algorithm. We experimented with a variety of standard
and modified RL algorithms, but all results are reported
from a very efficient algorithm that exploits the particular
properties of optimized execution and financial markets.
Speed and efficient (re-)use of data make our approach
particularly attractive.

The feature that allows us to reduce the number of state
optimizations is the (approximately) Markovian nature of
trade execution: if our state space is properly defined, the
optimal action at any given point in time is
(approximately) independent of any previous actions. By
the Markov property, the optimal action in a state at
elapsed time t = τ is independent of the actions in all
states with elapsed time t ≤ τ. Extending this logic,
optimal actions in states with t = T (no time remaining)
are completely independent from all other actions. Indeed,
when time runs out, we are forced to submit a market
order for all unexecuted shares to bring our inventory to
the target level V (no mater what else we do between t = 0
and t = T-1). Now we can solve the problem inductively:
having assigned optimal actions for all states with t = T
(mandatory market order), we now have all the
information we need to determine the optimal action for
all states with t = T-1; having done that, we move one
time step back to t = T-2, and so on until t = 0. Having
arrived at t = 0, we have a globally optimal policy (under
our Markovian assumption).

Another significant assumption we shall make is that our
own actions do not affect the behavior of other market
participants. This means that we do not explicitly model
strategic order submission by other traders, like “stepping
in front” of large orders. According to our formal
notation, we will assume that our actions do not affect
market state variables o1 … oR, but only the private
variables t (with every action that we take t increases by
1) and i (as we gradually execute our order, i decreases
monotonically). We exploit this independence property of
public and private variables to use the available data more
efficiently (and thus reduce overfitting), and to make sure
that we optimize every state that can be ever encountered

within our dataset. For every interval H/T in our data, we
can ask (and get an answer to) a question: what is the
optimal action in this state if we were to encounter this
particular state with t = 0, 1, 2…T periods remaining?
Then we use the exact same “trick” with the other private
variable – remaining inventory i. We try every possible
value of i ∈ [0, V/I] in every state we are optimizing. This
ensures that every possible state that can be generated
from our dataset {t, i}* {o1 … oR} gets visited.

Finally, we explain our methodology for determining an
optimal action in a given state. Our approach is similar to
Q-learning: in every state we encounter, we try all
possible actions and update the expected cost associated
with taking each action and following the optimal strategy
afterwards. Taking an action results in an immediate
payout if any number of shares get executed, and it
transfers us into a new state one time step later. Since our
learning moves backwards in time, this new state has
already been optimized and we know the expected cost of
following the optimal strategy from that state. More
formally, our cost update rule is the following:

c(x, a) = n/(n+1) c(x, a) +
 1/(n+1) [cim(x, a) + arg max c(y, p)],

where c(x, a) is the cost of taking action a in the state x
and following the optimal strategy in all subsequent
states; cim(x, a) is the immediate (1-step) cost of taking
action a in state x; y is the new state where we end up
after taking a in x; n is the number of times we have tried
a in x, and p is the action taken in y.

In order to learn an optimal strategy, we need to go
through the dataset T*I*L times (L is the number of
actions in each state). This is a much smaller number than
the worst-case scenario, and it has several interesting
properties. First, the running time of our algorithm is
independent of the number of market variables R, and,
second, we can increase T and I arbitrarily without risking
overfitting because of the efficient use of our data. Figure
2 plots running times as functions of T, I, and R.

Here is our algorithm in pseudo-code:

Optimal_strategy (V, H, T, I, L)
 For t = T to 0
 While (not end of data)
 Transform (order book) � o1 … oR
 For i = 0 to I {

 For a = 0 to L {
 Set x = {t, i, o1 … oR}
 Simulate transition x � y

 Calculate cim(x, a)
 Look up argmax c(y, p)

 Update c(<t,v, o1 … oR>, a)
 Select the highest-payout action argmax c(y, p) in
 every state y to output optimal policy

We want to emphasize that the main assumption exploited
is the approximate independence of private and market
variables. More precisely, during training only, we
assumed that the actions of our policy had no effects on
the subsequent evolution of order books. In other words,
after simulating the number of shares we would have
executed from a given order book state (thus allowing the
appropriate updates of the private variables), we next
advance to the order books as they evolved without our
trading. This is tantamount to the independence
assumption just articulated. The great advantage of this
assumption is that it renders our computation time and
sample complexity nearly independent of the number of
market (but not private) variables, since our actions do not
influence market variable evolution. Of course, this
assumption must be validated, and it is: all of our results
are reported on test data in which this assumption was not
made --- all test set order book simulations maintain the
impacts of any policy actions. The strong empirical
results obtained on the test data despite the independence
assumption made in training verifies its approximate
validity.

Experimental Methodology. For every class of policies
we investigate, we went through the following sequence
of steps:

1. We investigated three stocks: AMZN, NVDA, and
QCOM; two order sizes V: 5,000 shares and 10,000
shares; and two execution horizons H: 2 minutes and 8
minutes. We tried every combination of stock, V, and H
for every state space representation.

2. A choice for the parameters I and T was made, which
are the resolutions of the private variables i and t,
respectively. These resolutions were generally kept small
for purposes of a reduced state space.

3. Market variables were selected. Market variables
summarized a variety of information from the order books
(current and past) into a number of low-resolution
features. For example, executed market volume can take
on any value between 0 and 1,000,000 shares, but we
convert it into a proxy variable that takes values of 0
(low), 1 (medium), and 2 (high). In a sense, market
variables are a “blurry” representation of the real world.
Choices for I, T, and the market variables completely
specify a state space representation. The size of state
space can vary from a dozen or so states (just T and I with
very low resolution) to over a thousand (several market
variables, high resolution).

4. We partitioned our training data into episodes, and
applied our RL algorithm to learn an optimized execution
policy over the chosen state space. For instance, when we
set H to 2 minutes, we partitioned our 1-year INET
training data into approximately 45,000 episodes. In

general we enjoyed the luxury of large training and test
sets, which is an advantage of using microstructure data.

5. Policies learned via RL were then compared on the 6-
month test set with several baseline strategies (always
measured by trading costs in basis points over the mid-
spread price at the opening of the episode; see above).
The most basic comparison is with the optimized submit-
and-leave strategy. However, also of interest are
comparisons between RL policies obtained using different
state variables, since this can shed light on the relative
value of these variables.

4. Experimental Results

We begin our presentation of empirical results with a
brief discussion of how our choice of stock, volume, and
execution horizon affects the RL performance across all
state space representations. All other factors kept
constant, the following facts hold (and are worth keeping
in mind going forward):

 1. NVDA is the least liquid stock, and thus is the most
expensive to trade; QCOM is the most liquid and the
cheapest to trade. 2. Trading larger orders is always more
costly than trading smaller ones. 3. Having less time to
execute a trade results in higher costs. In simplest terms:
one has to accept the largest price concession when he is
selling a large number of shares of NVIDIA in the short
amount of time.

4.1 Learning with Private Variables Only

The first state space configuration that we examine
consists of only the two private variables t (decision
points remaining in episode) and i (inventory remaining).
Even in this simple setting, RL delivers vastly superior
performance compared to the class of optimized submit-
and-leave policies (which is already a significant
improvement over a simple market order). Figure 3 shows
trading costs for all stocks (AMZN, NVDA, QCOM),
execution times (8 and 2 minutes), and order sizes (5K
and 10K shares) for the submit-and-leave strategy (S&L),
the learned policy where we update our order 4 times and
distinguish among 4 levels of inventory (T=4, I=4) , and
the learned policy with 8 updates and 8 inventory levels
(T=8, I=8). We find that learned execution policies
significantly outperform submit-and-leave policies in all
settings. Relative improvement over S&L ranges from
27.16% to 35.50% depending on our choices of T and I
(increasing either parameter leads to strictly better
results).

How can we explain this improvement in performance
across the board? It of course comes from the RL’s ability
to find optimal actions that are conditioned on the state of
the world. In Figure 4 we display the learned strategies
for a setting where we have 8 order updates and 8

inventory levels. We show all three stocks, but fix trading
volume at 10,000 shares and execution time at 2 minutes.
Each panel in Figure 4 corresponds to a single bar in
Figure 3, which indicates that we execute our trades with
much more precision now. The more inventory and less
time remains, the more aggressively we price the orders to
avoid submitting a costly market order at the end. We can
observe that RL learns the same general “shape” in all
cases, but the exact policy specification is stock-
dependent.

It is interesting to examine more closely how actions
relate to trading costs. In Figure 5 we show how optimal
policies are derived from q-values. We fix either the time
remaining at 1 (left panel), the last decision point; or the
inventory remaining at 4 (right panel), the maximum
amount. We then vary the other private variable and plot
the Q-values (= trading costs) of each action. In each state
the learned action is of course the minimum of the
corresponding curve. The shapes of the Q-value functions
explain the relationship between state variables and
optimal actions: for large inventories and little time
remaining, the entire Q-value function shifts upwards,
(reflecting higher expected cost), but the minimum of the
curve shifts to the right, which indicates that optimal
action must be more aggressive in such situations.

4. 2 Introducing Market Variables

We now add market variables to our state space to
investigate whether optimal actions should be contingent
on market conditions. We summarize our findings in
Table 1, which shows the improvement over using just the
private variables (averaged over all stocks, sizes,
execution periods and private variable resolutions T and I)
for each market variable we tested. Market order cost is a
measure of liquidity beyond the bid-ask spread – how
much would it cost to submit a market order for the
balance of inventory immediately instead of waiting until
T. Bid-ask volume misbalance is the signed difference
between volumes quoted at the bid and at the ask.
Transaction volume is the “signed” volume (buy orders
are positive, sell orders are negative) of all trades within
last 15 seconds. Each variable can take a small number of
values. We also explored combinations of 2 and 3 market
variables. We note that while we have succeeded in
identifying factors that can improve RL performance
significantly, we have explored many others that did not
result in more efficient policies, which is a testimony to
market efficiency. Overall, we can achieve improvement
in execution of 50% or more over S&L policies and
several times over market orders when we employ RL
with both private and market variables.

Bid-Ask Spread 7.97%

Bid-Ask Volume Misbalance 0.13%

Spread + Immediate Cost 8.69%

Immediate Market Order Cost 4.26%

Signed Transaction Volume 2.81%

Spread+ImmCost+Signed Vol 12.85%

Table 1. Additional trading cost reduction when
introducing market variables

In order to provide this improvement in performance, the
RL algorithm must learn different actions for different
values of market variables. Figure 6 is similar in spirit to
Figure 4: it shows how optimal actions depend on the
market variables bid-ask spread and market order cost,
while keeping the other parameters (V, H, T, and I) fixed.
The learning dictates that larger spreads and lower costs
of submitting a market order dictate more aggressive
actions --- in the first case because one must go further to
"chase" the opposing book, and in the second because an
opportunity for reduced price is present. Other useful
market variables induce similar dependencies.

As it was the case with T and I in Figure 5, it is the shape
of Q-value functions that is responsible for difference of
optimal actions across states. In the left panel of Figure 7,
we see how the location of the optimal action on the cost
curve shifts to the right as the spread size increases. In the
right panel, we show why some market variables do not
improve the performance of our algorithm: While volume
misbalance is most certainly a predictor of future trading
costs (as indicated by the difference in Q-value
functions), we cannot take advantage of this
predictability, since the cost-minimizing actions are
identical in all three cases.

5. Conclusion and Future Work

We have reported on the first large-scale application of
reinforcement learning to the common and challenging
finance problem of optimized trade execution. Via careful
choice of market state variables and the design of an
efficient algorithm exploiting the independence and
structure of the problem, we have shown that RL can
indeed result in significant improvements over simpler
forms of optimization (such as submit and leave policies).

In future work we plan to relax many assumptions made
here adapt the methodology and state variables employed
here for other common but precisely-defined finance
problems, such as market-making and the optimization of
constrained strategy classes.

References

Almgren, R., Chriss, N., Optimal Execution of Portfolio
Transactions, Journal of Risk, 2002.

Bertsimas, D., A, Lo, A., Optimal Control of Execution
Costs. Journal of Financial Markets 1, 1-50, 1998.

Chan, N., Shelton, C., Poggio, T., An Electronic Market-
Maker. AI Memo, MIT, 2001.

Coggins, R., Blazejewski, A., Aitken, M., Optimal Trade
Execution of Equities in a Limit Order Market,
International Conference on Computational Intelligence
for Financial Engineering, pp. 371-378, March, 2003.

El-Yaniv, R., Fiat, A., Karp, R., Turin, G. Optimal Search
on One-Way Trading Online Algorithms. Algorithmica
30:101-139, 2001.

Kakade, S., Kearns, M., Mansour, Y., Ortiz, L.,
Competitive Algorithms for VWAP and Limit Order
Trading. Proceedings of the ACM Conference on
Electronic Commerce, 2004.

Kim, A., Shelton, C., Modeling Stock Order Flows and
Learning Market-Making from Data. AI Memo 2002-009,
MIT, 2002.

Mitchell, T., Machine Learning, McGraw Hill, 1997.

Nevmyvaka, Y., Kearns, M., Papandreou, A., Sycara, K,
Electronic Trading in Order-Driven Markets: Efficient
Execution. In the Proceedings of IEEE International
Conference on E-Commerce Technology, 2005.

Tesauro, G., and Bredin, J., Strategic Sequential Bidding
in Auctions Using Dynamic Programming. Proceedings of
AAMAS-02.

Figure 2. Running time as a function of T, I, and R: independent of the number of market variables

Figure 3. Expected cost under S&L and RL: adding private variables T and I decreases costs

Figure 4. Visualization of learned policies: place aggressive orders as time runs out, significant inventory remains

Figure 5. Q-values: curves change with inventory and time (AMZN, T=4, I=4)

Figure 6. Large spreads and small market order costs induce aggressive actions

Figure 7. Q-values: cost predictability may not affect the choice of optimal actions

