
Reinforcement Learning for Optimized Trade Execution 

Yuriy Nevmyvaka yuriy.nevmyvaka@lehman.com 

Lehman Brothers, 745 Seventh Av., New York, NY 10019, USA 

Yi Feng fengyi@cis.upenn.edu 

Michael Kearns
1
 mkearns@cis.upenn.edu 

University of Pennsylvania, Philadelphia, PA 19104, USA 

 

————— 
Portions of this work were conducted while the authors were in the Equity Strategies department of Lehman Brothers in New York City. Appearing in 

Proceedings of the 23 rd International Conference on Machine Learning, Pittsburgh, PA, 2006. Copyright 2006 by the author(s)/owner(s). 

Abstract 

We present the first large-scale empirical 
application of reinforcement learning to the 
important problem of optimized trade execution 
in modern financial markets. Our experiments 
are based on 1.5 years of millisecond time-scale 
limit order data from NASDAQ, and 
demonstrate the promise of reinforcement 
learning methods to market microstructure 
problems. Our learning algorithm introduces and 
exploits a natural "low-impact" factorization of 
the state space. 

1.  Introduction 

In the domain of quantitative finance, there are many 
common problems in which there are precisely specified 
objectives and constraints. An important example is the 
problem of optimized trade execution (which has also 
been examined in the theoretical computer science 
literature as the one-way trading problem). Previous work 
on this problem includes (Amgen and Chriss, 2002), 
(Bertsimas and Lo, 1998), (Coggins et al., 2003), (El-
Yaniv et al., 2001), (Kakade et al., 2004), and 
(Nevmyvaka et al., 2005). In this problem, the goal is to 
sell (respectively, buy) V shares of a given stock within a 
fixed time period (or horizon) H, in a manner that 
maximizes the revenue received (respectively, minimizes 
the capital spent). This problem arises frequently in 
practice as the result of "higher level" investment 
decisions. For example, if a trading strategy – whether 
automated or administered by a human – decides that 
Qualcomm stock is likely to decrease in value, it may 
decide to short-sell a block of shares. But this "decision" 
is still underspecified, since various trade-offs may arise, 
such as between the speed of execution and the prices 
obtained for the shares (see Section 2). The problem of 
optimized execution can thus be viewed as an important 
horizontal aspect of quantitative trading, since virtually 

every strategy's profitability will depend on how well it is 
implemented. 

For most of the history of the U.S. equity markets, the 
only information available to an agent attempting to 
optimize trade execution was the sequence of prices of 
already-executed trades, and the current bid and ask (the 
best outstanding buy and sell prices offered). But in recent 
years, electronic markets such as NASDAQ have begun 
releasing, in real time, all of the outstanding buy and sell 
limit order prices and volumes (often referred to as order 
book or market microstructure data). It is not difficult to 
see that such data might be extremely valuable for the 
problem of optimized execution, since the distribution of 
outstanding limit orders may help predict short-term price 
direction, likelihood of execution at a given price, buy or 
sell side imbalances, and so on. 

In this paper, we report on the first extensive empirical 
application of reinforcement learning (RL) to the problem 
of optimized execution using large-scale NASDAQ 
market microstructure data sets. Our basic experimental 
methodology (detailed in Section 3) consists of the 
following steps: 

1. The identification of a set of (observed) state variables 
that can be derived from the microstructure data and the 
RL algorithm's own actions. These variables are divided 
into "private" variables (such as the amount of time and 
shares remaining for the algorithm in the execution 
problem) and "market" variables (which reflect various 
features of the trading activity in the stock). 

2. The application of a customized RL algorithm, which 
exploits the structure of the execution optimization 
problem to improve computational efficiency, to 
extremely large datasets. Our empirical results are based 
on 1.5 years of very high-frequency (millisecond time 
scale) microstructure data for several NASDAQ stocks.  

3. The empirical comparison of the RL-optimized 
execution policy to a variety of natural baseline execution 
strategies. 



 

 

Our main contributions are: 

1. A careful experimental demonstration that RL 
approaches are well-suited for optimized execution, and 
can result in substantial improvements in performance. 
For instance, we show that the execution policies learned 
by RL can improve relative performance by as much as 
50%. 

2. An efficient RL algorithm that is carefully crafted to 
take advantage of the structural features of order book 
trade execution. It fuses Q-learning and dynamic 
programming and exploits the approximate independence 
between private and market variables. 

3. A study of the relative value of a variety of market 
variables, including several that require and exploit the 
recent revelation of microstructure data. An example of a 
valuable microstructure variable is the current cost of a 
market order submission. 

4. A detailed analysis of the policies learned by RL, and 
how they depend on the observed state variables. We 
show that these policies can be interpreted naturally in 
terms of the state variables and the constraints of the 
execution problem. 

We note that while several previous works have proposed 
the use of RL to various problems in quantitative finance, 
including optimized execution and market-making – see 
(Bertsimas and Lo, 1998), (Chan et al, 2001), (Tesauro 
and Bredin, 2002), and (Kim and Shelton, 2002) – this is 
the first large-scale empirical application, and the first to 
employ microstructure data.  

2.  Limit Order Trading and Market Simulation 

 In this section we provide only the briefest background 
on limit orders and microstructure necessary to 
understand our results. Modern financial markets such as 
the NASDAQ are limit order markets. By this we mean 
that buyers and sellers specify not only their desired 
volumes, but their desired prices as well. A limit order to 
buy (respectively, sell) V shares at price p may partially or 
completely execute at prices at or below p (at or above p).  

For example, suppose that NVIDIA Corp. (NVDA) is 
currently trading at roughly $27.22 a share (see Figure 1, 
which shows an actual snapshot of an NVDA order book), 
but we are only willing to buy 1000 shares at $27.13 a 
share or lower. We can choose to submit a limit order 
with this specification, and our order will be placed in the 
buy order book, which is ordered by price, with the 
highest price at the top (this price is referred to as the bid; 
the lowest sell price is called the ask). In the example 
provided, our order would be placed immediately after the 
extant order for 109 shares at $27.13; though we offer the 
same price, this order has arrived before ours. If an 
arriving limit order can be immediately executed with 
orders on the opposing book, the executions occur. For 

example, a limit order to buy 2500 shares at $27.27 will 
cause execution with the limit sell orders for 713 shares at 
$27.22, and the 1000-share and 640-share sell orders at 
$27.27, for a total of 2353 shares executed. The remaining 
(unexecuted) 147 shares of the arriving buy order will 
become the new bid at $27.27. It is important to note that 
the prices of executions are the prices specified in the 
limit orders already in the books, not the prices of the 
incoming order that is immediately executed. Thus we 
receive successively worse prices as we consume orders 
deeper in the opposing book. 

Figure 1. Snapshot of NVDA order book. 

In our study, we used historical records from the INET 
Electronic Communication Network, an electronic, 
completely automated stock exchange, which accounts for 
a significant volume of trading in NASDAQ stocks. We 
have developed a simulator (or a generative model in RL 
terminology) that combines the real world INET order 
flow with artificial orders generated by our execution 
strategies. It executes orders and maintains priorities in 
order books in the way we have just described. Such a 
setup allows us to run simulations in historical order 
books, and capture all costs and uncertainties of trade 
execution: the bid-ask spread, market impact, and the risk 
of non-execution. Our experiments are based on three 
stocks: Amazon (AMZN), Qualcomm (QCOM), and 
NVIDIA (NVDA). These stocks were chosen to examine 
how the performance and policies found by RL vary with 
stock properties such as liquidity, volume traded, and 
volatility. Because of the frequency and detailed nature of 
our data, market datafiles are extremely large – 
transaction records in each stock take up several GBs of 
disk space. We separated the available data into disjoint 
training and test sets (12 and 6 months respectively).  

3.  An RL Formulation of Optimized Execution 

From the discussion of the last section, the implications of 
order book dynamics for the problem of optimized trade 
execution should be immediately apparent. In particular, 



 

 

if our goal is to sell V shares in time horizon H, one 
option is to submit a market order immediately at the 
beginning of the time interval – that is, effectively place a 
limit order to sell all V shares at price 0, which will have 
the effect of giving us the V best prices in the buy book at 
that moment. However, if V is large we will be receiving 
progressively worse prices for subsequent shares as we 
churn through the buy book – a visceral form of market 
impact.  

A potentially more intelligent class of strategies are the 
submit and leave (S&L) policies. Here we pick a fixed 
limit order price p, and place a sell order for all V shares 
at price p. After H minutes, we go to the market with any 
remaining (unexecuted) shares. Such strategies provide a 
simple framework for trading off the likelihood of 
execution with the prices obtained. And even though S&L 
appears simplistic, it captures the important reality of 
costly monitoring. Most real-world traders deal with large 
diversified portfolios and thus do not have the luxury of 
devoting all their attention to a single stock. In the S&L 
setting, orders cannot be monitored continuously and 
revised instantaneously, which realistically exposes them 
to market fluctuations and adverse selection. See 
(Nevmyvaka et al., 2005) for an extensive empirical study 
of this restricted but interesting class of strategies. Of 
course, we would like to be able to entertain considerably 
richer classes of execution strategies. It is very natural to 
consider state-based strategies – strategies that can 
examine salient features of the current order books and 
our own activity – in order to decide what to do next. We 
now give the RL formulation of optimized execution we 
employed in our experiments, describing the state, action 
and reward structure, as well as the algorithm. 

States. Each state x ∈ X is a vector of attributes (state 
variables) that describes the current configuration of our 
system. We note that where we say state we more 
precisely mean observed state; we in no way suggest that 
our state representations are sufficient to render a system 
as complex as modern financial markets truly Markovian. 
In what follows we will essentially be treating a partially 
observable environment as if it were fully observable to 
us; the test of this assumption will lie in our empirical 
evaluation. 

While we will explore a number of different state 
representations, there are two important variables that 
appear in all of them. These are the elapsed time t and the 
remaining inventory i, which represent how much time of 
the horizon H has passed and how many shares we have 
left to execute in the target volume V. Different 
resolutions of accuracy will be investigated for these 
variables, which we refer to as private variables, since 
they are essentially only known and of primary concern to 
our execution strategy. More precisely, we pick I and T, 
which are the resolutions (maximum values) of the private 
variables i and t, respectively. I represents the number of 

inventory units our policy can distinguish between – if V 
= 10,000 shares, and I = 4, our remaining inventory is 
represented in rounded units of V/I = 2,500 shares each. 
Similarly, we divide the time horizon H into T distinct 
points at which the policy is allowed to observe the state 
and take an action; for H = 2 min and T = 4 we can submit 
a revised limit order every 30 seconds, and the time-
remaining variable t can assume values from 0 (start of 
the episode) down to 4 (last decision point of the 
episode).  

We will also examine a number of additional state 
variables we refer to as market variables, which compute 
various properties of interest of the limit order books and 
recent activity in the stock. Thus, a state has the form xm 
= <t, i, o1, …, oR>, where the oj are market variables. We 
describe our selection of market variables in Section 4.  

Actions. As is standard, policies will map states to 
actions, but we also need to place some limits on the 
action space. Our action space can be thought of as a 
simple limit order price at which to reposition all of our 
remaining inventory, relative to the current ask or bid. In 
other words, for the problem of selling V shares, action a 
corresponds to placing a limit order for all of our 
unexecuted shares at price ask - a. Thus we are effectively 
withdrawing any previous outstanding limit order we may 
have (which is indeed supported by the actual exchanges), 
and replacing with a new limit order. Thus a may be 
positive or negative, with a=0 corresponding to coming in 
at the current ask, positive a corresponding to "crossing 
the spread" towards the buyers, and negative a 
corresponding to placing our order in the sell book.  For 
the problem of buying, a is interpreted relative to the 
current bid. For either buying or selling, more positive 
actions mean movement towards the opposing book, and 
more negative actions mean placement deeper within our 
own book. 

Rewards. An action from a given state may produce 
immediate rewards, which are essentially the proceeds 
(cash inflows or outflows, depending on whether we are 
selling or buying) from any (partial) execution of the limit 
order placed. Furthermore, since we view the execution of 
all V shares as mandatory, any inventory remaining at the 
end of time H is immediately executed at market prices --- 
that is, we eat into the opposing book to execute, no 
matter how poor the prices, since we have run out of time 
and have no choice. 

In order to permit comparisons of policies and 
performance across stocks, which may have very different 
per-share prices, we always measure the execution prices 
achieved by a policy relative to the mid-spread price 
(namely, (ask+bid)/2) at the start of the episode in 
question. Thus, we are effectively comparing performance 
to the idealized policy which can execute all V of its 
shares immediately at the mid-spread, and thus are 



 

 

assuming infinite liquidity at that point. Since this 
idealized policy cannot in general be realized, we always 
expect to do worse, but this provides a convenient 
common baseline for the comparison of multiple policies 
that can be realized. We define the trading cost of a 
policy as the underperfomance compared to the mid-
spread baseline, measured in the standard financial unit of 
basis points, or 1/100 of a percent. Our reward function 
captures the most important aspects of execution – bid-
ask spread, market impact, opportunity cost, etc. As our 
study is primarily aimed at large institutional investors, 
we assume that commissions and exchange fees are 
negligible. We also assume direct and fast access to 
exchanges – i.e. we do not account for possible order 
arrival delays. 

Algorithm. We experimented with a variety of standard 
and modified RL algorithms, but all results are reported 
from a very efficient algorithm that exploits the particular 
properties of optimized execution and financial markets. 
Speed and efficient (re-)use of data make our approach 
particularly attractive.  

The feature that allows us to reduce the number of state 
optimizations is the (approximately) Markovian nature of 
trade execution: if our state space is properly defined, the 
optimal action at any given point in time is 
(approximately) independent of any previous actions. By 
the Markov property, the optimal action in a state at 
elapsed time t = τ is independent of the actions in all 
states with elapsed time t ≤ τ. Extending this logic, 
optimal actions in states with t = T (no time remaining) 
are completely independent from all other actions. Indeed, 
when time runs out, we are forced to submit a market 
order for all unexecuted shares to bring our inventory to 
the target level V (no mater what else we do between t = 0 
and t = T-1). Now we can solve the problem inductively: 
having assigned optimal actions for all states with t = T 
(mandatory market order), we now have all the 
information we need to determine the optimal action for 
all states with t = T-1; having done that, we move one 
time step back to t = T-2, and so on until t = 0. Having 
arrived at t = 0, we have a globally optimal policy (under 
our Markovian assumption). 

Another significant assumption we shall make is that our 
own actions do not affect the behavior of other market 
participants. This means that we do not explicitly model 
strategic order submission by other traders, like “stepping 
in front” of large orders. According to our formal 
notation, we will assume that our actions do not affect 
market state variables o1 … oR, but only the private 
variables t (with every action that we take t increases by 
1) and i (as we gradually execute our order, i decreases 
monotonically). We exploit this independence property of 
public and private variables to use the available data more 
efficiently (and thus reduce overfitting), and to make sure 
that we optimize every state that can be ever encountered 

within our dataset. For every interval H/T in our data, we 
can ask (and get an answer to) a question: what is the 
optimal action in this state if we were to encounter this 
particular state with t = 0, 1, 2…T periods remaining? 
Then we use the exact same “trick” with the other private 
variable – remaining inventory i. We try every possible 
value of i ∈ [0, V/I] in every state we are optimizing. This 
ensures that every possible state that can be generated 
from our dataset {t, i}* {o1 … oR} gets visited. 

Finally, we explain our methodology for determining an 
optimal action in a given state. Our approach is similar to 
Q-learning: in every state we encounter, we try all 
possible actions and update the expected cost associated 
with taking each action and following the optimal strategy 
afterwards. Taking an action results in an immediate 
payout if any number of shares get executed, and it 
transfers us into a new state one time step later. Since our 
learning moves backwards in time, this new state has 
already been optimized and we know the expected cost of 
following the optimal strategy from that state. More 
formally, our cost update rule is the following: 

c(x, a) =  n/(n+1)  c(x, a)  +  
 1/(n+1)  [cim(x, a) + arg max c(y, p)], 

where c(x, a) is the cost of taking action a in the state x 
and following the optimal strategy in all subsequent 
states; cim(x, a) is the immediate (1-step) cost of taking 
action a in state x; y is the new state where we end up 
after taking a in x; n is the number of times we have tried 
a in x, and p is the action taken in y. 

In order to learn an optimal strategy, we need to go 
through the dataset T*I*L times (L is the number of 
actions in each state). This is a much smaller number than 
the worst-case scenario, and it has several interesting 
properties. First, the running time of our algorithm is 
independent of the number of market variables R, and, 
second, we can increase T and I arbitrarily without risking 
overfitting because of the efficient use of our data. Figure 
2 plots running times as functions of T, I, and R.  

Here is our algorithm in pseudo-code: 

Optimal_strategy (V, H, T, I, L) 
      For t = T to 0  
          While (not end of data) 
                Transform (order book) � o1 … oR  
                 For i = 0 to I { 

         For a = 0 to L { 
               Set x = {t, i, o1 … oR} 
               Simulate transition x � y 

                Calculate cim(x, a) 
                Look up argmax c(y, p)  

               Update c(<t,v, o1 … oR>, a)    
       Select the highest-payout action argmax c(y, p) in  
       every state y to output optimal policy  



 

 

We want to emphasize that the main assumption exploited 
is the approximate independence of private and market 
variables. More precisely, during training only, we 
assumed that the actions of our policy had no effects on 
the subsequent evolution of order books. In other words, 
after simulating the number of shares we would have 
executed from a given order book state (thus allowing the 
appropriate updates of the private variables), we next 
advance to the order books as they evolved without our 
trading. This is tantamount to the independence 
assumption just articulated. The great advantage of this 
assumption is that it renders our computation time and 
sample complexity nearly independent of the number of 
market (but not private) variables, since our actions do not 
influence market variable evolution. Of course, this 
assumption must be validated, and it is: all of our results 
are reported on test data in which this assumption was not 
made --- all test set order book simulations maintain the 
impacts of any policy actions. The strong empirical 
results obtained on the test data despite the independence 
assumption made in training verifies its approximate 
validity. 

Experimental Methodology. For every class of policies 
we investigate, we went through the following sequence 
of steps: 

1. We investigated three stocks: AMZN, NVDA, and 
QCOM; two order sizes V: 5,000 shares and 10,000 
shares; and two execution horizons H: 2 minutes and 8 
minutes. We tried every combination of stock, V, and H 
for every state space representation. 

2. A choice for the parameters I and T was made, which 
are the resolutions of the private variables i and t, 
respectively. These resolutions were generally kept small 
for purposes of a reduced state space. 

3. Market variables were selected. Market variables 
summarized a variety of information from the order books 
(current and past) into a number of low-resolution 
features. For example, executed market volume can take 
on any value between 0 and 1,000,000 shares, but we 
convert it into a proxy variable that takes values of 0 
(low), 1 (medium), and 2 (high). In a sense, market 
variables are a “blurry” representation of the real world. 
Choices for I, T, and the market variables completely 
specify a state space representation. The size of state 
space can vary from a dozen or so states (just T and I with 
very low resolution) to over a thousand (several market 
variables, high resolution). 

4. We partitioned our training data into episodes, and 
applied our RL algorithm to learn an optimized execution 
policy over the chosen state space. For instance, when we 
set H to 2 minutes, we partitioned our 1-year INET 
training data into approximately 45,000 episodes. In 

general we enjoyed the luxury of large training and test 
sets, which is an advantage of using microstructure data.  

5. Policies learned via RL were then compared on the 6-
month test set with several baseline strategies (always 
measured by trading costs in basis points over the mid-
spread price at the opening of the episode; see above). 
The most basic comparison is with the optimized submit-
and-leave strategy. However, also of interest are 
comparisons between RL policies obtained using different 
state variables, since this can shed light on the relative 
value of these variables.   

4.  Experimental Results 

We begin our presentation of empirical results with a 
brief discussion of how our choice of stock, volume, and 
execution horizon affects the RL performance across all 
state space representations. All other factors kept 
constant, the following facts hold (and are worth keeping 
in mind going forward): 

 1. NVDA is the least liquid stock, and thus is the most 
expensive to trade; QCOM is the most liquid and the 
cheapest to trade. 2. Trading larger orders is always more 
costly than trading smaller ones. 3. Having less time to 
execute a trade results in higher costs. In simplest terms: 
one has to accept the largest price concession when he is 
selling a large number of shares of NVIDIA in the short 
amount of time. 

4.1  Learning with Private Variables Only 

The first state space configuration that we examine 
consists of only the two private variables t (decision 
points remaining in episode) and i (inventory remaining). 
Even in this simple setting, RL delivers vastly superior 
performance compared to the class of optimized submit-
and-leave policies (which is already a significant 
improvement over a simple market order). Figure 3 shows 
trading costs for all stocks (AMZN, NVDA, QCOM), 
execution times (8 and 2 minutes), and order sizes (5K 
and 10K shares) for the submit-and-leave strategy (S&L), 
the learned policy where we update our order 4 times and 
distinguish among 4 levels of inventory (T=4, I=4) , and 
the learned policy with 8 updates and 8 inventory levels 
(T=8, I=8). We find that learned execution policies 
significantly outperform submit-and-leave policies in all 
settings. Relative improvement over S&L ranges from 
27.16% to 35.50% depending on our choices of T and I 
(increasing either parameter leads to strictly better 
results). 

How can we explain this improvement in performance 
across the board? It of course comes from the RL’s ability 
to find optimal actions that are conditioned on the state of 
the world. In Figure 4 we display the learned strategies 
for a setting where we have 8 order updates and 8 



 

 

inventory levels. We show all three stocks, but fix trading 
volume at 10,000 shares and execution time at 2 minutes. 
Each panel in Figure 4 corresponds to a single bar in 
Figure 3, which indicates that we execute our trades with 
much more precision now. The more inventory and less 
time remains, the more aggressively we price the orders to 
avoid submitting a costly market order at the end. We can 
observe that RL learns the same general “shape” in all 
cases, but the exact policy specification is stock-
dependent. 

It is interesting to examine more closely how actions 
relate to trading costs. In Figure 5 we show how optimal 
policies are derived from q-values. We fix either the time 
remaining at 1 (left panel), the last decision point; or the 
inventory remaining at 4 (right panel), the maximum 
amount. We then vary the other private variable and plot 
the Q-values (= trading costs) of each action. In each state 
the learned action is of course the minimum of the 
corresponding curve. The shapes of the Q-value functions 
explain the relationship between state variables and 
optimal actions: for large inventories and little time 
remaining, the entire Q-value function shifts upwards, 
(reflecting higher expected cost), but the minimum of the 
curve shifts to the right, which indicates that optimal 
action must be more aggressive in such situations.  

4. 2   Introducing Market Variables 

We now add market variables to our state space to 
investigate whether optimal actions should be contingent 
on market conditions. We summarize our findings in 
Table 1, which shows the improvement over using just the 
private variables (averaged over all stocks, sizes, 
execution periods and private variable resolutions T and I) 
for each market variable we tested. Market order cost is a 
measure of liquidity beyond the bid-ask spread – how 
much would it cost to submit a market order for the 
balance of inventory immediately instead of waiting until 
T. Bid-ask volume misbalance is the signed difference 
between volumes quoted at the bid and at the ask. 
Transaction volume is the “signed” volume (buy orders 
are positive, sell orders are negative) of all trades within 
last 15 seconds. Each variable can take a small number of 
values. We also explored combinations of 2 and 3 market 
variables. We note that while we have succeeded in 
identifying factors that can improve RL performance 
significantly, we have explored many others that did not 
result in more efficient policies, which is a testimony to 
market efficiency. Overall, we can achieve improvement 
in execution of 50% or more over S&L policies and 
several times over market orders when we employ RL 
with both private and market variables.  

 

 

Bid-Ask Spread 7.97% 

Bid-Ask Volume Misbalance 0.13% 

Spread + Immediate Cost 8.69% 

Immediate Market Order Cost 4.26% 

Signed Transaction Volume 2.81% 

Spread+ImmCost+Signed Vol 12.85% 

Table 1. Additional trading cost reduction when 
introducing market variables 

In order to provide this improvement in performance, the 
RL algorithm must learn different actions for different 
values of market variables. Figure 6 is similar in spirit to 
Figure 4: it shows how optimal actions depend on the 
market variables bid-ask spread and market order cost, 
while keeping the other parameters (V, H, T, and I) fixed. 
The learning dictates that larger spreads and lower costs 
of submitting a market order dictate more aggressive 
actions --- in the first case because one must go further to 
"chase" the opposing book, and in the second because an 
opportunity for reduced price is present. Other useful 
market variables induce similar dependencies. 

As it was the case with T and I in Figure 5, it is the shape 
of Q-value functions that is responsible for difference of 
optimal actions across states. In the left panel of Figure 7, 
we see how the location of the optimal action on the cost 
curve shifts to the right as the spread size increases. In the 
right panel, we show why some market variables do not 
improve the performance of our algorithm: While volume 
misbalance is most certainly a predictor of future trading 
costs (as indicated by the difference in Q-value 
functions), we cannot take advantage of this 
predictability, since the cost-minimizing actions are 
identical in all three cases.   

5.  Conclusion and  Future Work 

We have reported on the first large-scale application of 
reinforcement learning to the common and challenging 
finance problem of optimized trade execution. Via careful 
choice of market state variables and the design of an 
efficient algorithm exploiting the independence and 
structure of the problem, we have shown that RL can 
indeed result in significant improvements over simpler 
forms of optimization (such as submit and leave policies). 

In future work we plan to relax many assumptions made 
here adapt the methodology and state variables employed 
here for other common but precisely-defined finance 
problems, such as market-making and the optimization of 
constrained strategy classes. 
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Figure 2. Running time as a function of T, I, and R: independent of the number of market variables 

 

Figure 3. Expected cost under S&L and RL: adding private variables T and I decreases costs  

 



 

 

 

Figure 4. Visualization of learned policies: place aggressive orders as time runs out, significant inventory remains 

 

Figure 5. Q-values: curves change with inventory and time (AMZN, T=4, I=4) 

 

Figure 6. Large spreads and small market order costs induce aggressive actions 

 

 

 

 

 

 

 

 

 

Figure 7. Q-values: cost predictability may not affect the choice of optimal actions  


