
Automatic Optimization of Dialogue Management

Diane J. Litman, Michael S. Kearns, Satinder B. Singh, Marilyn A. Walker
AT&T Labs – Research, 180 Park Avenue

Florham Park, NJ 07932 USA
fdiane,mkearns,baveja,walker g@research.att.com

Abstract
Designing the dialogue strategy of a spoken di-
alogue system involves many nontrivial choices.
This paper presents a reinforcement learning ap-
proach for automatically optimizing dialogue strat-
egy. We first present a practical methodology that
addresses the technical challenges in applying re-
inforcement learning to a working dialogue system
with human users. We then demonstrate how we
have used this methodology to measurably improve
performance in a large-scale experimental system.

1 Introduction
Recent advances in spoken language understanding
have made it possible to develop dialogue systems
for many applications. The role of the dialogue
manager in such systems is to interact in a natural
way to help the user complete the tasks that the sys-
tem is designed to support. Typically, an expert de-
signs a dialogue manager by hand, and has to make
many nontrivial design choices that can seriously
impact system performance. This paper presents a
reinforcement learning (RL) methodology forauto-
maticallylearning design choices that optimize sys-
tem performance with respect to a chosen perfor-
mance measure.

Consider the spoken dialogue system named NJ-
Fun, which we built to help users find fun places
to go in New Jersey. A sample dialogue with NJ-
Fun is shown in Figure 1, with system utterances
labeled Si and user utterances labeled Ui. When
NJFun greets the user, it can provide an open greet-
ing such as utterance S1, expecting that the user will
take theinitiative. Alternatively, it can provide a di-
rective greeting in which the system takes the ini-
tiative, as in “Welcome to NJFun. Please say an
activity name or say ‘list activities’ for a list of ac-
tivities I know about.” After the user’s response U1,
NJFun must decide whether it should explicitlycon-
firm its understanding, as in utterances S2 and S3.

S1: Welcome to NJFun. How may I help you?
U1: I’d like to find um winetasting in Lambertville

in the morning. (ASR output: I’d like to find out
wineries the in the Lambertville in the morning.)

S2: Did you say you are interested in Lambertville?
U2: Yes.
S3: Did you say you want to go in the morning?
U3: Yes.
S4: I found a winery near Lambertville that is open

in the morning. It is [. . . ] Please give me feedback
by saying ‘good’, ‘so-so’, or ‘bad’.

U4: Good.
Figure 1: An example dialogue with NJFun.

NJFun can also simply continue on with the dia-
logue, as when it does not explicitly confirm that
the user wants to find out about wineries. In NJFun,
as shown in more detail below, decisions about ini-
tiative and confirmation strategies alone result in a
search space of 242 potential global dialogue strate-
gies. Furthermore, the performance of a dialogue
strategy depends on many other factors, such as the
user population, the robustness of system compo-
nents like the automatic speech recognizer (ASR),
and task difficulty (Kamm et al., 1998; Danieli and
Gerbino, 1995).

In the main, previous research has treated the
specification of the dialogue management strategy
as an iterative design problem: several versions
of a system are created, dialogue corpora are col-
lected with human users interacting with different
versions of the system, a number of evaluation met-
rics are collected for each dialogue, and the differ-
ent versions are statistically compared (Danieli and
Gerbino, 1995; Sanderman et al., 1998). Due to ex-
perimental constraints, only a few global strategies
can be explored in any one experiment.

However, recent work has suggested that dia-
logue strategy can be designed using the formalism
of Markov decision processes (MDPs) and the al-
gorithms of RL (Biermann and Long, 1996; Levin



et al., 1997; Walker et al., 1998; Singh et al.,
1999). More specifically, the MDP formalism sug-
gests a method for optimizing dialogue strategies
from sample dialogue data. The main advantage of
this approach is the potential for computing an op-
timal dialogue strategy within a much larger search
space, using a relatively small number of training
dialogues.

This paper presents a large-scale application of
RL to the problem of optimizing dialogue strategy
selection in the NJFun system, and experimentally
demonstrates the utility of the approach. Section 2
explains how we apply RL to dialogue systems,
then Section 3 describes the NJFun system in de-
tail. Section 4 describes how NJFun optimizes its
dialogue strategy from experimentally obtained dia-
logue data. Section 5 reports results from testing the
learned strategy demonstrating that our approach
improves task completion rates (our chosen mea-
sure for performance optimization). A companion
paper provides only an abbreviated system and di-
alogue manager description, but includes additional
results not presented here (Anonymous, 2000), such
as analysis establishing the veracity of the MDP we
learn, and comparisons of our learned strategy to
strategies hand-picked by dialogue experts.

2 Reinforcement Learning for Dialogue

Due to space limitations, we present only a brief
overview of how dialogue strategy optimization can
be viewed as a RL problem; for a more detailed
exposition, see Singh et al. (1999), Walker et al.
(1998), Levin et al. (1997). A dialogue strategy is
a mapping from a set ofstates(which summarize
the entire dialogue so far) to a set ofactions(such
as the system’s utterances and database queries).
There are multiple reasonable action choices ineach
state; typically these choices are made by the sys-
tem designer. Our RL-based approach is to build
a system that explores these choices in a system-
atic way through experiments with representative
human users. A scalar performance measure, called
a reward, is then calculated for each experimental
dialogue. (We discuss various choices for this re-
ward measure later, but typically only terminal dia-
logue states have nonzero rewards, and the reward
measures are quantities directly obtainable from the
experimental set-up, such as user satisfactionor task
completion for the dialogue.) This experimental
data is used to construct a MDP which models the
users’ interaction with the system. The problem of

learning the best dialogue strategy from data is thus
reduced to computing the optimalpolicy for choos-
ing actions in an MDP — that is, the system’s goal
is to take actions so as to maximize expected re-
ward. The computation of the optimal policygiven
the MDP can be done efficiently using standard RL
algorithms.

How do we build the desired MDP from sample
dialogues? Following (Singh et al., 1999), we can
view a dialogue as a trajectory in the chosen state
space determined by the system actions and user re-
sponses:

s1 !a1;r1 s2 !a2;r2 s3 !a3;r3 � � �

Here si !ai;ri si+1 indicates that at theith ex-
change, the system was in statesi, executed action
ai, received rewardri, and then the state changed
to si+1. Dialogue sequences obtained from training
data can be used to empirically estimate the transi-
tion probabilitiesP (s0js; a) (denoting the probabil-
ity of a transition to states0, given that the system
was in states and took actiona), and the reward
functionR(s; a). The estimated transition probabil-
ities and reward function constitute an MDP model
of the user population’s interaction with the system.

Given this MDP, the expected cumulative reward
(or Q-value) Q(s; a) of taking actiona from states
can be calculated in terms of the Q-values of succes-
sor states via the following recursive equation (Sut-
ton, 1991):

Q(s; a) = R(s; a) +
X

s0

P (s0js; a)max
a0

Q(s0; a0):

TheseQ-values can be estimated to within a desired
threshold using the standard RLvalue iterational-
gorithm, which iteratively updates the estimate of
Q(s; a) based on the current Q-values of neighbor-
ing states. Once value iteration is completed, the op-
timal dialogue strategy (according to our estimated
model) is obtained by selecting the action with the
maximum Q-value at each dialogue state.

While this approach is theoretically appealing,
the difficulty of obtaining sample human dialogues
makes it crucial to limit the size of the state space, in
order to minimize data sparsity problems, while still
retaining enough information in the state to learn an
accurate model. Our approach is to work directly in
a minimal but carefully designed state space (Singh
et al., 1999).

The contribution of this paper is to develop and
empirically validate a practical methodology for us-



Action Prompt
GreetS Welcome to NJFun. Please say an activity name or say ‘list activities’ for a list of activities I know about.
GreetU Welcome to NJFun. How may I help you?
ReAsk1S I know about amusement parks, aquariums, cruises, historic sites, museums, parks, theaters, wineries,

and zoos. Please say an activity name from this list.
ReAsk1M Please tell me the activity type.You can also tell me the location and time.
Ask2S Please say the name of the town or city that you are interested in.
Ask2U Please give me more information.
ReAsk2S Please tell me the name of the town or city that you are interested in.
ReAsk2M Please tell me the location that you are interested in. You can also tell me the time.

Figure 2: Sample initiative strategy choices.

ing RL to build a real dialogue system that opti-
mizes its behavior from dialogue data. Our method-
ology involves 1) representing a dialogue strategy
as a mapping from each state in the chosen state
spaceS to a set of dialogue actions, 2) deploying
an initial training system that generatesexploratory
training data with respect toS, 3) constructing an
MDP model from the obtained training data, 4) us-
ing value iteration to learn the optimal dialogue
strategy in the learned MDP, and 4) redeploying the
system using the learned state/action mapping. The
next section details the use of this methodology to
design the NJFun system.

3 The NJFun System
NJFun is a real-time spoken dialogue system that
provides users with information about things to do
in New Jersey. NJFun is built using a general pur-
pose platform for spoken dialogue systems (Levin
et al., 1999), with support for modules for auto-
matic speech recognition (ASR), spoken language
understanding, text-to-speech (TTS), database ac-
cess, and dialogue management. NJFun uses a
speech recognizer with stochastic language and un-
derstanding models trained from example user ut-
terances, and a TTS system based on concatenative
diphone synthesis. Its database is populated from
the nj.online webpage to contain information
about activities. NJFun indexes this database using
three attributes: activity type, location, and time of
day (which can assume values morning, afternoon,
or evening).

Informally, the NJFun dialogue manager sequen-
tially queries the user regarding the activity, location
and time attributes, respectively. NJFun first asks
the user for the current attribute (and possibly the
other attributes, depending on the initiative). If the
current attribute’s value is not obtained, NJFun asks
for the attribute (and possibly the later attributes)

again. If NJFun still does not obtain a value, NJ-
Fun moves on to the next attribute(s). Whenever
NJFun successfully obtains a value, it can confirm
the value, or move on and attempt to obtain the next
attribute(s). When NJFun has finished asking about
the attributes, it queries the database (using a wild-
card for each unobtained attribute value). Note that
the length of NJFun dialogues ranges from 1 to 12
user utterances before the database query.

As discussed above, our methodology for using
RL to optimize dialogue strategy requires that all
potential actions for each state be specified. Note
that at some states it is easy for a human to make
the correct action choice. We made obvious dia-
logue strategy choices in advance, and used learning
only to optimize the difficult choices (Walker et al.,
1998). In NJFun, we restricted the action choices to
1) the type of initiative to use when asking or reask-
ing for an attribute, and 2) whether to confirm an
attribute value once obtained. The optimal actions
may vary with dialogue state, and are subject to ac-
tive debate in the literature.

The examples in Figure 2 shows that NJFun can
ask the user about the first 2 attributes1 using three
types of initiative, based on the combination of the
wording of the system prompt (openversusdirec-
tive), and the type of grammar NJFun uses during
ASR (restrictiveversusnon-restrictive). If NJFun
uses an open question with an unrestricted gram-
mar, it is usinguser initiative(e.g., GreetU). If NJ-
Fun instead uses a directive prompt with a restricted
grammar, the system is usingsystem initiative(e.g.,
GreetS). If NJFun uses a directive question with a
non-restrictive grammar, it is usingmixed initiative,
because it is giving the user an opportunity to take
the initiative by supplying extra information (e.g.,

1“Greet” is equivalent to asking for the first attribute. NJFun
always uses system initiative for the third attribute, because at
that point the user can only provide the time of day.



ReAsk1M).
NJFun can also vary the strategy used to confirm

each attribute. If NJFun asks the user to explicitly
verify an attribute, it is usingexplicit confirmation
(e.g., ExpConf2 for the location, exemplified by S2
in Figure 1). If NJFun does not generate any con-
firmation prompt, it is usingno confirmation(an ac-
tion we call NoConf).

Solely for the purposes of controlling its opera-
tion (as opposed to the learning, which we discuss
in a moment), NJFun internally maintains anop-
erations vectorof 14 variables. 2 variables track
whether the system has greeted the user, and which
attribute the system is currently attempting to ob-
tain. For each of the 3 attributes, 4 variables
track whether the system has obtained the attribute’s
value, the system’s confidence in the value (if ob-
tained), the number of times the system has asked
the user about the attribute, and the type of ASR
grammar most recently used to ask for the attribute.

The formal state spaceS maintained by NJFun
for the purposes of learning is much simpler than
the operations vector, due to the data sparsity con-
cerns already discussed. The dialogue state space
S contains only 7 variables, which are summarized
in Figure 3, and is easily computed from the opera-
tions vector. The “greet” variable tracks whether the
system has greeted the user or not (no=0, yes=1).
“Attr” specifies which attribute NJFun is currently
attempting to obtain or verify (activity=1, loca-
tion=2, time=3, done with attributes=4). “Conf”
represents the confidence that NJFun has after ob-
taining a value for an attribute. The values 0, 1, and
2 represent low, medium and high ASR confidence.2

The values 3 and 4 are set when ASR hears “yes”
or “no” after a confirmation question. “Val” tracks
whether NJFun has obtained a value for the attribute
(no=0, yes=1). “Times” tracks the number of times
that NJFun has asked the user about the attribute.
“Gram” tracks the type of grammar most recently
used to obtain the attribute (0=non-restrictive, 1=re-
strictive). Finally, “history” represents whether NJ-
Fun had trouble understanding the user in the earlier
part of the conversation (bad=0, good=1). We omit
the full definition, but as an example, when NJFun is
working on the second attribute (location), the his-

2For each utterance, the ASR output includes not only the
recognized string, but also an associated acoustic confidence
score. Based on data obtained during system development, we
defined a mapping from raw confidence values into 3 approxi-
mately equally populated partitions.

greet attr conf val times gram history
0,1 1,2,3,4 0,1,2,3,4 0,1 0,1,2 0,1 0,1

Figure 3: State features and values.

tory variable is set to 0 if NJFun does not have an
activity, has an activity but has no confidence in the
value, or needed two queries to obtain the activity.

As mentioned above, the goal is to design a small
state space that makes enough critical distinctions to
support learning. The use ofS reduces the number
of states to only 62,3 and supports the construction
of an MDP model that is not sparse with respect to
S, even using limited training data. The state space
that we utilize here, although minimal, allows us
to make initiative decisions based on the success of
earlier exchanges, and confirmation decisions based
on ASR confidence scores and grammars.

The state/action mapping representing NJFun’s
initial dialogue strategy EIC (Exploratory for Initia-
tive and Confirmation) is given in Figure 4. Only
the exploratory portion of the strategy is shown,
namely all those states for which NJFun has an ac-
tion choice. For each such state, we list the two
choices of actions available. (The action choices in
boldface are the ones eventually identified as opti-
mal by the learning process, and are discussed in
detail later.) The EIC strategy choosesrandomly
between these two actions when in the indicated
state, in order to maximize exploration and mini-
mize data sparseness when constructing our model.
Since there are 42 states with 2 choices each, there
is a search space of 242 potential dialogue strate-
gies; the goal of the RL is to identify an apparently
optimal strategy from this large search space. Note
that due to the randomization of the EIC strategy,
the prompts are designed to ensure the coherence of
all possible action sequences.

Figure 5 illustrates how the dialogue strategy in
Figure 4 generates the dialogue in Figure 1. Each
row indicates the state that NJFun is in, the action
executed in this state, the corresponding turn in Fig-
ure 1, and the reward received. The initial state
represents that NJFun will first attempt to obtain
attribute 1. NJFun executes GreetU (although as
shown in Figure 4, GreetS is also possible), gen-
erating the first utterance in Figure 1. After the
user’s response, the next state represents that NJ-
Fun has now greeted the user and obtained the ac-

3This number refers to those states that can actually occur
in a dialogue.



State Action Choices
g a c v t g h
0 1 0 0 0 0 0 GreetS,GreetU
1 1 0 0 1 0 0 ReAsk1S,ReAsk1M
1 1 0 1 0 0 0 NoConf,ExpConf1
1 1 0 1 0 1 0 NoConf,ExpConf1
1 1 1 1 0 0 0 NoConf,ExpConf1
1 1 1 1 0 1 0 NoConf,ExpConf1
1 1 2 1 0 0 0 NoConf,ExpConf1
1 1 2 1 0 1 0 NoConf,ExpConf1
1 1 4 0 0 0 0 ReAsk1S,ReAsk1M
1 1 4 0 1 0 0 ReAsk1S,ReAsk1M
1 2 0 0 0 0 0 Ask2S,Ask2U
1 2 0 0 0 0 1 Ask2S,Ask2U
1 2 0 0 1 0 0 ReAsk2S,ReAsk2M
1 2 0 0 1 0 1 ReAsk2S,ReAsk2M
1 2 0 1 0 0 0 NoConf,ExpConf2
1 2 0 1 0 0 1 NoConf,ExpConf2
1 2 0 1 0 1 0 NoConf,ExpConf2
1 2 0 1 0 1 1 NoConf,ExpConf2
1 2 1 1 0 0 0 NoConf,ExpConf2
1 2 1 1 0 0 1 NoConf,ExpConf2
1 2 1 1 0 1 0 NoConf,ExpConf2
1 2 1 1 0 1 1 NoConf,ExpConf2
1 2 2 1 0 0 0 NoConf,ExpConf2
1 2 2 1 0 0 1 NoConf,ExpConf2
1 2 2 1 0 1 0 NoConf,ExpConf2
1 2 2 1 0 1 1 NoConf,ExpConf2
1 2 4 0 0 0 0 ReAsk2S,ReAsk2M
1 2 4 0 0 0 1 ReAsk2S,ReAsk2M
1 2 4 0 1 0 0 ReAsk2S,ReAsk2M
1 2 4 0 1 0 1 ReAsk2S,ReAsk2M
1 3 0 1 0 0 0 NoConf,ExpConf3
1 3 0 1 0 0 1 NoConf,ExpConf3
1 3 0 1 0 1 0 NoConf,ExpConf3
1 3 0 1 0 1 1 NoConf,ExpConf3
1 3 1 1 0 0 0 NoConf,ExpConf3
1 3 1 1 0 0 1 NoConf,ExpConf3
1 3 1 1 0 1 0 NoConf,ExpConf3
1 3 1 1 0 1 1 NoConf,ExpConf3
1 3 2 1 0 0 0 NoConf,ExpConf3
1 3 2 1 0 0 1 NoConf,ExpConf3
1 3 2 1 0 1 0 NoConf,ExpConf3
1 3 2 1 0 1 1 NoConf,ExpConf3

Figure 4: Exploratory portion of EIC strategy.

State Action Turn Reward
g a c v t g h
0 1 0 0 0 0 0 GreetU S1 0
1 1 2 1 0 0 0 NoConf - 0
1 2 2 1 0 0 1 ExpConf2 S2 0
1 3 2 1 0 0 1 ExpConf3 S3 0
1 4 0 0 0 0 0 Tell S4 1

Figure 5: Generating the dialogue in Figure 1.

tivity value with high confidence, by using a non-
restrictive grammar. NJFun chooses not to confirm
the activity, which causes the state to change but no
prompt to be generated. The third state represents
that NJFun is now working on the second attribute
(location), that it already has this value with high

confidence (location was obtained with activity af-
ter the user’s first utterance), and that the dialogue
history is good.4 This time NJFun chooses to con-
firm the attribute with the second NJFun utterance,
and the state changes again. The processing of time
is similar to that of location, which leads NJFun to
the final state, where it performs the action “Tell”
(corresponding to querying the database, presenting
the results to the user, and asking the user to provide
a reward). Note that in NJFun, the reward is always
0 except at the terminal state, as shown in the last
column of Figure 5.

4 Experimentally Optimizing a Strategy

We collected experimental dialogues for both train-
ing and testing our system. To obtain training dia-
logues, we implemented NJFun using the EIC di-
alogue strategy described in Section 3. We used
these dialogues to build an empirical MDP, and then
computed the optimal dialogue strategy in this MDP
(as described in Section 2). In this section we de-
scribe our experimental design and the learned di-
alogue strategy. In the next section we present re-
sults from testing our learned strategy and show that
it improves task completion rates, the performance
measure we chose to optimize.

Subjects in our experiment were employees not
associated with the NJFun project. 54 subjects were
used for training, while 21 subjects were used for
testing. Subjects were distributed such that the
training and testing pools were comparable with re-
spect to gender, English as a first language, and ex-
pertise with spoken dialogue systems.

During both training and testing, subjects carried
out free-form conversations with NJFun to complete
six application tasks. For example, the user in Fig-
ure 1 was executing the following task: “You feel
thirsty and want to do some winetasting in the morn-
ing. Are there any wineries close by your house in
Lambertville?” Subjects read each task description
on a web page, then called NJFun from their office
phone. At the end of the task, NJFun asked them to
verbally provide feedback on their experience (e.g.,
utterance S4 in Figure 1). Users then hung up the
phone and filled out a user survey on the web.

The training phase of the experiment resulted in
311 complete dialogues (not all subjects completed
all tasks), for which NJFun logged the sequence

4Recall that only the current attribute’s features are in the
state. However, the operations vector contains information re-
garding previous attributes.



of states and the corresponding executed actions.
The number of samples per state for the initial ask
choices are:
0 1 0 0 0 0 0 GreetS=155 GreetU=156
1 2 0 0 0 0 0 Ask2S=93 Ask2U=72
1 2 0 0 0 0 1 Ask2S=36 Ask2U=48

Such data illustrates that our use of a random action
choice strategy led to a fairly balanced action dis-
tribution per state. Similarly, our small state space,
and the fact that we only allowed 2 action choices
per state, prevented a data sparseness problem. The
first state in Figure 4 was the most frequently vis-
ited state (with 311 visits), as it was the initial state
for every dialogue. Only 8 states were visited less
than 10 times, and were states that only occur near
the end of a dialogue.

The logged data was then used to construct the
empirical MDP. As we have mentioned, the mea-
sure we chose to optimize is a binary reward func-
tion based on the strongest possible measure of
task completion, calledStrongComp, that takes on
value 1 if NJFun queries the database using exactly
the attributes specified in the task description, and
0 otherwise. Then we computed the optimal di-
alogue strategy in this MDP using RL (cf. Sec-
tion 2). The action choices constituting the learned
strategy are in boldface in Figure 4. Note that no
choice was fixed for several states, meaning that the
Q-values were identical after value iteration. Thus,
even when using the learned strategy, NJFun still
sometimes chooses randomly between certain ac-
tion pairs.

Intuitively, the learned strategy says that the opti-
mal use of initiative is to begin with user initiative,
then back off to either mixed or system initiative
when reasking for an attribute. Note, however, that
the specific backoff method differs with attribute
(e.g., system initiative for attribute 1, but generally
mixed initiative for attribute 2). With respect to con-
firmation, the optimal strategy is to mainly confirm
at the lower confidence values. Again, however, the
point at which confirmation becomes unnecessary
differs across attributes (e.g., confidence level 2 for
attribute 1, but sometimes lower levels for attributes
2 and 3). NJFun can learn such fine-grained distinc-
tions because the optimal strategy is in effect based
on a comparison of 242 possible exploratory strate-
gies. Both the initiative and confirmation results
suggest that the initial portion of the dialogue was
the most problematic for NJFun. Figure 1 is an ex-
ample dialogue obtained using the optimal strategy.

5 Experimentally Evaluating the Strategy
For the testing phase, NJFun was reimplemented to
use the learned strategy. 21 test subjects then per-
formed the same 6 tasks used during training, re-
sulting in 124 complete test dialogues. One of our
main results is that task completion as measured by
StrongComp increased from 52% in training to 64%
in testing (p < :06)5.

There is also a significant interaction effect
between strategy and task (p<.01) for Strong-
Comp. Previous work has suggested that novice
users perform comparably to experts after only 2
tasks (Kamm et al., 1998). Since our learned strat-
egy was based on 6 tasks with each user, one ex-
planation of the interaction effect is that the learned
strategy is slightly optimized for expert users. To
explore this hypothesis, we divided our corpus into
dialogues with “novice” (tasks 1 and 2) and “ex-
pert” (tasks 3-6) users. We found that the learned
strategy did in fact lead to a large and significant
improvement in StrongComp for experts (EIC=.46,
learned=.69, p<.001), and a non-significant degra-
dation for novices (EIC=.66, learned=.55, p<.3).

An apparent limitation of these results is that EIC
may not be the best baseline strategy for compari-
son to our learned strategy. A more standard alter-
native would be comparison to the very best hand-
designed fixed strategy. However, there is no agree-
ment in the literature, nor amongst the authors, as
to what the best hand-designed strategy might have
been. There is agreement, however, that the best
strategy is sensitive to many unknown and unmod-
eled factors: the user population, the specifics of
the task, the particular ASR used, etc. Further-
more, EIC was carefully designed so that the ran-
dom choices it makes never results in an unnatu-
ral dialogue. Finally, a companion paper (Anony-
mous, 2000) shows that the performance of the
learned strategy is better than several “standard”
fixed strategies (such as global system-initiative and
no-confirmation).

We also investigated the performance of the
learned strategy on a number of other reward mea-
sures for which it was not explicitly optimized.

5The experimental design described above consists of 2
factors: the within-in group factorstrategyand the between-
groups factortask. We use a two-way analysis of variance
(ANOVA) to compute whether main and interaction effects of
strategy are statistically significant (p<.05) or indicative of a
statistical trend (p< .10). Main effectsof strategy are task-
independent, whileinteraction effects involving strategy are
task-dependent.



Measure EIC Learned p
(n=311) (n=124)

WeakComp 1.75 2.19 .02
StrongComp 0.52 0.64 .06
ASR 2.50 2.67 .04
Feedback 0.18 0.11 .42
UserSat 13.38 13.29 .86

Table 1: Main effects of dialogue strategy.

WeakComp is a relaxed version of task completion
that gives partial credit: if all attribute values are ei-
ther correct or wildcards, the value is the sum of the
correct number of attributes. Otherwise, at least one
attribute is wrong (e.g., the user says “Lambertville”
but the system hears “Morristown”), and the value is
-1. ASR approximates speech recognition accuracy
for the database query, and is computed by adding 1
for each correct attribute value and .5 for every wild-
card. Thus, if the task is to go winetastingnear Lam-
bertville in the morning, and the system queries the
database for an activity in New Jersey in the morn-
ing, StrongComp=0, WeakComp=1, and ASR=2. In
addition to the objective measures discussed above,
we also computed twosubjectivemeasures.Feed-
back is obtained from the dialogue (e.g. S4 in Fig-
ure 5), by mappinggood, so-so, badto 1, 0, and
-1, respectively. User satisfaction (UserSat, rang-
ing from 0-20) is obtained by summing the answers
of the web-based user survey.

Table 1 summarizes the difference in perfor-
mance of NJFun for all our reward functions from
training (EIC) to test (learned strategy for Strong-
Comp). For WeakComp, the average reward in-
creased from1:75 to 2:19 (p < 0:02), while for
ASR the average reward increased from2:5 to 2:67
(p < 0:04). We note that these improvements occur
even though the learned strategy was not optimized
for these measures.

The last two rows of the table show that for the
subjective measures, performance does not signifi-
cantly differ for the EIC and learned strategies. In-
terestingly, the distributions of the subjective mea-
sures move to the middle from training to testing,
i.e., test users reply to the survey using less extreme
answers than training users. Explaining the subjec-
tive results is an area for future work.

6 Discussion

This paper presents a practical methodology for ap-
plying RL to optimizing dialogue strategies in spo-

ken dialogue systems, and demonstrates empirically
that it improved performance over the EIC policy
in NJFun. A companion paper (Anonymous, 2000)
shows that our strategy is not only better than EIC,
but also than other fixed choices proposed in the
literature. While RL has been applied in previous
work on spoken dialogue systems, we report the first
large-scale application of RL to a dialogue system
that interacts in real time with human users. This
is in contrast to previous work on using RL for di-
alogue system design that either proposed it with-
out implementation (Biermann and Long, 1996), or
that used a simulated user population in their imple-
mentation (Levin et al., 1997), or that was limited
to exploring a small search space consisting of18
policies (Walker et al., 1998) (as compared to the
242 policies explored here). We also note that our
learned strategy varied initiative and confirmation
decisions at a finer grain than previous work, and as
such is not a standard policy investigated in the dia-
logue system literature. In particular, we would not
have predicted the complex and interesting back-off
strategy with respect to initiative when reasking for
an attribute.

As future work we would like to understand
the aforementioned results on the subjective reward
measures, explore the potential difference between
optimizing for expert users and novices, automate
the choice of state space for dialogue systems, in-
vestigate the use of a learned reward function (as
in (Walker et al., 1998)), and explore the use of more
informative non-terminal rewards.

References
Anonymous. 2000. Manuscript submitted toAAAI.
A. W. Biermann and Philip M. Long. 1996. The compo-

sition of messages in speech-graphics interactive sys-
tems. InProc. of the 1996 International Symposium
on Spoken Dialogue, pages 97–100.

M. Danieli and E. Gerbino. 1995. Metrics for evaluating
dialogue strategies in a spoken language system. In
Proc. of the 1995AAAI Spring Symposium on Empiri-
cal Methods in Discourse Interpretation and Genera-
tion, pages 34–39.

C. A. Kamm, D. J. Litman, and M. A. Walker. 1998.
From novice to expert: The effect of tutorials on
user expertise with spoken dialogue systems. InProc.
of the International Conference on Spoken Language
Processing, ICSLP98.

E. Levin, R. Pieraccini, and W. Eckert.1997. Learning
dialogue strategies within the markov decision process
framework. InProc. IEEE Workshop on Automatic
Speech Recognition and Understanding.



E. Levin, R. Pieraccini, W. Eckert, G. Di Fabbrizio,
and S. Narayanan. 1999. Spoken language dialogue:
From theory to practice. InProc. IEEE Workshop
on Automatic Speech Recognition and Understanding,
ASRUU99.

A. Sanderman, J., E. den Os, L. Boves, and A. Cremers.
1998. Evaluation of the Dutchtrain timetable informa-
tion system developed in the ARISE project. InInter-
active Voice Technology for Telecommunications Ap-
plications, IVTTA, pages 91–96.

S. Singh, M. S. Kearns, D. J. Litman, and M. A. Walker.
1999. Reinforcement learning for spoken dialogue
systems. InProc. NIPS99.

R. S. Sutton. 1991. Planning by incremental dynamic
programming. InProc. Ninth Conference on Machine
Learning, pages 353–357. Morgan-Kaufmann.

M. A. Walker, J. C. Fromer, and S. Narayanan. 1998.
Learning optimal dialogue strategies: A case study of
a spoken dialogue agent for email. InProc. of COL-
ING/ACL 98, pages 1345–1352.


