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Abstract S1: Welcome to NJFun. How may | help you?

- . . Ul: I'dlike to find um winetasting in Lambertville
Designing the dialogue strategy of a spoken di- in the morning. ASR output: I'd like to find out
alogue system involves many nontrivial choices. wineries the in the Lambertville in the mornihg.
This paper presents a reinforcement learning ap-S2:  Did you say you are interested in Lambertville?
proach for automatically optimizing dialogue strat- U2: Yes.
egy. We first present a practical methodology that S3:  Did you say you want to go in the morning?
addresses the technical challenges in applying re-U3: Yes. . . _
inforcement learning to a working dialogue system S4: | found a winery near Lambertville that is open
with human users. We then demonstrate how we in the morning. Itis[...] Please give me feedback

have used this methodology to measurably improve . Iéyozacli)./mg good’, 'so-s0', or ‘bad

performance in a large-scale experimental system. Figure 1: An example dialogue with NJFun.

1 Introduction

Recent advances in spoken language understandifgFun can also simply continue on with the dia-
have made it possible to develop dialogue system®gue, as when it does not explicitly confirm that
for many applications. The role of the dialogue the user wants to find out about wineries. In NJFun,
manager in such systems is to interact in a naturas shown in more detail below, decisions about ini-
way to help the user complete the tasks that the sydiative and confirmation strategies alone result in a
tem is designed to support. Typically, an expert deSearch space of'2 potential global dialogue strate-
signs a dialogue manager by hand, and has to mal@es. Furthermore, the performance of a dialogue
many nontrivial design choices that can seriouslystrategy depends on many other factors, such as the
impact system performance. This paper presents éser population, the robustness of system compo-
reinforcement learning (RL) methodology fanto- ~ nents like the automatic speech recognizer (ASR),
maticallylearning design choices that optimize sys-and task difficulty (Kamm et al., 1998; Danieli and
tem performance with respect to a chosen perforGerbino, 1995).
mance measure. In the main, previous research has treated the
Consider the spoken dialogue system named NJpecification of the dialogue management strategy
Fun, which we built to help users find fun placesas an iterative design problem: several versions
to go in New Jersey. A sample dialogue with NJ-of a system are created, dialogue corpora are col-
Fun is shown in Figure 1, with system utterancedected with human users interacting with different
labeled $ and user utterances labeled. UWhen versions of the system, a number of evaluation met-
NJFun greets the user, it can provide an open greetics are collected for each dialogue, and the differ-
ing such as utterance S1, expecting that the user wiiint versions are statistically compared (Danieli and
take theinitiative. Alternatively, it can provide a di- Gerbino, 1995; Sanderman et al., 1998). Due to ex-
rective greeting in which the system takes the ini-perimental constraints, only a few global strategies
tiative, as in “Welcome to NJFun. Please say arcan be explored in any one experiment.
activity name or say ‘list activities’ for a list of ac-  However, recent work has suggested that dia-
tivities | know about.” After the user’'s response U1, logue strategy can be designed using the formalism
NJFun must decide whether it should explicityn-  of Markov decision processes (MDPs) and the al-
firm its understanding, as in utterances S2 and S3jorithms of RL (Biermann and Long, 1996; Levin



et al.,, 1997; Walker et al.,, 1998; Singh et al.,learning the best dialogue strategy from data is thus

1999). More specifically, the MDP formalism sug- reduced to computing the optim@ablicy for choos-

gests a method for optimizing dialogue strategiesng actions in an MDP — that is, the system'’s goal

from sample dialogue data. The main advantage o to take actions so as to maximize expected re-

this approach is the potential for computing an op-ward. The computation of the optimal poligiven

timal dialogue strategy within a much larger searchthe MDP can be done efficiently using standard RL

space, using a relatively small number of trainingalgorithms.

dialogues. How do we build the desired MDP from sample
This paper presents a large-scale application oflialogues? Following (Singh et al., 1999), we can

RL to the problem of optimizing dialogue strategy view a dialogue as a trajectory in the chosen state

selection in the NJFun system, and experimentallygpace determined by the system actions and user re-

demonstrates the utility of the approach. Section Zponses:

explains how we apply RL to dialogue systems,

then Section 3 describes the NJFun system in de-

tail. Section 4 describes how NJFun optimizes its o q s;

dial ; . llv obtained di —a; e Sit1 indicates that at theéth ex-
lalogue strategy from experimentally obtained dia-cja e the system was in stateexecuted action

logue data. Section 5 reports results from testing the . . -aived reward:. and then the state changed

learned strategy demonstrating that our approac) s:41. Dialogue sequences obtained from training

improves task completion rates (our chosen Medgaa can be used to empirically estimate the transi-

sure for performance optimization). A companiony;,n probabilitiesP(s'| s, a) (denoting the probabil-

paper provides only an abbreviated system and digy ¢ 5 transition to state’, given that the system
alogue manager description, but includes addltlonih
u

S1 _>a1,7’1 52 _>a2,7’2 53 _>a3,7’3 e

| ah > as in states and took actior:), and the reward
results not presented here (Anonymous, 2000), SUCRnction R (s, a). The estimated transition probabil-

as analysis establishing the veracity of the MDP W&jaq and reward function constitute an MDP model
learn, and comparisons of our learned strategy tQyt e yser population’s interaction with the system.
strategies hand-picked by dialogue experts. Given this MDP, the expected cumulative reward

_ _ _ (or Q-valug (s, a) of taking actior: from states
2 Reinforcement Learning for Dialogue can be calculated in terms of the Q-values of succes-
Due to space limitations, we present only a briefSOr states via the following recursive equation (Sut-
overview of how dialogue strategy optimization canton, 1991):
be viewed as a RL problem; for a more detailed _ / ro
exposition, see Singh et al. (1999), Walker et al. Qs,a) = R, a) + ZP(S [5,) HZ%LXQ(S @),
(1998), Levin et al. (1997). A dialogue strategy is
a mapping from a set dftates(which summarize These&)-values can be estimated to within a desired
the entire dialogue so far) to a setadtions(such threshold using the standard Rhlue iterational-
as the system’s utterances and database queriegprithm, which iteratively updates the estimate of
There are multiple reasonable action choicessich () (s, a) based on the current Q-values of neighbor-
state; typically these choices are made by the sysng states. Once value iteration is completed, the op-
tem designer. Our RL-based approach is to buildimal dialogue strategy (according to our estimated
a system that explores these choices in a systenmodel) is obtained by selecting the action with the
atic way through experiments with representativemaximum Q-value at each dialogue state.
human users. A scalar performance measure, called While this approach is theoretically appealing,
a reward, is then calculated for each experimentalhe difficulty of obtaining sample human dialogues
dialogue. (We discuss various choices for this reimakes it crucial to limit the size of the state space, in
ward measure later, but typically only terminal dia- order to minimize data sparsity problems, while still
logue states have nonzero rewards, and the rewar@taining enough information in the state to learn an
measures are quantities directly obtainable from th@ccurate model. Our approach is to work directly in
experimental set-up, such as user satisfaction or taskminimal but carefully designed state space (Singh
completion for the dialogue.) This experimental et al., 1999).
data is used to construct a MDP which models the The contribution of this paper is to develop and
users’ interaction with the system. The problem ofempirically validate a practical methodology for us-
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Action Prompt
GreetS Welcome to NJFun. Please say an activity name or say ‘list activities’ for a list of activities | know gbout.
GreetU Welcome to NJFun. How may | help you?
ReAsk1S | | know about amusement parks, aquariums, cruises, historic sites, museums, parks, theaters, wingries,
and zoos. Please say an activity name from this list.

ReAsk1M | Please tell me the activity type.You can also tell me the location and time.

Ask2S Please say the name of the town or city that you are interested in.

Ask2U Please give me more information.

ReAsk2S | Please tell me the name of the town or city that you are interested in.

ReAsk2M | Please tell me the location that you are interested in. You can also tell me the time.

Figure 2: Sample initiative strategy choices.

ing RL to build a real dialogue system that opti- again. If NJFun still does not obtain a value, NJ-
mizes its behavior from dialogue data. Our method+un moves on to the next attribute(s). Whenever
ology involves 1) representing a dialogue strategyNJFun successfully obtains a value, it can confirm
as a mapping from each state in the chosen statihe value, or move on and attempt to obtain the next
spacesS to a set of dialogue actions, 2) deploying attribute(s). When NJFun has finished asking about
an initial training system that generatgploratory  the attributes, it queries the database (using a wild-
training data with respect 8, 3) constructing an card for each unobtained attribute value). Note that
MDP model from the obtained training data, 4) us-the length of NJFun dialogues ranges from 1 to 12
ing value iteration to learn the optimal dialogue user utterances before the database query.
strategy in the learned MDP, and 4) redeploying the As discussed above, our methodology for using
system using the learned state/action mapping. ThBL to optimize dialogue strategy requires that all
next section details the use of this methodology tgpotential actions for each state be specified. Note

design the NJFun system. that at some states it is easy for a human to make
the correct action choice. We made obvious dia-
3 The NJFun System logue strategy choices in advance, and used learning

NJFun is a real-time spoken dialogue system tha@nly to optimize the difficult choices (Walker et al.,
provides users with information about things to do1998). In NJFun, we restricted the action choices to
in New Jersey. NJFun is built using a general pur-l) the type of initiative to use when asking or reask-
pose platform for spoken dialogue systems (Leviring for an attribute, and 2) whether to confirm an
et al., 1999), with support for modules for auto- attribute val_ue once obtained. The optlmal actions
matic speech recogiion (ASR), spoken language Mmay vary Wl_th dlal(_)gue state, and are subject to ac-
understanding, text-to-speech (TTS), database aélve debate in the literature.
cess, and dialogue management. NJFun uses a Ihe examples in Figure 2 shows that NJFun can
speech recognizer with stochastic language and ur@SK the user about the first 2 attributesing three
derstanding models trained from example user uttypes of initiative, based on the combination of the
terances, and a TTS system based on concatenati¥éording of the system prompogenversusdirec-
diphone synthesis. Its database is populated frorf{V€), and the type of grammar NJFun uses during
the nj.online webpage to contain information ASR (restrlctlveversgsnon_—restrlctlve. If_NJFun
about activities. NJFun indexes this database usingS€S an open question with an unrestricted gram-
three attributes: activity type, location, and time of Mar, it is usinguser initiative(e.g., GreetU). If NJ-
day (which can assume values morning, afternoorf;un instead uses a directive prompt with a restricted
or evening)_ grammar, the SyStem IS USIIS_gSte_m |n|t|at|\./ée.g..,
Informally, the NJFun dialogue manager sequenreetS). If NJFun uses a directive question with a
tially queries the user regarding the activity, locationnon-restrictive grammar, it is usingixed initiative
and time attributes, respectively. NJFun first ask€cause it is giving the user an opportunity to take
the user for the current attribute (and possibly thehe initiative by supplying extra information (e.g.,
other atmb_UteS’ depend_lng on the_ initiative). If the l“Greet”is equivalent to asking for the first attribute. NJFun
current attribute’s value is not obtained, NJFun askgjways uses system initiative for the third attributechuse at
for the attribute (and possibly the later attributes)that point the user can only provide the time of day.
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NJFun can also vary the strategy used to confirnt
each attribute. If NJFun asks the user to expilic Figure 3: State features and values.
verify an attribute, it is usingxplicit confirmation
(e.g., ExpConf2 for the location, exemplified by S2
in Figure 1). If NJFun does not generate any con
firmation prompt, it is usingo confirmatior(an ac-
tion we call NoConf).

Solely for the purposes of controlling its opera-
tion (as opposed to the learning, which we discus
in a moment), NJFun internally maintains ap-
erations vectorof 14 variables. 2 variables track

tory variable is set to O if NJFun does not have an
activity, has an activity but has no confidence in the
value, or needed two queries to obtain the activity.
As mentioned above, the goal is to design a small
Sstate space that makes enough critical distinctionsto
support learning. The use 6freduces the number
of states to only 63,and supports the construction

whether the system has greeted the user, and whic f aet?/eﬁ[t)JFs)ilTol?rili ttg da:t[rlasirrl}(r)\t Sﬁ;feTvﬁghs{fogcgfe
attribute the system is currently attempting to Ob_th’at we utilizge here although miﬁimal aIIowspus
tain. For each of the 3 attributes, 4 variables ’ g '

track whether the system has obtained the attribute%oamgrg;ggfg'vgsdZﬂj’ggﬁfﬁf‘ns;?oﬂr&ghc‘?ﬁiss (t))];se q
value, the system’s confidence in the value (if ob- ges,

tained), the number of times the system has aske N ASR confidence scores and grammars.

the user about the attribute, and the type of ASR _| € state/action mapping representing NJFun's

grammar most recently used to ask for the attributelNitial dialogue strategy EIC (Exploratory for Initia-

The formal state spacé maintained by NJFun tive and Conflrmatlo_n) is given in Flgure_4. Only
for the purposes of learning is much simpler thanthe exploratory portion of the strategy is shown,
burp 9 P namely all those states for which NJFun has an ac-

the operations vector, due to the data sparsity COMion choice. For each such state, we list the two

cems already discussed. The dialogue state SPa%Roices of actions available. (The action choices in

TS contains only 7 varla_\bles, which are summarize oldface are the ones eventually identified as opti-
in Figure 3, and is easily computed from the opera-

tions vector. The “greet” variable tracks Whetherthemal _by the learning process, and are discussed in
_ _.detall later) The EIC strategy choosesmdomly

system has greeted the user or not (no=0, yes=1]. : : o

A e : - . etween these two actions when in the indicated

Attr” specifies which attribute NJFun is currently

attempting to obtain or verify (activity=1, loca- state, in order to maximize exploration and mini-
tion=2, time=3, done with atiributes=4). “Conf” mize data sparseness when constructing our model.

represents the confidence that NJEun has after opy1'C€ there are 42 states with 2 choices each, there
P a search space of'2potential dialogue strate-

e . S
taining a value for an attribute. The values 0, 1, ano| e ; . !
2 reprgesent low, medium and high ASR confidefice. gies, the goal of the RL Isto identify an apparently

The values 3 a’nd 4 are set when ASR hears “yesoptlmal strategy from th_ls Ie_lrge search space. Note
or “no” after a confirmation question. “Val” tracks that due to the randomization of the EIC strategy,

whether NJFun has obtained a value for the a’rtributéhe prompts are designed to ensure the coherence of

(no=0, yes=1). “Times” tracks the number of timesalllf_055|b§_ﬁctl?ntsequ:enct(;s. dial trat .
that NJFun has asked the user about the at'[ribut('e:i 'gure 5 liustrates how the dialogue strategy in

“Gram” tracks the type of grammar most recently gure 4 generates the dialogue in Figure 1. Each

used to obtain the attribute (O=non-restrictive, 1=reJOW indicates the state that NJFun is in, the action

strictive). Finally, “history” represents whether NJ- executed in this state, the corresponding turn in Fig-

Fun had trouble understanding the user in the earligd® 1, and the reward received. Thetiai state

part of the conversation (bad=0, good=1). We omit SPresents that NJFun will first attempt to obtain

the full definition, but as an example, when NJFun isattrlbute 1. NJFun executes GreetU (although as

- : : .._.shown in Figure 4, GreetS is also possible), gen-
working on the second attribute (location), the his-S"°" ) ’ LD ’
g ( ) erating the first utterance in Figure 1. After the
user's response, the next state represents that NJ-

2 .
For each utterance, the ASR output includes not only the, .
recognized string, but also an associated acoustic confiden eun has now greeted the user and obtained the ac-

score. Based on data obtained during system development, we
defined a mapping from raw confidence values into 3 approxi- 3This number refers to those states that can actually occur
mately equally populated ptétions. in a dialogue.
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<

Action Choices

GreetSGreetU
ReAsk1SReAsk1M
NoConfExpConfl
NoConfExpConfl
NoConfExpConfl
NoConfExpConfl
NoConf,ExpConfl
NoConf,ExpConfl
ReAsk1S,ReAsk1M
ReAsk1SReAsk1M

Ask2SAsk2U
Ask2SAsk2U
ReAsk2SReAsk2M
ReAsk2SReAsk2M
NoConfExpConf2
NoConfExpConf2
NoConfExpConf2
NoConf,ExpConf2
NoConfExpConf2
NoConfExpConf2
NoConf,ExpConf2
NoConfExpConf2
NoConf,ExpConf2
NoConfExpConf2
NoConf,ExpConf2
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ReAsk2SReAsk2M
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NoConf,ExpConf3
NoConf,ExpConf3
NoConf,ExpConf3
NoConfExpConf3
NoConfExpConf3
NoConf,ExpConf3
NoConf,ExpConf3
NoConfExpConf3
NoConfExpConf3
NoConf,ExpConf3
NoConf,ExpConf3
NoConfExpConf3

Figure 4: Exploratory portion of EIC strategy.

State Action Turn  Rewarq
gacvtgh

0100000 GreetU S1 0
1121000 NoConf - 0
1221001 ExpConf2 S2 0
1321001 ExpConf3 S3 0
1400000 Tell S4 1

Figure 5: Generating the dialogue in Figure 1.

tivity value with high confidence, by using a non-
restrictive grammar. NJFun chooses not to confir
the activity, which causes the state to change but n

confidence (location was obtained with activity af-
ter the user’s first utterance), and that the dialogue
history is good* This time NJFun chooses to con-
firm the attribute with the second NJFun utterance,
and the state changes again. The processing of time
is similar to that of location, which leads NJFun to
the final state, where it performs the action “Tell”
(corresponding to querying the database, presenting
the results to the user, and asking the user to provide
areward). Note that in NJFun, the reward is always
0 except at the terminal state, as shown in the last
column of Figure 5.

4 Experimentally Optimizing a Strategy

We collected experimental dialogues for both train-
ing and testing our system. To obtain training dia-
logues, we implemented NJFun using the EIC di-
alogue strategy described in Section 3. We used
these dialogues to build an empirical MDP, and then
computed the optimal dialogue strategy in this MDP
(as described in Section 2). In this section we de-
scribe our experimental design and the learned di-
alogue strategy. In the next section we present re-
sults from testing our learned strategy and show that
it improves task completion rates, the performance
measure we chose to optimize.

Subjects in our experiment were employees not
associated with the NJFun project. 54 subjects were
used for training, while 21 subjects were used for
testing. Subjects were distributed such that the
training and testing pools were comparable with re-
spect to gender, English as a first language, and ex-
pertise with spoken dialogue systems.

During both training and testing, subjects carried
out free-form conversations with NJFun to complete
six application tasks. For example, the user in Fig-
ure 1 was executing the following task: “You feel
thirsty and want to do some winetasting in the morn-
ing. Are there any wineries close by your house in
Lambertville?” Subjects read each task description
on a web page, then called NJFun from their office
phone. At the end of the task, NJFun asked them to
verbally provide feedback on their experience (e.g.,
utterance S4 in Figure 1). Users then hung up the
phone and filled out a user survey on the web.

The training phase of the experiment resulted in

np11 complete dialogues (not all subjects completed

gll tasks), for which NJFun logged the sequence

prompt to b_e generated_. The third state repre_zsents “Recall that only the current attribute’s features are in the
that NJFun is now working on the second attributestate. However, the operations vector contains information re-
(location), that it already has this value with high garding previous attributes.



of states and the corresponding executed action& Experimentally Evaluating the Strategy

Trf:e_ number of samples per state for the initial ask=q the testing phase, NJFun was reimplemented to
choices are:

0100000 GreetS=155 GreetU=156 use the learned strategy. 21 test subjects then per-
1200000 Ask2S=93  Ask2U=72 formed the same 6 tasks used during training, re-
1200001 Ask2S=36 Ask2U=48 sulting in 124 complete test dialogues. One of our

Such data illustrates that our use of a random actio taln regults IS that tasakfcomglzeot/lqn ?S _m_easturggoﬁ)y
choice strategy led to a fairly balanced action dis- rongt.omp increasedirom ointrainingto 0

: 5
ribution per state. Similarly, our small state space!" t€Sting p <.06y°. .~~~ .
tribution per state. Similarly, our sma b There is also a significant interaction effect

I 2 acti hoi
and the fact that we only allowed 2 action choices tween strategy and task <(D1) for Strong-

er state, prevented a data sparseness problem. Tg . .
b b P P omp. Previous work has suggested that novice

first state in Figure 4 was the most frequently vis- ; blv t s aft v 2
ited state (with 311 visits), as it was the initial state US€rS periorm comparably to experis after only
asks (Kamm et al., 1998). Since our learned strat-

for every dialogue. Only 8 states were visited less .
y g y £9y was based on 6 tasks with each user, one ex-

:Ean 10 times, and were states that only occur ne Elanation of the interaction effect is that the learned
e end of a dialogue. L o
strategy is slightly optimized for expert users. To
The logged data was then used to construct thexplore this hypothesis, we divided our corpus into
empirical MDP. As we have mentioned, the mea-dialogues with “novice” (tasks 1 and 2) and “ex-
sure we chose to optimize is a binary reward funcpert” (tasks 3-6) users. We found that the learned
tion based on the strongest possible measure aftrategy did in fact lead to a large and significant
task completion, calle@trongComp, that takes on  improvement in StrongComp for experts (EIC=.46,
value 1 if NJFun queries the database using exactliearned=.69, g.001), and a non-significant degra-
the attributes specified in the task description, and@iation for novices (EIC=.66, learned=.55; |3).
0 otherwise. Then we computed the optimal di- An apparent limitation of these results is that EIC
alogue strategy in this MDP using RL (cf. Sec- may not be the best baseline strategy for compari-
tion 2). The action choices constituting the learnedson to our learned strategy. A more standard alter-
strategy are in boldface in Figure 4. Note that nonative would be comparison to the very best hand-
choice was fixed for several states, meaning that theesigned fixed strategy. However, there is no agree-
Q-values were identical after value iteration. Thusment in the literature, nor amongst the authors, as
even when using the learned strategy, NJFun stiio what the best hand-designed strategy might have
sometimes chooses randomly between certain ageen. There is agreement, however, that the best
tion pairs. strategy is sensitive to many unknown and unmod-
L . eled factors: the user population, the specifics of
Intuitively, the learned strategy says that the opti the task, the particular ASR used, etc. Further-

mal use of initiative is to begin with user initiative, Elc tullv desianed hat th

then back off to either mixed or system initiative M°"®: e was carE ully designe Iso_t at the ratn-

when reasking for an attribute. Note, however, thaflom choices it makes never results in an unnatu-
ral dialogue. Finally, a companion paper (Anony-

the specific backoff method differs with attribute
. initiative f : 1 |y mous, 2000) sho_ws that the performance of the
(e.g., system initiative for attribute 1, but genera yIearned strategy is better than several “standard”

mixed initiative for attribute 2). With respect to con- fed ’ h lobal svstem-initiati d
firmation, the optimal strategy is to mainly confirm Ixed strategies (such as global system-initiative an
do-confirmation).

at the lower confidence values. Again, however, th _ _

point at which confirmation becomes unnecessary e also investigated the performance of the
differs across attributes (e.g., confidence level 2 forcarned strategy on a number of other reward mea-
attribute 1, but sometimes lower levels for attributesSUres for which it was not explicitly optimized.
2 and 3). NJFun can Igarn such flne_-g_ralned distinc- *The experimental design described above consists of 2
tions because the optimal strategy is in effect basegictors: the within-in group factostrategyand the between-
on a comparison of% possible exploratory strate- groups factortask We use a two-way analysis of variance
gies. Both the initiative and confirmation results (?r’\'tOVA) t;’ Cfigil;‘tiizea‘l’l"hgithgirﬁLnaari?(%‘g)ir(‘)treifr?gitg;rt‘iviﬁﬁ?t; of
suggest that the |n|f[|al portion of the dlalogue WaSZtaatlist?ga?tfer?d (< .18/). l\g/lain effectsof strategy are task-
the most problematic for NJFun. Figure 1 is an eX-independent, whildnteraction effects involving strategy are
ample dialogue obtained using the optimal strategytask-dependent.




Measure EIC | Learned| p ken dialogue systems, and demonstrates empirically
(n=311) | (n=124) that it improved performance over the EIC policy
WeakComp 175 219 .02 in NJFun. A companion paper (Anonymous, 2000)
StrongComp 0.52 0.64 | .06 h h . v b han EIC
ASR 550 56704 shows that our strategy is not only better than :
Feedback 0.18 0111 42 put also than _other fixed choices prop_osed in the
UserSat 13.38 13.29| 86 literature. While _RL has been applied in previous
work on spoken dialogue systems, we report the first
large-scale application of RL to a dialogue system
Table 1: Main effects of dialogue strategy. that interacts in real time with human users. This
is in contrast to previous work on using RL for di-

WeakCompis a relaxed version of task completion &/09ue system design that either proposed it with-
that gives partial credit: if all attribute values are ei- 0Ut implementation (Biermann and Long, 1996), or

ther correct or wildcards, the value is the sum of thefhat usgd a sim_ulated user populationin their_ ‘”.‘p'e'
correct number of attributes. Otherwise, at least onghentation (Levin et al., 1997), or that was limited
attribute is wrong (e.g., the user says “Lambertville”©© (_ax_plorlng a small search space consisting ®f
but the system hears “Morristown”), and the valueispg'c'e?‘ (Walker et al,, 1998) (as compared to the
-1. ASR approximates speech recogon accuracy 2 POlicies explored here). We also note that our
for the database query, and is computed by adding arned strategy varied initiative and confirmation

for each correct attribute value and .5 for every wild-d€cisions at a finer grain than previous work, and as
card. Thus, ifthe task is to go winetasting near Lam-SUCh is not a standard policy investigated in the dia-
bertville in the morning, and the system queries thd®9ue system literature. In particular, we would not
database for an activity in New Jersey in the morn-ave predicted the complex and interesting back-off
ing, StrongComp=0, WeakComp=1, and ASR=2. inStrategy with respect to initiative when reasking for
addition to the objective measures discussed abov@" attribute. _

As future work we would like to understand

we also computed tweubjectivemeasuresFeed- ; o
back is obtained from the dialogue (e.g. S4 in Fig- the aforementioned results on the subjective reward

ure 5), by mappingjood, so-so, batb 1, 0, and measures, explore the potential difference between
-1, respectively. User satisfactiobgerSat rang-  OPtimizing for expert users and novices, automate

ing from 0-20) is obtained by summing the answersthe _choice of state space for dialogue systems, in-
of the web-based user survey. vestigate the use of a learned reward function (as
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