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Abstract

We consider risk-sensitive generalizations of Nash and cor-
related equilibria in noncooperative games. We prove that,
except for a class of degenerate games, unless a two-player
game has a pure Nash equilibrium, it does not have a risk-
sensitive Nash equilibrium. We also show that every game
has a risk-sensitive correlated equilibrium. The striking con-
trast between these existence results is due to the different
sources of randomization in Nash (private randomization)
and correlated equilibria (third-party randomization).

1 Introduction
The game-theoretic approach to modeling multi-agent inter-
action assumes that players in a game want to maximize their
expected utility. But in many settings, players instead often
want to maximize some more complicated function of their
utility. In this paper, we ask the following natural question:
Can we extend the familiar notions of Nash and correlated
equilibria to settings where players are sensitive torisk?

In a noncooperative game, the utility for each player de-
pends on the actions taken by all players. In aNash equi-
librium of a game, each player chooses an action from a
distribution, called astrategy, that maximizes her expected
utility when she assumes the strategies of the other players
are held fixed. Acorrelated equilibrium(Aumann 1987)
is a well-known generalization of a Nash equilibrium. In a
correlated equilibrium, a third party draws actions for each
player from a joint distribution on actions, and each player
then decides deterministically whether to play their recom-
mended action or switch to another one; the joint distribution
is a correlated equilibrium if no player ever has an incentive
to switch. A Nash or correlated equilibrium is an inherently
stable state of the game, and thus serves as both a prescrip-
tive and descriptive characterization of the behavior of play-
ers in a multi-agent setting. It is well-known that every game
has at least one Nash equilibrium (Nash 1950), and therefore
also at least one correlated equilibrium.

The expected utility framework for games is obviously
very general, but it does exclude the possibility that play-
ers in the game have preferences that depend on theentire
distribution of utility, and not just on its expectation. For ex-
ample, if a player is sensitive to risk, her objective might be

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to choose a strategy that maximizesE[utility ]−Var[utility ].
Indeed, this is the recommendation of modern portfolio the-
ory, and a version of this mean-variance objective is widely
used by investors in financial markets. In general, we re-
fer to the objective maximized by a player as herpreference
function.

In this paper, we define generalizations of Nash and cor-
related equilibria which permit players to maximize pref-
erence functions that may differ from expected utility. We
will later denote these generalized equilibrium concepts as
F -Nash andF -correlated equilibria, whereF represents the
players’ preference functions. In this more general setting,
the classical arguments for the existence of equilibria no
longer apply. So under what conditions can we guarantee
— or rule out — the existence of aF -Nash orF -correlated
equilibrium?

To address this question, we first note that there are two
major differences between the original definitions of Nash
and correlated equilibria. One is that a correlated equilib-
rium (as the name suggests) may induce correlations among
the actions chosen for the players, whereas all players’ ac-
tions are independent in a Nash equilibrium. The other dif-
ference is the source of randomization: In a Nash equilib-
rium, each player uses private randomization to choose an
action from her distribution, while in a correlated equilib-
rium the randomization is performed by a third party. The
first difference is the only salient one, while the latter differ-
ence is largely a matter of interpretation: a correlated equi-
librium in which there is no correlation among the players’
actions is, by definition, a Nash equilibrium.

These differences also exist between the definitions ofF -
Nash andF -correlated equilibria, but in this case neither dif-
ference is superficial. Our results in this paper show that, for
a large and natural class of risk-sensitive preference func-
tions, the source of randomization has a dramatic impact on
the existence ofF -Nash andF -correlated equilibria. Before
turning to a discussion of our main contributions, we review
the existing literature.

The question of existence ofF -Nash equilibria for alter-
native preference functions has long been studied. For ex-
ample, it is known from the work of (Debreu 1952) that
F -Nash equilibria always exist if the preference function
for each player is continuous and concave in her strategy.
However, as first observed by (Crawford 1990), many natu-



ral choices for preference functions areconvexin a player’s
strategy, especially those that encode some notion of risk-
sensitivity. This is unsurprising: A preference function that
is convex in a player’s strategy implies that, other things
being equal, the player dislikes increasing her randomiza-
tion, which is quite similar to saying that the player is risk-
sensitive.

Many authors (e.g., (Crawford 1990), (Dekel, Safra, and
Segal 1991), (Nowak 2005)) have shown that, for several
well-motivated convex preference functions,F -Nash equi-
libria do not necessarily exist. These negative results areal-
most always obtained in the same way: by exhibiting, for
each preference function of interest, a specific game that
does not have anF -Nash equilibrium for that preference
function. For example, (Nowak 2005) described a simple
2×2 game that does not have anF -Nash equilibrium for the
mean-variance preference function described above. A ma-
jor weakness of this ‘counterexample’ type of result is that
it does not rule out the possibility that the counterexamples
are pathological cases. In other words, could it be that these
counterexamples comprise only finitely or countably many
games? If so, then for any game, one could randomly per-
turb the game by a tiny amount and thereby obtain a nearly
identical game that is guaranteed (with overwhelming prob-
ability) to have anF -Nash equilibrium. If this were the case,
then current nonexistence results would have essentially no
practical importance.

The first contribution of this paper, in Section 5, is a sig-
nificant generalization of these negative results. We confine
our analysis to a large class of so-calledmean-variancepref-
erence functions, which reward higher expected utility but
penalize higher variance of utility, and ask whetherF -Nash
equilibria exist in this case. Intuitively, we might expect
that in anF -Nash equilibrium players will be disinclined
to choose their actions randomly since, other things being
equal, randomization increases variance. We show that this
intuition is not only correct but extremely general, and limits
the existence ofF -Nash equilibria to a very restricted class
of games — namely, those with either pure Nash equilibria,
or those in which the variance experienced by a player is al-
ready “saturated” by the randomization due to other players.
In fact, we prove that, in a two-player game, if each player’s
utility function is chosen randomly, then with probability1
the game does not have anF -Nash equilibrium in which
even a single playeri randomizes their choice of action.

Our second contribution, in Section 6, is to observe that an
F -correlated equilibrium always exists in a game in which
each player has a convex preference function — a class
which includes mean-variance preference functions. We
explain that anF -correlated equilibrium in a game with
convex preferences is actually a strict generalization of an
equilibrium in beliefs, whose existence was first proved by
(Crawford 1990). We show that, counterintuitively, anF -
correlated equilibrium need not actually induce any corre-
lation among the behavior of the players — the existence
result is solely a consequence of the different source of ran-
domization. The intuition is that when a third party is re-
sponsible for the randomization, the players only react de-
terministically to the stochastic action proposed for themby

this third party — in other words, the “variance lies else-
where” from the perspective of each player. We further show
that for some games with convex preference functions there
exists anF -correlated equilibrium in which each player is
better off than in any equilibrium in beliefs.

2 Preliminaries
A game hasn players, indexedi = 1, . . . , n. LetAi be the
(finite) set ofactionsavailable to playeri. Let the cross-
productA = ×n

i=1Ai be the set ofaction profiles, and let

A−i , A1 × · · · × Ai−1 ×Ai+1 × · · · × An

be the set of action profiles for all players but playeri. If
a ∈ A, then we writeai ∈ Ai for the ith component ofa,
while a−i ∈ A−i denotes droppingai from a.

Let ui : A → R be the utility function for player
i, whereui(a) is the utility to playeri under action pro-
file a. For convenience,ui(a) can be equivalently written
ui(a1, . . . , an) or ui(ai, a−i). We assume that utility func-
tions are bounded, but otherwise allow them to be arbitrary.

Let P(S) be the set of distributions on a (finite) setS. A
distributionp ∈ P(A) is called anaction profile distribu-
tion, wherep(a) is the probability assigned byp to action
profile a. Like utility functions, for conveniencep(a) can
be equivalently writtenp(a1, . . . , an) or p(ai, a−i)

For anyp ∈ P(A), we writepi ∈ P(Ai) for the marginal
distribution ofp on Ai, while p−i ∈ P(A−i) denotes the
marginal distribution ofp onA−i.

If p ∈ P(A) is a product distribution (i.e.p(a) =
∏n

i=1 pi(ai)), then we callpi thestrategyfor playeri, and
p is thestrategy profilefor all players. Also, ifpi is a de-
generate distribution concentrated on a single action, then
we say thatpi is apure strategy.

For any distributionp ∈ P(A) and action̂ai ∈ Ai we
write p−i|âi for the conditional distribution onA−i given
thata ∼ p andai = âi. Note that ifp is a product distribu-
tion, thenp−i = p−i|âi for all âi ∈ Ai.

The supportof pi ∈ P(Ai) is defined bysupp(pi) ,

{ai ∈ Ai : pi(ai) > 0}. Also define∆(pi) , {p̂i ∈
P(Ai) : supp(p̂i) = supp(pi)} to be set of all distributions
in P(Ai) which have the same support aspi.

For convenience, we will sometimes writeai to denote the
degenerate distribution inP(Ai) which is concentrated on
the single actionai ∈ Ai. Context will make clear whether
ai is intended to refer to an action or a distribution.

A real-valued functionf : R
k → R is convexif for all

x, y ∈ R
k andλ ∈ [0, 1],

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y).

A functionf is concaveif −f is convex.

3 Preference Functions
Players in a game are usually assumed to be interested in
maximizing their expected utility. In order to generalize this
to other possible objectives, we allow thepreference func-
tion Fi : P(Ai) × P(A−i) → R for playeri to be an arbi-



trary continuous and bounded1 function which encodes the
objective of playeri in the game. The preference function
depends on the distributions from which the players draw
their actions. For example, if playeri’s action is drawn from
distributionpi ∈ P(Ai), and the other players’ action pro-
file is drawn from distributioñp−i ∈ P(A−i), and playeri
wishes to maximize expected utility, then playeri’s prefer-
ence function is

Fi(pi, p̃−i) = Eai∼pi,a−i∼p̃
−i

[ui(ai, a−i)].

Note thatFi is defined forall pi ∈ P(Ai) and p̃−i ∈
P(A−i). In other words, the distributions which are argu-
ments to a preference function can be completely unrelated.
However, as we will see in Section 4 when we define equilib-
ria, we are usually interested in cases where they are linked
in some way. For illustration, we have given examples be-
low of preference functions that have widespread use in risk-
sensitive optimization, particularly in financial markets. In
these expressions,α > 0 is a constant that controls the de-
gree of risk-sensitivity, and for notational compactness we
introduce the following definitions:

Ei(pi, p̃−i) , Eai∼pi,a−i∼p̃
−i

[ui(ai, a−i)]

Vi(pi, p̃−i) , Varai∼pi,a−i∼p̃
−i

[ui(ai, a−i)]

Pref. Function Fi(pi, p̃−i) = . . .
Markovitz (I) Ei(pi, p̃−i) − αVi(pi, p̃−i)

Markovitz (II) Ei(pi, p̃−i) − α
√

Vi(pi, p̃−i)

Sharpe Ratio Ei(pi, p̃−i)/(1 +
√

Vi(pi, p̃−i))

The first two preference functions are based on the
Markovitz criterion for portfolio optimization, while the
Sharpe ratiois another widely-used criterion in portfolio
theory.2 Many other choices for financially-motivated pref-
erence functions are available, such as Roy’s ‘safety-first’
criterion. We also note that our use of these functions is
slightly atypical: Investors are usually interested in maxi-
mizing functions of theirrate of return, a quantity that is
related to, but technically different from, utility.

3.1 Mean-Variance Preference Functions
Rather than proving our results for specific preference func-
tions, we will prove them for a class of risk-sensitive prefer-
ence functions which subsume the examples given above.

Definition 1. Fi is amean-variance preference functionif

1. Fi(pi, p̃i) = Gi (Ei(pi, p̃i), Vi(pi, p̃i)) for some func-
tion Gi that is nondecreasing in its first argument.

2. Fi is convex in its first argument.

1The continuity and boundedness assumptions for preference
functions are assumed throughout the paper, and for brevity will
not be repeated.

2We have introduced the constant1 in the denominator of the
Sharpe ratio only to ensure that it is bounded.

3. For any nonempty convex subsetP ⊆ P(Ai) and dis-
tribution p̃−i ∈ P(A−i), if Fi(·, p̃−i) is constant onP ,
then bothEi(·, p̃−i) andVi(·, p̃−i) are constant onP .

The second property is consistent with our desire thatFi

encode a sensitivity to risk — ifFi is convex in its first argu-
ment, then other things being equal, this implies that player
i dislikes randomization (recall our comment to this effect
in Section 1).

The third property says that whenever a mean-variance
preference function is constant (with respect to its first argu-
ment) on some convex set, then expected utility and variance
of utility are also constant on that same set. While this prop-
erty may seem harder to justify, it is the case that all the
examples of risk-sensitive functions we gave above satisfy
all the conditions of the definition of a mean-variance pref-
erence function. Due to lack of space, we will only provide
a proof for the case of the Markovitz (I) preference function;
the derivation for the other functions is similar.

Claim 1. The Markovitz (I) preference function is a mean-
variance preference function.

Proof. Let Fi be the Markovitz (I) preference function. Fix
any p̃−i ∈ P(A−i) and nonempty convex subsetP ⊆
P(Ai). Also choosep1

i ,p
2
i ∈ P , and letpλ

i = λp1
i +

(1 − λ)p2
i be a point on the line segment connectingp1

i

andp2
i , for someλ ∈ [0, 1]. We will only be concerned

with the behavior ofFi(·, p̃−i) on this line segment, so
we overload notation and defineFi(λ) = Fi(p

λ
i , p̃−i) and

Ei(λ) = Ei(p
λ
i , p̃−i) andVi(λ) = Vi(p

λ
i , p̃−i).

We now prove thatFi(·, p̃−i) is convex in its first argu-
ment. Since a function is convex if and only if it is convex
on every line segment in its domain, andp1

i andp2
i were

chosen arbitrarily, it suffices to prove thatFi(λ) is convex
on the interval[0, 1]. A straightforward calculation shows
that

d2Fi

dλ2
= 2(Ei(0) − Ei(1))2 (1)

for λ ∈ (0, 1). This quantity is nonnegative, implying that
Fi(λ) is a convex function on(0, 1), and by continuityFi(λ)
is convex on[0, 1].

Now suppose thatFi(·, p̃−i) is constant onP . We wish to
prove that bothEi(·, p̃−i) andVi(·, p̃−i) are constant onP .
Again, sincep1

i andp2
i were chosen arbitrarily, it suffices to

show thatEi(λ) andVi(λ) are constant on the interval[0, 1].
SinceFi(λ) is constant on the interval[0, 1], the expres-

sion in Eq. (1) must be equal to zero, which implies that
Ei(0) = Ei(1). BecauseEi(λ) is a linear function, this
means thatEi(λ) is constant on[0, 1]. Now, by examining
the definition of the Markowitz (I) preference function, we
see that if bothFi(λ) andEi(λ) are constant on some inter-
val, thenVi(λ) must be as well.

4 Equilibrium Concepts
Usually, the definitions of Nash and correlated equilibrium
assume that each player wishes to maximize expected util-
ity, but these definitions can be easily generalized to admit
arbitrary preference functions.



The action profile distributioñp ∈ P(A) is anF -Nash
equilibrium (F -NE) if p̃ is a product distribution and if for
all playersi

p̃i ∈ arg max
pi∈P(Ai)

Fi(pi, p̃−i).

Similarly, an action profile distributioñp ∈ P(A) is an
F -correlated equilibrium (F -CE) if for all playersi and ac-
tionsai ∈ Ai

ai ∈ arg max
pi∈P(Ai)

Fi(pi, p̃−i|ai).

These definitions are generalizations in the following
sense: If eachFi is the expected utility preference function,
then we recover the usual definitions of Nash and correlated
equilibrium.

We introduce additional terminology to distinguish inter-
esting cases of equilibria. If each player is using a mean-
variance preference function, we will refer to anF -NE
and F -CE as anMV-Nash equilibrium (MV-NE)and MV-
correlated equilibrium (MV-CE), respectively. Also, if̃p is
anF -NE, we say it is anon-pure equilibriumif at least one
player inp̃ is using a non-pure strategy.

Having definedF -NE andF -CE formally, let us discuss
how these concepts differ with respect to the source of ran-
domization. We momentarily set aside the possibility that
an F -CE may induce correlations among the behavior of
the players, and consider aproductdistribution p̃. By ex-
amining the definitions above, we see that ifp̃ is to be an
F -NE, then each playeri must prefer the strategypi at least
as much as any action. On the other hand, ifp̃ is to be an
F -CE, then each playeri must preferan action drawn from
pi at least as much as any action. As we stated in Section
1, these are equivalent statements when the preference func-
tions are expected utility. But as we will see in the rest of
the paper, this is emphatically not the case more generally.

5 Sparsity of Mean-Variance Nash Equilibria
In this section, we prove our first main result. We show that
non-pure MV-Nash equilibria fail to exist in all two-player
games, except in degenerate cases. We characterize a “de-
generate” game in a probabilistic fashion, by showing that
if all the utility values in a two-player game are chosen ran-
domly and independently, then the probability that a non-
pure MV-Nash equilibrium exists is zero. Intuitively, it isnot
surprising that non-pure MV-NE are so rare. We might even
guessa priori that a player using a mean-variance preference
function will generally not prefer to choose her actions ran-
domly, since this will tend to increase her variance. In fact,
if a player is randomizing her choice of action in an MV-NE,
we show that the variance experienced by that player must
already be “saturated” due to the behavior of the other play-
ers. Moreover, we prove that this saturation is essentially
a degenerate condition. The combination of these facts is
what makes non-pure MV-NE so rare.

We begin the proof of our main result with the following
lemma, which shows that whenever a preference function is
convex in its first argument and maximized at a non-pure
strategy, the preference function must have the same value

for all strategies which share the support of the maximizing
strategy.

Lemma 1. If a preference functionFi is convex in its first
argument, and̃p is anF -NE, thenFi(·, p̃−i) is constant on
∆(p̃i).

Proof. The lemma holds trivially if̃pi is pure, so suppose
p̃i is not pure. For shorthand, letfi(·) = Fi(·, p̃−i). Be-
cause∆(p̃i) is a convex set, we know thatfi is convex over
∆(p̃i). Sincep̃ is anF -NE, we also know that̃pi is a maxi-
mum offi on∆(p̃i), and that̃pi is in the interior of∆(p̃i),
by definition. Sincẽpi is a maximum offi on ∆(p̃i), the
gradient offi must vanish at̃pi. And sincefi is convex, this
implies thatp̃i is also a minimum offi on∆(p̃i). This can
only happen iffi is constant on∆(p̃i).

Lemma 1 has the following implication: Suppose each
Fi is a mean-variance preference function. By Definition
1, if Fi is constant on some convex set (with respect to its
first argument), then the variance of utility is constant on
that same set. So Lemma 1 says that a player in an MV-NE
uses a non-pure strategy only if randomization doesn’t add
to variance, i.e., the variance is already “saturated” for her
by the other players.

We are now ready to prove the sparsity of non-pure MV-
NE in two-player games.

Theorem 1. Consider a two-player game where, for each
player i ∈ {1, 2} and action profilea ∈ A, the utility
ui(a) ∈ R is drawn i.i.d. from an absolutely continuous
distribution (with respect to Lebesgue). Then with probabil-
ity 1 the game does not have a non-pure MV-NE.

Proof. Let p̃ = (p̃1, p̃2) be a strategy profile that is a
non-pure MV-NE. Without loss of generality, assume that
| supp(p̃1)| ≥ | supp(p̃2)|. Let k = | supp(p̃1)|, and note
that we must havek > 1, or elsep̃ would be a pure strat-
egy profile. By Lemma 1, there is a constantC such that
F1(p1, p̃2) = C for all p1 ∈ ∆(p̃1). Therefore, by Defini-
tion 1, we have that for all actionsa1, a

′
1 ∈ supp(p̃1)

Ea2∼p̃2
[u(a1, a2)] − Ea2∼p̃2

[u(a′
1, a2)] = 0 (2)

Vara2∼p̃2
[u(a1, a2)] − Vara2∼p̃2

[u(a′
1, a2)] = 0 (3)

By the definition of variance

Vara2∼p̃2
[u(a1, a2)] =

Ea2∼p̃2
[u(a1, a2)

2] − Ea2∼p̃2
[u(a1, a2)]

2 (4)

and therefore Eq. (2)-(4) together imply

Ea2∼p̃2
[u(a1, a2)

2] − Ea2∼p̃2
[u(a′

1, a2)
2] = 0. (5)

for all actionsa1, a
′
1 ∈ supp(p̃1).

The rest of the proof will be an application of the follow-
ing well-known mathematical facts:

1. If the entries of a matrixM ∈ R
(k−1)×k are drawn i.i.d.

from an absolutely continuous distribution, then for any
fixed vectorc ∈ R

k, with probability 1, the rows ofM
are linearly independent, and furthermore, the vectorc
doesn’t belong to the linear span of the rows ofM .



2. For any multivariate polynomialP (x1, . . . , xk) that is not
identically zero, if eachxi is drawn i.i.d. from an abso-
lutely continuous distribution, thenP (x1, . . . , xk) 6= 0
with probability 1 (the set of roots ofP is an algebraic
variety and therefore has measure zero under a product
distribution of absolutely continuous random variables).

We now show that these two facts imply that, with prob-
ability 1, Eq. (2) and Eq. (5) are not true simultaneously.
Note that Eq. (2) and Eq. (5) each specifyk − 1 equations.
Via a suitable renaming of variables, theith equation spec-
ified by Eq. (2) has the form

∑k

j=1 λjxij = 0, and theith

equation specified by Eq. (5) has the form
∑k

j=1 λjyij = 0,
where eachxij , yij ∈ R is drawn i.i.d. from an absolutely
continuous distribution, and

∑k

j=1 λj = 1.
In other words, we haveXλ = b andY λ = b, where

X,Y ∈ R
k×k, the last row of bothX and Y is the all-

ones vector, andb = (0, 0, 0, ..., 0, 1). Based on the first
fact above, bothX andY are invertible with probability1,
so we haveλ = X−1b = Y −1b. Now, based on Cramer’s
rule, we get thatdet(Xb)

det(X) = det(Yb)
det(Y ) , whereXb (resp. Yb)

is the matrixX (resp.Y ) when we replace its first column
by b. By simple algebra this is equivalent to demanding that
det(X) det(Yb)−det(Y ) det(Xb) = 0. Notice that the left-
hand side of this equation is a multivariate polynomial in the
xij ’s andyij ’s. It is easy to show that this polynomial is not
zero for at least one realization of the variables, and thus the
polynomial is not identically zero. Therefore, by the second
fact above, this equation is not satisfied with probability 1.

The previous theorem essentially rules out non-pure MV-
NE, but says nothing about pure MV-NE. So how common
are pure MV-NE? Not any more common than pure Nash
equilibria, by the following theorem, whose proof is omitted
as it is entirely straightforward.

Theorem 2. If p̃ is a pure MV-NE, theñp is a pure Nash
equilibrium.

Summing up, we see that there are essentially two kinds
of MV-NE in two-player games: Those that that correspond
to pure Nash equilibria, and degenerate cases. We note that
this conclusion is particularly unexpected in the case of two-
player zero-sum games. In a zero-sum game, one player’s
utility is the negative of the other player’s utility. There-
fore, the variance of utility is always thesamefor both play-
ers. It is counterintuitive, but nonetheless true, that adding
the same term to both players’ preference functions destroys
nearly all the equilibria.

The preceding analysis suggests that non-pure MV-NE
might not ever exist. Below we give an example proving
otherwise: the well-known zero-sum game ‘Matching Pen-
nies’.

H T
H +1,−1 −1,+1
T −1,+1 +1,−1

The unique Nash equilibrium of this game is a strategy
profile in which each player plays each action with equal

probability. It is easy to check that this strategy profile is
also an MV-NE when eachFi is the Markovitz (I) prefer-
ence function given in Section 3. In fact, under this strategy
profile, each player experiences a variance of1, which is the
largest possible value for variance in this game — so here
we have an example of the “saturation” property discussed
earlier.

6 Existence of Mean-Variance CE
In the previous section, we showed that non-pure MV-Nash
equilibria are extremely uncommon in two-player games.
The proof hinged on the combination of two facts: (1) a
mean-variance preference function is convex in its first ar-
gument, which means, roughly, that it penalizes players who
play an action randomly; (2) in a non-pure MV-NE, at least
one player prefers randomizing over her actions at least as
much as playing any single action deterministically.

In this section, we prove that, in striking contrast to MV-
Nash equilibria, MV-correlated equilibria always exist. In-
terestingly, the reason isnot that an MV-CE allows correla-
tions among the players’ action choices (although this does
have other advantages, as we will explain at the end of this
section). Intuitively, the reason is that an MV-CE does not
require each player to perform her own randomization. In-
stead, a third party is responsible for choosing an action ran-
domly, and the players only need to prefer the action chosen
for them at least as much as any other action. This condi-
tion is substantially easier to meet — essentially, the players
themselves do not pay a penalty for introducing variance,
because the “variance lies elsewhere”. Indeed, we prove
that anF -CE exists whenever each preference functionFi

is convex in its first argument. TheF -CE concept is a strict
generalization of a closely related concept in the economics
literature known as anequilibrium in beliefs, and the exis-
tence proof follows immediately from this relationship. This
proof was was first discovered by (Crawford 1990), but it is
simple and useful for our exposition, so we include it for
completeness.

We begin by stating a well-known extension of Nash’s
original result (Nash 1950) on the existence of Nash equi-
libria.

Theorem 3 (Nash (1950); Debreu (1952)). If each prefer-
ence functionFi is linear in its first argument, then anF -NE
exists.

Note that Theorem 3 requires that the preference func-
tions be linear in their first argument, while the mean-
variance preference functions we described in Section 3 are
convex in their first argument. Nonetheless, we are able to
apply Theorem 3 by ‘linearizing’ each convex preference
function, and then observing that the two versions of each
preference function agree on any pure strategy.

Theorem 4. If each preference functionFi is convex in its
first argument, then anF -CE equilibrium exists.

Proof. Define thelinearizationF i of Fi to be the following:

F i(pi,p−i) =
∑

ai∈Ai

pi(ai)Fi(ai,p−i) (6)



Clearly F i is linear in its first argument. By Theorem 3,
there exists a product distributioñp ∈ P(A) such that for
all playersi

p̃i ∈ arg max
qi∈P(Ai)

F i(qi, p̃−i) (7)

Moreover, by Eq. (7) and the linearity ofF i in its first ar-
gument, for any playeri and actionsai, a

′
i ∈ supp(p̃i), we

must have
Fi(ai, p̃−i) = Fi(a

′
i, p̃−i) (8)

Now fix any playeri, actionai ∈ Ai such that̃pi(ai) > 0,
andqi ∈ P(Ai), and consider

Fi(ai, p̃−i|ai) = Fi(ai, p̃−i)

= F i(ai, p̃−i)

= F i(p̃i, p̃−i)

≥ F i(qi, p̃−i)

≥ Fi(qi, p̃−i)

= Fi(qi, p̃−i|ai)

where we used, in order:̃p is a product distribution; Eq. (6);
Eq. (8); Eq. (7); convexity ofFi in its first argument;̃p is a
product distribution.

Comparing the first and last line in the chain above proves
thatp̃ is anF -CE.

Interestingly, although the definition of anF -CE permits
correlations among the players’ actions, note that the proof
of Theorem 4 doesnot imply that such an equilibrium can
exist. It only establishes the existence ofF -CE that are prod-
uct distributions (note that, in general, anF -CE can be a
product distribution without being anF -NE, unlike the situ-
ation for CE and NE).

We now discuss an example which illustrates that aF -CE
need not be a product distribution. Moreover, our example
will show that it is possible for all players in a game to bene-
fit from correlating their actions. Taken together, these facts
demonstrate that anF -CE is a strictly more general — and
potentially more useful — equilibrium concept than an equi-
librium in beliefs.

Consider the well-known ‘Chicken’ game:
C D

C 6, 6 2, 7
D 7, 2 0, 0

This game has the following interpretation: The players
are driving two cars which are headed towards each other. If
a player swerves, she is a ‘chicken’; otherwise she ‘dares’.
The best outcome for a player is to dare while the other
player chickens. If both players dare, they collide head-on.

This game has three Nash equilibria, including two pure
Nash equilibria. The pure Nash equilibria occur when one
player ‘dares’ and the other ‘chickens’. In the non-pure Nash
equilibrium, each player ‘dares’ with probability1/3. For
ease of comparison, let us write out the distribution on action
profiles induced by this non-pure equilibrium:

p̃NE(C,C) = 4/9 p̃NE(C,D) = 2/9

p̃NE(D,C) = 2/9 p̃NE(D,D) = 1/9

Now suppose each player is using the Markovitz (I) prefer-
ence function. It can be shown that this game has no non-
pure MV-NE (indeed, even if it did, we know from our re-
sults in Section 5 that a small perturbation of the utilities
would cause all non-pure MV-NE to disappear).

For a suitable choice of the risk parameterα, a product
distribution that is an MV-CE for this game is one in which
each player ‘dares’ with probability1/4:

p̃MV −CE−1(C,C) = 9/16 p̃MV −CE−1(C,D) = 3/16

p̃MV −CE−1(D,C) = 3/16 p̃MV −CE−1(D,D) = 1/16

Note that each player places less weight on ‘dare’ in this
equilibrium, because doing so is helpful for reducing the
variance they experience. However, the Markovitz (I) ob-
jective can be improved even more by correlating the play-
ers’ actions to ensure that both players never dare simulta-
neously:

p̃MV −CE−2(C,C) = 3/5 p̃MV −CE−2(C,D) = 1/5

p̃MV −CE−2(D,C) = 1/5 p̃MV −CE−2(D,D) = 0/5

7 Conclusion and Future Work
We have studied the existence of risk-sensitive generaliza-
tions of Nash and correlated equilibria. In marked contrast
to classical results, we have shown risk-sensitive Nash equi-
libria seldom exist, while risk-sensitive correlated equilib-
ria always do. We argued that this dichotomy is due to the
differing sources of randomization for each type of equilib-
rium.

While we have shown that risk-sensitive Nash equilibria
seldom exist, we have not yet ruled out the possibility that
anapproximateequilibrium always exists; we leave this for
future work. Also, we speculate that it may be possible to
compute a risk-sensitive correlated equilibrium in polyno-
mial time.
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