
JMLR: Workshop and Conference Proceedings vol (2010) 1–19 24th Annual Conference on Learning Theory

Bandits, Query Learning, and the Haystack Dimension

Kareem Amin akareem@cis.upenn.edu

Michael Kearns mkearns@cis.upenn.edu

Umar Syed usyed@cis.upenn.edu

Department of Computer and Information Science

University of Pennsylvania

Philadelphia, PA 19104

Editor: Sham Kakade, Ulrike von Luxburg

Abstract

Motivated by multi-armed bandits (MAB) problems with a very large or even infinite num-
ber of arms, we consider the problem of finding a maximum of an unknown target function
by querying the function at chosen inputs (or arms). We give an analysis of the query
complexity of this problem, under the assumption that the payoff of each arm is given by a
function belonging to a known, finite, but otherwise arbitrary function class. Our analysis
centers on a new notion of function class complexity that we call the haystack dimension,
which is used to prove the approximate optimality of a simple greedy algorithm. This
algorithm is then used as a subroutine in a functional MAB algorithm, yielding provably
near-optimal regret. We provide a generalization to the infinite cardinality setting, and
comment on how our analysis is connected to, and improves upon, existing results for
query learning and generalized binary search.

Keywords: Multi-armed bandits, learning theory

1. Introduction

A multi-armed bandit (MAB) problem proceeds over several rounds, and in each round a
decision-maker chooses an action, or arm, and receives a random payoff from an unknown
distribution associated with the chosen action. MAB problems have been a focus of inten-
sive study in the statistics and machine learning literature because they are an excellent
model of many real-world sequential decision making problems that contain an “exploration
vs. exploitation” trade-off, such as problems in clinical trials, sponsored web search, quan-
titative finance, and many other areas. The performance of a MAB algorithm is measured
by its regret, which is the difference in expected total payoff received by the algorithm and
by a highest-payoff action.

The classical formulation of the MAB problem assumes that the set of arms or actions is
finite, and regret guarantees typically depend linearly on the number of actions. But many
interesting applications have an extremely large, or even infinite, number of actions. As
just one example, in (organic or sponsored) web search, a core goal is to select web pages
in response to user queries in order to maximize click-throughs; even for a fixed query, the
number of possible response web sites may be sufficiently large as to be effectively infinite,
thus requiring some notion of similarity or generalization across actions.

c© 2010 K. Amin, M. Kearns & U. Syed.

Amin Kearns Syed

Achieving regret that is sublinear in the number of actions clearly requires assumptions.
A natural way to make the problem feasible is to make some specific functional assumptions
about the action payoffs, i.e., to assume that the expected payoff of each action x ∈ X is
given by f∗(x), where f∗ ∈ F is an unknown function belonging to a function class F .
One approach along these lines was pioneered by Kleinberg et al. (2008), who assumed
that the set of actions X is endowed with a metric, and that each f ∈ F is Lipschitz
continuous with respect to this metric. In this way, the observed payoff of any action
provides information about the payoffs of “nearby” actions (with respect to the metric).
Kleinberg et al. (2008) described efficient algorithms that exploit the structure of F to
achieve no-regret. Nearly all existing algorithms for functional MAB problems rely on some
kind of smoothness assumption (Bubeck et al., 2008; Lu et al., 2010; Slivkins, 2011; Flaxman
et al., 2005; Dani and Hayes., 2006; Abernethy et al., 2008; Srinivas et al., 2008).

In this paper we consider the MAB problem for a general function class F , and focus
on the number of rounds required to achieve low regret (ignoring computational efficiency).
We give a characterization in terms of a new measure of the complexity of the function
class F that we call the haystack dimension, which intuitively captures the extent to which
maximizing a function via queries requires a search for a small number of items (needles)
amongst a much larger number of otherwise undifferentiated possibilities (a haystack). We
then give upper and lower bounds involving the haystack dimension of F that are within a
log |F| factor. Note that for the hardest MAB problems — where the haystack dimension
can be as large as |F| — this logarithmic factor is relatively benign. Our main results are
graphically summarized in Figure 1.

Figure 1: A graphical summary of the main results of this paper. This figure illustrates that any
MAB algorithm for a function class F must suffer linear regret for a number of rounds
on the order of the haystack dimension (denoted HD(F)), while the MAB algorithm
presented in this paper, called Greedy MAB, begins to suffer sublinear regret after roughly
HD(F) log |F| rounds.

An interesting aspect of our methods is the connection drawn between MAB problems
and the problem of exact learning of functions from queries. We observe that functional
MAB problems implicitly embed the problem of finding a maximum of an unknown function
in F from only input-output queries (generalizations of membership queries), which may
or may not be much easier than exact learning. Our analysis shows that any functional
MAB algorithm must implicitly be willing to trade off between two distinct types of queries:

2

Haystack Dimension

max queries (which attempt to directly guess the maximum of f∗) and information queries
(which attempt to make progress by reducing the version space, as is traditional in many
query learning models). We show that either one of these query types (and essentially no
others) can result in progress towards finding the maximum. The haystack dimension can
then be viewed as a measure of the extent to which progress can be made at any step via
either one of these query types.

Our characterization holds for any finite-cardinality F (though even the number of
actions may still be infinite), but we also describe a generalization to the case of infinite
F via covering techniques (which in general does not provide as tight bounds as its finite-
cardinality specialization). We also stress that our results only apply to query complexity
and regret; we make no claims about computational efficiency (necessarily, due to the
generality of our setting). In this sense, the haystack dimension can be seen as playing a
role in the study of functional MAB problems analogous to that played by quantities such
as VC dimension and teaching dimension in other learning models, which also characterize
sample or informational complexity, but not computational complexity. In separate work
(Amin et al., 2011), we have developed computationally efficient algorithms for functional
contextual MAB problems (Langford and Zhang, 2007), in which the payoff function depends
on both the chosen action and the current context, both of which may be drawn from very
large spaces.

2. Related Work

Many authors (at least since Thompson (1933)) have studied finite MAB problems where
the action payoffs are assumed to be correlated; see Mersereau et al. (2009, p. 4) for an
excellent survey. As explained in Section 1, more recent work has focused on infinite MAB
problems where the action payoffs are related via an unknown function belonging to a known
function class, such as the set of all Lipschitz continuous functions (Kleinberg et al., 2008;
Bubeck et al., 2008; Slivkins, 2011). Compared to previous work, our results provide a
complete analysis for significantly more general function classes.

Obviously, maximizing an unknown function via queries is no harder than exactly learn-
ing the function. Hegedüs (1995) characterized the query complexity of exact learning in
terms of the extended teaching dimension of the function class. For some restricted func-
tion classes the haystack dimension and extended teaching dimension coincide1, and in these
cases our analysis approximately recovers the bounds due to Hegedüs (1995), but with a
significant advantage: our lower bound holds for all randomized algorithms, while the earlier
bound only applied to deterministic algorithms.

A variant of exact learning (but not maximization) of functions has been considered
under the name of generalized binary search. Nowak (2009) provided an analysis that only
applies under a certain technical condition. In the language of this paper, the condition im-
plies that the haystack dimension is a constant independent of the structure of the function
class. In contrast, our analysis applies to any F and considers the maximization problem
and its relationship to MAB directly.

1. Essentially just those classes for which maximizing an unknown function is as difficult as exactly learning
it; see Example 2.

3

Amin Kearns Syed

3. Functional Bandits (MAB) and Maximizing From Queries (MAX)

A functional MAB problem is defined by a set of actions X and a set of possible payoff
functions F . A target payoff function f∗ ∈ F is selected. In each round t = 1, 2, . . .,
an algorithm selects an action xt, and receives an independent payoff from a distribution
whose support is contained in [−b, b], and has mean f∗(xt). The goal of the algorithm is
to receive nearly as much cumulative payoff as an algorithm that selects the best action
every round. More precisely, the worst-case expected regret of algorithm A in round T

is RA(T) , supf∗∈F E
[
T · supx∈X f

∗(x)−
∑T

t=1 f
∗(xt)

]
, where the expectation is with

respect to the random payoffs and any internal randomization of the algorithm. We say
that algorithm A is no-regret if limT→∞RA(T)/T = 0.

For any functional MAB problem, we can define a corresponding and (as we shall see)
closely related functional maximizing from queries (or MAX) problem: In each round t =
1, 2, . . . an algorithm A selects a query xt ∈ X , and then observes yt = f∗(xt). Letting Xf

be the set of maxima of the function f (assumed to be non-empty), the goal of the algorithm
is to eventually select an x ∈ Xf∗ . Let TA,f

∗
= min{t : xt ∈ Xf∗} be the first round such

that xt is a maximum of f∗. We are interested in bounding the worst-case expected query
complexity QA , supf∗∈F E[TA,f

∗
], where the expectation is with respect to any internal

randomization of the algorithm.
While the definition of query complexity says that algorithm A will select a query in

Xf∗ within QA rounds, it does not require that the algorithm be able to identify this query.
However, if A is deterministic and an upper bound B on QA is known, then the latter prob-
lem easily reduces to the former: If QA ≤ B then xt∗ ∈ Xf∗ , where t∗ ∈ arg max1≤t≤B yt.
We will describe a deterministic algorithm with near-optimal query complexity in Section
6.

It is important to note that, in a functional MAB problem, in each round t the algorithm
only observes a sample from a distribution with mean f∗(xt), while in a functional MAX
problem, the algorithm observes f∗(xt) directly. In Sections 4–7, we characterize the query
complexity of the MAX problem for F , and then apply these results in Sections 9–10 to
characterize the optimal regret for the corresponding MAB problem for F . Consequently,
the analysis in Sections 4–7 will not deal with stochasticity, which is addressed afterwards.
Also, we refer to elements of X as actions in the MAB context, but as queries in the MAX
context — this difference exists only to agree with historical usage.

4. The Haystack Dimension

In this section we give the definition of the haystack dimension for function classes F of
finite cardinality ; generalization to the infinite case is given later.

The formal definition of the haystack definition requires some notation and machinery,
but the intuition behind it is rather simple, so we first describe it informally. In words, the
haystack dimension identifies the “worst” subset of F , in the sense that on that subset, no
matter what query is made and no matter what response is received, only a small fraction
θ of the functions in the subset are eliminated due to inconsistency with the query, or
are maximized by the query. It turns out mathematically that the right definition of the

4

Haystack Dimension

haystack dimension is the inverse quantity 1/θ for this worst subset. We now proceed with
the formal definition.

In the context of a MAX problem, a query x ∈ X can be thought of as providing
information about the identity of f∗. In particular, f∗ cannot be any of the functions in F
inconsistent with with the value f∗(x) observed at x. So one strategy for finding an element
of Xf∗ is to first issue a sequence of information queries, that uniquely identify f∗, and
then select any x ∈ Xf∗ .2

However, sometimes identifying the true function f∗ exactly requires many more queries
than necessary for maximization. For example, if many functions f ∈ F are maximized by
one particular query, it may be useful to play such a max query, even if it is not particularly
useful for learning f∗.

In the extreme case, there might exist an x∗ ∈ X such that x∗ ∈ Xf for all f ∈ F . In
this case, an element of Xf∗ can be selected in one query, without ever needing to identify
f∗. On the other hand, there are also F for which exact learning is the fastest route to
maximization. 3

Any general algorithm for maximization from queries thus needs to be implicitly able
to consider queries that would eliminate many candidate functions, as well as queries that
might be an actual maximum.

Before continuing, we define some convenient notation that we will use throughout the
rest of the paper. For any set F ⊆ F , define the inconsistent set F (〈x, y〉) , {f ∈ F :
f(x) 6= y} to be the functions in F that are inconsistent with the query-value pair 〈x, y〉.
Also, for any set F ⊆ F , define the maximum set F (x) , {f ∈ F : x ∈ Xf} to be the
functions in F for which x is a maximum.

Intuitively, the haystack dimension HD(F) of a function class F will characterize a
subset of F on which no query is effective in the two senses previously discussed. For a
subset F ⊆ F , let

ρ(F, x) = inf
y∈R

|F (x) ∪ F (〈x, y〉)|
|F |

and ρ(F) = sup
x∈X

ρ(F, x).

ρ(F, x) is the fraction of functions in F , which are guaranteed to be maximized, or deemed
inconsistent, by the query x, for the worst-case possibility for y. If ρ(F) is small, no query
is guaranteed to be effective as either a max or information query on the subset F . Now
let Fθ = arg infF⊆F ρ(F) and θ = ρ(Fθ).

Definition 1 Let Fθ and θ be defined as above. Then the haystack dimension HD(F) of F
is defined as 1

θ .

Note that the haystack dimension can be as small as 1 (all functions share a common
maximum-output input) and as large as |F| (every query eliminates at most one function
in the senses discussed, the canonical “needle in a haystack”).

2. In the case of boolean functions or concepts, identifying f∗ exactly is the problem of learning from
membership queries (Angluin, 1988).

3. See Example 2.

5

Amin Kearns Syed

5. Examples of the Haystack Dimension

In this section, we provide a few function classes which help illustrate how the haystack
dimension characterizes the difficulty of maximizing an unknown f∗ ∈ F . Many of these
examples will be useful for subsequent constructions in the paper.

The first construction considered is the “needle in a haystack”. Fix a finite X . For each
x ∈ X , let fx be the function defined to have fx(x) = 1 and fx(x′) = 0 for all x′ 6= x. Now
let HX = {fx | x ∈ X}.

Example 1 HD(HX) = |HX |

Proof For any x ∈ X , fx is the only function inHX that attains its max at x. Furthermore,
all other functions output a 0 on input x. Therefore, letting F = HX , F (x) = {fx} and
F (〈x, 0〉) = {fx} for any x ∈ X . This implies that ρ(HX) = |HX |−1. Since ρ(F) cannot
be smaller than this quantity for any F ⊆ F , the haystack dimension of HX indeed equals
|HX |.

When f∗ ∈ HX , maximizing and learning f∗ coincide, and both amount to guessing
the x for which f∗(x) = 1. We now describe a function class G in which any algorithm is
essentially forced to learn the true function f∗.

The input space X will consist of two components — X1 and X2, with X being the union
of these disjoint domains. The high-level idea is to “marry” a small shattered set (in the
sense of VC dimension) to a much larger haystack construction. Subdomain X1 consists of
n points {a0, ..., an−1}. We construct G as follows. On X1, all possible binary labelings of
the n points appear in G, giving a total of 2n functions. Let us think of each function in
G as being equated with the integer given by its binary labeling of the points in X1. So
a function f is equated with the integer z(f) =

∑n−1
i=0 2if(ai). Now let the much larger

set X2 = {0, . . . , 2n − 1}, and for any x ∈ X2 define f(x) = 2 if x = z(f) and f(x) = 0
otherwise.

Thus, the behavior of a function on X1 entirely defines the function on X2 as well, and
the labeling on X1 gives us the index of the function’s maximum, which is always equal to
2 and occurs at exactly one point in X2 (determined by the index).

Note that there is an algorithm that finds the max of f∗ in O(n) queries simply by
querying every input in X1 and learning the identity of f∗ exactly. Intuitively, no algorithm
can do much better. To see why, suppose f∗ were drawn uniformly at random from G. Note
that an action r ∈ X2 has an exponentially small probability of being the function’s max
and, in the event that f∗(r) = 0, only serves to inform the algorithm that f∗ is not the
single f ∈ G with z(f) = r. Also, observe that if the “zooming” algorithm of Kleinberg et al.
(2008) is applied to G, it will take exponential time in the worst-case to find a maximum of
f∗, essentially because it makes no attempt to exploit the special structure of G.

Example 2 HD(G) = Θ(n) = Θ(log |G|)

Proof We first show that there is an F ⊆ G with ρ(F) = 1
n . For each x ∈ X1, let fx

be the function which outputs f(x) = 1, and f(x′) = 0 for all x′ ∈ X1, x 6= x′. Let
F = {fx ∈ G | x ∈ X1} = {f | z(f) ∈ {20, 21, ..., 2n−1}}. |F | = n.

6

Haystack Dimension

Consider any query x ∈ X1. F (x) = ∅, since no functions achieve their maximum on
a query in X1. Furthermore, F (〈x, 0〉) = {fx}, since fx is the only function in F which
doesn’t output a 0 on query x. Thus ρ(F, x) = 1

n for any x ∈ X1. For a query r ∈ X2,
ρ(F, r) ≤ 1

n , since at most one function in F (and G) achieves its maximum at r, and all
other functions output a zero at r. Thus, ρ(F) = 1

n .
We now argue that for an arbitrary F ⊆ G, ρ(F) ≥ 1

2n . Let r1(x) = |f ∈ F : f(x) = 1|/|F |,
be the fraction of functions that exhibit a 1 at action x ∈ X1. Let r0(x) = 1−r1(x). Suppose
there is an action x ∈ X1 such that r1(x) ≥ 1

2n and r0(x) ≥ 1
2n . Then, at least 1

2n of the

functions in F would be inconsistent with any observed output. That is, both |F (〈x,0〉)|
|F | ≥ 1

2n

and |F (〈x,1〉)|
|F | ≥ 1

2n .

Otherwise, for every x in X1, either r1(x) < 1
2n or r0(x) < 1

2n (i.e. one outcome is quite
rare). This implies that more than 1/2 of the functions in F exhibit the same behavior on
all x in X1. However, unless F is a singleton set (in which case ρ(F) = 1), this cannot occur
since each f ∈ G exhibits unique behavior on X1.

The preceeding example illustrates a function class for which any algorithm querying
for the max must ultimately learn the true function f∗. However, the opposite extreme is
also possible. Consider a function class Gmax. Let there be a distinguished x∗ ∈ X such
that every f ∈ Gmax attains its maximum at x∗. It may be arbitrarily difficult to learn the
behavior of f∗ on the remainder of X . However, finding the maximum can be done trivially
in a single query.

Example 3 HD(Gmax) = 1

Proof For every F ⊆ Gmax F (x∗) = F , and the proof is immediate.

Finally, there are function classes which require a hybrid between learning and maximiza-
tion. We construct such a class, G+. Let X be the disjoint union of three sets X1 ∪X2 ∪X3.
We let |X1| = n, |X2| = m and create a function in G+ for each binary labeling of X1 and
X2, as in the construction of G. We let z1(f) be the integer corresponding to the labeling f
gives X1 and z2(f) be the integer corresponding to the labeling f gives X2.

Now let X3 = M0∪M1∪ ...∪M2n−1 where each |Mi| = c. Again, like in the construction
of G, for each f ∈ G+, there will be a single r ∈ X3 such that f(r) = 2 and f(r) = 0
otherwise. However, this time, the maximizing element of f will be found in Mz1(f). And
the particular element of Mz1(f) will be given by z2(f) mod c.

If we think of c < n < m, then there is an n+c algorithm for finding the max of F . The
algorithm learns the set Mi which contains the max of f∗ by querying each element of X1.
It then tries each of the c elements in Mi. Note that the true identity of f∗ is never learned,
and the “interesting” learning problem is discovering the set Mi containing the maximizing
action (i.e., learning the behavior on X1).

Example 4 If c < n < m, HD(G+) = Θ(n)

Proof We sketch the proof which proceeds almost identically to that of Example 2. There
is an F with that witnesses ρ(F) = 1

n . F is identical to that used in Example 2 on X1. The

7

Amin Kearns Syed

Figure 2: (a) The shaded region represents the subset of functions which attain a maximum at
some input x. (b) Querying x also induces a partition of the function space, in which
each piece of the partition contains functions that output the same value on x. The least
informative query response is thus the largest piece of this partition. (c) Upon querying
x, the greedy algorithm eliminates from its attention space a set at least the size of the
striped region. This region is the union of the maximizing set and the complement of the
largest partition piece.

behavior on X2 is identical across all functions, and the behavior on X3 is determined by
these choices.

To see that for any F , ρ(F) ≥ 1
2n , we use the same reasoning as Example 2. However,

if for every x in X1, either r1(x) < 1
2n or r0(x) < 1

2n , rather than implying a contradiction,
this implies that there is actually a query x∗ ∈ X3 such that x∗ maximizes more than a 1

2c
fraction of the functions in F . Therefore for that particular F , ρ(F) > 1

2c >
1
2n , as desired.

6. MAX Query Complexity Upper Bound

Before arguing that the haystack dimension gives lower bounds on the query complexity of
any algorithm on F , we observe that it motivates a simple, natural, greedy algorithm. In
each round t, the greedy algorithm G selects xt = arg supx∈X ρ(Ft, x) where the attention
space Ft is defined inductively as follows: F1 = F and Ft+1 = Ft \ (Ft(xt) ∪ Ft(〈xt, yt〉)).
(Note that for fixed Ft, ρ(Ft, x) takes values in {1/|Ft|, 2/|Ft|, ..., 1}, so the supremum is
achieved by an x ∈ X .)

Essentially, the greedy algorithm always selects the query that results in the largest
guaranteed reduction of the attention space 4; see Figure 2. It is important to note that
the attention space differs from the version space of traditional learning in that it excludes
functions that may still be consistent with the observed data, but for which the algorithm
has already played a query which would have maximized such functions. Indeed, in the
extreme case the algorithm may choose to query x such that all functions remaining have
the same output on x — in which case the query conveys no “information” in the traditional
learning sense, but nevertheless functions attaining their maximum at x will be discarded.

Theorem 2 Let G be the greedy algorithm for the MAX problem for F . Then QG ≤
HD(F) log |F|.

4. Note that we assume the specified computations can in fact be implemented in finite computation time.

8

Haystack Dimension

Proof We know that the attention space Ft is nonempty for all rounds t ≤ QG (oth-
erwise the greedy algorithm would have selected a maximum of f∗ before round QG).
And at least a θ fraction of the attention space is removed in each round t, because
θ = ρ(Fθ) ≤ ρ(Ft) = ρ(Ft, xt) ≤ |Ft(xt)∪Ft(〈xt,yt〉)|

|Ft| by the definition of θ, Fθ, and xt. Thus

we have (1 − θ)QG |F| ≥ 1. Taking the logarithm of both sides of this inequality, applying
log(1 − x) ≤ −x for x < 1, rearranging, and noting that HD(F) , 1

θ by definition implies
the theorem.

7. MAX Query Complexity Lower Bound

In this section we prove that that haystack dimension in fact provides a lower bound on the
query complexity of any algorithm finding a maximum of f∗ ∈ F :

Theorem 3 Let A be any algorithm for the MAX problem for F . Then QA ≥ 1
6 HD(F).

The proof of Theorem 3 is somewhat involved and developed in a series of lemmas, so we
shall first sketch the broad intuition. The lower bound will draw the target f∗ uniformly at
random from Fθ, where Fθ is as in the definition of haystack dimension, and is the subset of
functions on which the greedy algorithm guarantees the least amount of progress (in terms
of reducing its attention space, as defined above). By definition no other algorithm A can
make more progress than θ on its first query starting from Fθ (since this is the maximum
possible, and obtained by greedy). After the first step, the greedy algorithm and algorithm
A may have different attention spaces, and thus on subsequent steps A may make greater
progress than greedy; but A cannot make “too much” progress on (say) its second step, since
otherwise its query there would have made more than θ progress on Fθ. This insight leads
to a formal recurrence inequality governing the progress rate of A, whose solution, when
combined with a Bayesian argument, leads to a lower bound that is Ω(1θ) , Ω(HD(F)). We
now proceed with the formal development.

Suppose we have an algorithm A that, given access to query-value pairs from f∗, gen-
erates a sequence of queries {xt} (possibly depending on its random bits). Let yt = f∗(xt).
Let H1 , Fθ and

y−t (x) , arg infy∈R |Ht(x) ∪Ht(〈x, y〉)| St(x) , Ht(x) ∪Ht(
〈
x, y−t (x)

〉
)

Ht+1 , Ht \ St(xt) x∗t , arg supx∈X |St(x)| δt ,
|St(x∗t)|
|Ht|

These definitions are closely related to those for the greedy algorithm and the haystack
dimension. y−t (x) is the “least helpful” possible output value on query x, Ht is the atten-
tion space of algorithm A when starting from Fθ if only least helpful outputs were returned,
St(x) is the set of functions in Ht that either attain a maxima at x or would have behav-
ior inconsistent with the observation y−t (x) on input x, and δt is the progress (fractional
reduction of the attention space) made by the greedy algorithm.

Our first lemmas, which codify the aforementioned Bayesian argument, show that when
f∗ is drawn uniformly from Fθ, the probability a deterministic algorithm (a restriction
removed shortly) finds a maximum in fewer than T steps is bounded by the sum of the δt.

9

Amin Kearns Syed

Lemma 4 Fix a sequence {xt}. Let Bt = {f ∈ Fθ : xs 6∈ Xf ∧ y−s (xs) = f(xs) ∀s < t}.
Then Ht = Bt for all t.

Proof When t = 1, B1 = {f ∈ Fθ} and the claim is immediate. Otherwise, assume that
Ht = Bt for some t ≥ 1. We have

Bt+1 = Bt ∩ {f ∈ Fθ : xt 6∈ Xf ∧ y−t (xt) = f(xt)}
= Bt \ {f ∈ Bt : xt ∈ Xf ∨ y−t (xt) 6= f(xt)} = Ht \ St(xt) = Ht+1.

Lemma 5 Prf∗∼UFθ

[
TA,f

∗
< T

]
≤
∑T

t=1 δt for any deterministic algorithm A and con-
stant T .

Proof Since A is deterministic, the sequence {xt} is determined by the choice of f∗ ∈ F .
By Lemma 4 we have Ht = {f ∈ Fθ : xs /∈ Xf ∧ y−s (xs) = f(xs) ∀s < t} for all t.
Moreover, since y−s (xs) = f∗(xs) for all s < t and f∗ ∈ Ht and algorithm A is deterministic,
the sequence {xs}s≤t is identical for any choice of f∗ ∈ Ht. Let UF denote the uniform
distribution over F . We have

Prf∗∼UFθ

[
TA,f

∗
< T

]
= Prf∗∼UFθ

[
∃t < T : xt ∈ Xf∗

]
≤Prf∗∼UFθ

[
∃t < T : xt ∈ Xf∗ ∨ y−t (xt) 6= f∗(xt)

]
≤

T∑
t=1

Prf∗∼UFθ

[
xt ∈ Xf∗ ∨ y−t (xt) 6= f∗(xt) | xs /∈ Xf∗ ∧ y−s (xs) = f∗(xs) ∀s < t

]
=

T∑
t=1

Prf∗∼UHt

[
xt ∈ Xf∗ ∨ y−t (xt) 6= f∗(xt)

]
≤

T∑
t=1

|St(xt)|
|Ht|

≤
T∑
t=1

δt.

We thus see that one approach to lower bounding TA,f
∗

is to bound the growth rate of
the sequence {δt}. Intuitively, we should expect that (1 − δt)δt+1 ≤ δt. To see why, recall
that δt is the most progress that can be guaranteed by a single query if the function is
drawn from the space Ht. This is the query that would be selected by the greedy algorithm
if it were run on Ht. Suppose that it were instead that case that (1 − δt)δt+1 > δt. By
playing x∗t+1 on Ht at least (1− δt)δt+1 fraction of the functions in Ht would either attain a
maximum point at x∗t+1 or be eliminated as inconsistent with the observed value f∗(x∗t+1).
Thus the query x∗t , which only guaranteed that a δt fraction of the functions in Ht have
this property, was suboptimal, a contradiction. More formally:

Lemma 6 (1− δt)δt+1 ≤ δt for all t.

Proof

(1− δt)δt+1 =

(
1− |St(x

∗
t)|

|Ht|

) |St+1(x
∗
t+1)|

|Ht+1|
=

(
|Ht| − |St(x∗t)|

|Ht|

) |St+1(x
∗
t+1)|

|Ht| − |St(xt)|

≤
|St+1(x

∗
t+1)|

|Ht|
≤
|St(x∗t+1)|
|Ht|

≤ |St(x
∗
t)|

|Ht|
= δt.

10

Haystack Dimension

Here the first inequality follows from the the definition of x∗t as a maximizer of |St(x)|
(and thus (|Ht| − |St(x∗t)|)/(|Ht| − |St(xt)|) ≤ 1). The second inequality follows because
|St+1(x)| ≤ |St(x)| for all x ∈ X , and the final inequality follows once again from the fact
that x∗t maximizes |St(x)|.

We next establish that, roughly speaking, δt must remain O(δ1) for Ω(1/δ1) steps. More
precisely:

Lemma 7 If t < 1
δ1

then δt ≤ δ1
1−tδ1 .

Proof The base case t = 1 clearly holds. Now suppose for induction that δt ≤ δ1
1−tδ1 . We

have

δt+1 ≤
δt

1− δt
≤ δ1

1− tδ1

(
1

1− δt

)
=

δ1
1− tδ1 − δt + tδ1δt

=
δ1

1− (t+ 1)δ1 + δ1 − δt + tδ1δt
≤ δ1

1− (t+ 1)δ1

The first inequality holds by Lemma 6, and the second inequality holds by the induction
hypothesis. For the final inequality, note that δt ≤ δ1

1−tδ1 implies that δ1− δt + tδ1δt ≥ 0, as

long as t < 1
δ1

.

We are now ready to prove the lower bound of Theorem 3.
Proof (Theorem 3) The behavior of algorithm A is partly determined by its internal
randomization, which we denote as a random string ω drawn from a distribution P. Let us
write A(ω) for the deterministic algorithm corresponding to the string ω.

Fix a positive constant c < 1/2 (implying c
1−c < 1), with the exact value to be specified

later. For any fixed ω

Prf∗∼UFθ

[
TA(ω),f

∗
<
c

θ

]
≤

c/θ∑
t=1

δt ≤
c/θ∑
t=1

δ1
1− tδ1

≤
c/θ∑
t=1

θ

1− c
=

c

1− c
(1)

where we used, in order: Lemma 5; Lemma 7 and the fact that δ1 = θ and c < 1; the fact
that δ1 = θ again; arithmetic. Now we have

Ef∗∼UFθ

[
TA(ω),f

∗
]
≥
(

1− Prf∗∼UFθ

[
TA(ω),f

∗
<
c

θ

]) c
θ
≥
(

1− c

1− c

)
c

θ
(2)

where the second inequality follows from (1). Finally, we have

Ef∗∼UFθ

[
TA,f

∗
]
, Eω∼P,f∗∼UFθ

[
TA(ω),f

∗
]

= Eω∼P

[
Ef∗∼UFθ

[
TA(ω),f

∗ |ω
]]
≥ Eω∼P

[(
1− c

1− c

)
c

θ

]
=

(
1− c

1− c

)
c

θ

where the inequality follows from (2). The choice of c implies
(

1− c
1−c

)
c > 0. Letting

c = 2−
√

3 and recalling the definition HD(F) , 1
θ implies the theorem.

11

Amin Kearns Syed

8. Relationship to VC Dimension and Extended Teaching Dimension

As we have demonstrated, the haystack dimension provides a lower bound on the query
complexity of any algorithm for the MAX problem on a function class F . This is a role
analogous to the VC dimension in the PAC learning model. However, as we will demon-
strate, the two are incomparable in general. We will also illustrate the haystack dimension’s
relationship to the extended teaching dimension (Hegedüs, 1995). The extended teaching
dimension characterizes the number of queries required to learn f∗ ∈ F when F consists of
binary functions. Clearly learning f∗ is sufficient for maximization and, as we will see, the
haystack dimension can be much smaller than extended teaching dimension, but cannot be
too much larger. Note that the VC and extended teaching dimensions are defined only for
binary functions, whereas the haystack dimension and our results encompass a much more
general setting.

For F consisting of binary functions, we will denote the VC dimension as V CD(F),
where the hypothesis class is assumed to equal to the concept class. Similarly, we will
denote the extended teaching dimension by XTD(F). Both are defined below.

Definition 8 (Kearns and Vazirani (1994)) Let F be a function class (concept class)
where f : X → {0, 1} for each f ∈ F . We say a set S = {x1, . . . , xm} ⊆ X is shattered
by F if {(f(x1), . . . , f(xm)) : f ∈ F} = {0, 1}m. V CD(F) is equal to the cardinality of the
largest set shattered by F .

Definition 9 (Hegedüs (1995)) Let h : X → {0, 1}. We say that S ⊆ X is a specifying
set for h if there is at most one f ∈ F consistent with h on all x ∈ S. Let XTD(F , h) be
equal to the size of the smallest specifying set for h. XTD(F) = suphXTD(F , h).

Example 5 (a) For any d, there exists a function class and set of inputs (F ,X) such that
V CD(F) = d but HD(F) = 1. (b) For any d, there exists a (F ,X) such that V CD(F) = 2
but HD(F) = d.

Proof To prove (a), let (Fd,Xd) be any function class, and set of inputs, such that
V CD(Fd) = d. Let X = Xd ∪ {x∗}. Construct (F ,X) by including a function f in F
for each f ′ ∈ Fd, that is identical to f ′ on all inputs in Xd. Also let f(x∗) = 1. For any
F ⊆ F , x∗ maximizes all functions in F . Therefore, HD(F) = 1. However, no function
in F gives x∗ the label 0, and so the size of the largest shattered set does not change, and
V CD(F) = d.

To prove (b), consider F to be the “needle in the haystack” of Example 1, where |F| = d.
We have that HD(F) = d. To compute the VC dimension, note that no function in F labels
more than one input with a 1, and so no set of three inputs can be shattered by F . (It’s
also obvious that any {x1, x2} ⊆ X can be shattered).

Example 6 (a) For any d, there exists a function class and set of inputs (F ,X) such that
XTD(F) = d but HD(F) = 1. (b) For any F consisting of binary functions,
HD(F) = O(XTD(F) log |F|).

12

Haystack Dimension

Proof To prove (a), let (Fd,Xd) be a function class, and set of inputs, such thatXTD(Fd) =
d. Construct (F ,X) exactly as in the proof of Example 5(a). For any h : X → {0, 1}
with h(x∗) = 1, let h′ : X → {0, 1} be a function identical to h on Xd. It’s clear that
XTD(F , h) = XTD(Fd, h′). For any h : X → {0, 1} with h(x∗) = 0, XTD(F , h) = 1, since
{x∗} is a specifying set for h. Thus, XTD(F) = XTD(Fd) = d.

For (b), Hegedüs (1995) gives an algorithm which learns f∗ ∈ F usingO(XTD(F) log |F|)
membership queries. Since learning f∗ is sufficient for maximization, Theorem 3 implies
(b).

9. Functional MAB Regret Upper Bound

In this and the next section, we return to the functional MAB problem, showing a close
relationship to the functional MAX problem, and giving upper and lower bounds on regret
that are order the haystack dimension HD(F). We will describe a no-regret algorithm for
functional MAB problems where F is known, finite, but otherwise arbitrary. Our approach
is to use the greedy functional MAX algorithm of Section 6 to find an action/query that
maximizes f∗, and then select that action indefinitely. There is a technical complication
we must overcome when implementing this approach: Each action returns a sample from a
distribution, rather than a single value. We solve this by repeatedly selecting an action x to
get an accurate estimate of f∗(x), and also by restarting the algorithm after progressively
longer phases (a standard “trick” in MAB algorithms).

Before giving a more detailed description of our algorithm and its analysis, we need
some additional definitions. Let εmin , minf,f ′∈F infx:f(x) 6=f ′(x) |f(x)−f ′(x)| be the smallest
difference between any two functions in F on those points where they do differ; εmin > 0
allows us to determine f∗(x) by selecting x enough times. Also, for any set F ⊆ F , let us
define the ε-inconsistent set to be F (〈x, y〉 , ε) , {f ∈ F : |f(x) − y| > ε}. Finally, recall
that f∗(x) ∈ [−b, b].

The greedy bandit algorithm GB proceeds in phases i = 1, 2, . . ., where phase i lasts
Ti = 22

i
rounds, and consists of two consecutive subphases, which we will denote by iexplore

and iexploit. In subphase iexplore, we run a fresh instance of the greedy query algorithm G
from Section 6, with some minor modifications. When the query algorithm G selects a query
xit, the bandit algorithm GB selects that action for L = 32b2

ε2min
(log HD(F) + log log |F|) log Ti

consecutive rounds, and lets ȳit be the average of the observations. The attention space F it
is then updated according to the rule F it+1 = F it \ (F it (x

i
t)∪F it (

〈
xit, ȳ

i
t

〉
, εmin)). Let τi be the

number of queries required to empty the attention space in subphase iexplore (so subphase
iexplore lasts τiL rounds). In subphase iexploit, in each round the bandit algorithm GB selects
the action xit associated with the largest ȳit in subphase iexplore.

Theorem 10 Let GB be the greedy bandit algorithm for the MAB problem for F . Then

RGB(T) = O

(
b2

HD(F) log |F|
ε2min

(
log HD(F) + log log |F|

)
log T + log log T

)
.

13

Amin Kearns Syed

Proof Let Ri be the regret realized by the greedy bandit algorithm during phase i. We
will first bound E[Ri] for any phase i, and then use a ‘squaring trick’ to tightly bound
E[
∑

iRi] , RGB(T).
By a similar argument as in Theorem 2, for each phase i we have τi ≤ HD(F) log |F|. For

each t ∈ [τi], action xit is selected L times, which is a sufficient number of times to ensure (by
the Chernoff and union bounds) that with probability 1−O(1

Ti
) we have |ȳit−f∗(xit)| ≤ εmin

2
for all t ∈ [τi]. Let good(i) be this event. We have E[Ri] = E[Ri| good(i)] Pr[good(i)] +
E[Ri|¬ good(i)] Pr[¬ good(i)] ≤ E[Ri| good(i)] + O(1), because Ri ≤ Ti and Pr[¬ good(i)]
is O(1

Ti
).

It therefore remains to bound E[Ri| good(i)]. By the definition of εmin, if the event
good(i) occurs then the attention space F it maintained during subphase iexplore is updated
exactly the same way as in the greedy query algorithm G from Section 6. Therefore, an
action x∗ ∈ Xf∗ is selected in subphase iexplore before it ends (by Theorem 2), and thus,
again by the definition of εmin, the action x∗ is selected in every round of subphase iexploit.
Since τi ≤ HD(F) log |F| and subphase iexplore lasts τiL rounds, we have E[Ri| good(i)] =

O
(
b2 HD(F) log |F|

ε2min
(log HD(F) + log log |F|) log Ti

)
.

Finally, we apply a ‘squaring trick’.5 Let K be the number of phases. Since Ti = 22
i
,

we have K = O(log log T) and
∑K

i=1 log Ti =
∑O(log log T)

i=1 2i = O(log T). Recalling that
RGB(T) , E[

∑
iRi], proves the theorem.

Note that the greedy bandit algorithm GB assumes that the value of the haystack
dimension HD(F) is known. It is possible to modify the algorithm in case this infor-
mation is not available: Rather than selecting each action xit in subphase iexplore for

L = 32b2

ε2min
(log HD(F) + log log |F|) log Ti consecutive rounds, we instead select it for L =

32b2

ε2min
(log |F|+ log log |F|) log Ti consecutive rounds. Since HD(F) ≤ |F| trivially holds, the

analysis in the proof of Theorem 10 is essentially unaffected by this modification, and it
adds only a O((log |F|)2) term to the regret upper bound in Theorem 10.

10. Functional MAB Regret Lower Bound

In this section, we prove that the greedy bandit algorithm in Section 9 is near-optimal, at
least with respect to the haystack dimension (our primary interest) and terms log |F| or
smaller. With respect to the dependence on the haystack dimension, we can say something
quite strong: Every MAB algorithm for every function class must suffer regret that is linear
in the haystack dimension of the class. Let ∆ = inff∈F inf{x′∈X :f(x′)<supx f(x)} supx f(x) −
f(x), be the difference between the best action and second-best action in X .

Theorem 11 For any function class F and MAB algorithm A for F we have RA(T) =
Ω (∆ min{T,HD(F)}).

The proof of Theorem 11 follows directly from Theorem 3, which implies that no MAB
algorithm for function class F can select the best action in fewer than Ω (HD(F)) steps.

5. If we were to instead apply the more common ’doubling trick’, such that Ti = 2i, the upper bound in
Theorem 10 would be O((log T)2).

14

Haystack Dimension

The next theorem proves that the terms log |F| and 1
εmin

cannot be removed from the upper
bound in Theorem 10.

Theorem 12 (a) There exists a function class F such that HD(F) = Θ(1) and for any
MAB algorithm A for F , RA(T) = Ω (log |F|). (b) There exists a function class F such

that HD(F) = Θ(1) and for any MAB algorithm A for F , RA(T) = Ω
(

min
{

1
εmin

, |F|
})

.

Proof To prove (a), we will outline the construction of F and omit the details of the proof,
which are straightforward. The input space X will have two components — X1 and X2,
with X being the union of these disjoint domains. Subdomain X1 consists of 2n points, and
X2 of n points, while the function class F contains n deterministic functions. Each point in
x ∈ X1 corresponds to a distinct subset Fx ⊆ F , and for each x ∈ X1 let f(x) = 1

3 for half
the functions in Fx and f(x) = 2

3 for the other half, and also let f(x) = 1
3 for all f ∈ F \Fx.

Note that X1 contains excellent information queries, because for any subset F ⊆ F there
is a point in X1 that eliminates at least half the functions in F when that point is issued
as a query, and thus HD(F) = 2. Finally, map each function f ∈ F to a distinct point
xf ∈ X2, and let f(xf) = 1 and f(x) = 0 for all x ∈ X2 \ {xf}. So each f ∈ F has a unique
maximum, contained in X2.

Suppose f∗ is chosen uniformly at random from F . It is clear that QA = Ω(log |F|).
To see why, note that a query x ∈ X2 has only probability 1

|F| of being the function’s max,

and only serves to inform the algorithm that f∗ 6= f whenever x = xf and f∗(x) = 0. Thus
any algorithm is forced to learn f∗ by playing actions in X1, requiring that at least log2 |F|
actions are played.

To prove (b), we simply modify the construction of F to add stochasticity, as follows.
For an x ∈ X1, if we had previously that f(x) = 1

3 , we now let f(x) = ε. If we had previously
that f(x) = 2

3 , we now let f(x) = 2ε. Each function’s behavior of X2 is unchanged. Note
that εmin = ε. When playing an x ∈ X , rather than observe the output of the function, the
algorithm now observes the outcome a Bernoulli random variable with mean f∗(x). It can
then be shown that any algorithm that wishes to make use of the information in X1 must
sample the actions there Ω(1/ε) times or else be forced to play actions in X2.

Theorem 12(b) establishes that there is at least one function class for which the haystack
dimension does not provide an adequate lower bound in the MAB setting. In other words,
there is a real gap between the upper and lower bounds in Theorems 10 and 11 that depends
on 1

εmin
. We suspect that a modified version of the haystack dimension which better accounts

for the “information value” of a query under stochasticity (i.e. that uses not just the size
of the largest inconsistent set, but accounts for the variance of the functions in F) would
close this gap, but leave this as an open problem.

11. Infinite Function Classes

In the remainder of the paper, we return to studying the MAX problem. We give extensions
of our basic results on query complexity, and also give examples that illustrate some aspects
of our analysis. In this section, we describe how to extend our methods from Sections 6

15

Amin Kearns Syed

and 7, which were restricted to finite function classes, to infinite function classes that have
a finite covering oracle.

Definition 13 We say C is a finite covering oracle for F if for any ε > 0 the finite set
C(ε) ⊆ F has the following property: For any f ∈ F there exists an f ′ ∈ C(ε) such that
supx∈X |f(x)− f ′(x)| ≤ ε.

Fix a possibly infinite function class F with finite covering oracle C. We consider the
ε-MAX problem for F , a relaxed version of the MAX problem. In analogy to the MAX
problem, for any algorithm A let TA,f

∗,ε , min{t : supx f
∗(x) − f∗(xt) ≤ ε} be the first

round t such that the query xt selected by A is an ε-maximum of f∗ ∈ F . We are interested
in bounding the worst-case ε-query complexity of A, defined QA,ε , supf∗∈F E[TA,f

∗,ε].
Below we give upper and lower bounds for the ε-MAX problem in terms of the lower

and upper ε-haystack dimensions, which are each a different generalization of the haystack
dimension. Before introducing these quantities, we need some definitions. For any set
F ⊆ F let F (x, ε) , {f ∈ F : supx′ f(x′) − f(x) ≤ ε} be the functions in F for which x
is an ε-maximum and, as in Section 9, let F (〈x, y〉 , ε) , {f ∈ F : |f(x) − y| > ε} be the
functions in F that are more than ε-inconsistent with the labeled example 〈x, y〉. Also, let

θ−(ε) , inf
F⊆C(ε)

sup
x∈X

inf
y∈R

|F (x, ε) ∪ F (〈x, y〉 , 0)|
|F |

, and

θ+(ε) , inf
F⊆C(ε)

sup
x∈X

inf
y∈R

|F (x, 0) ∪ F (〈x, y〉 , ε)|
|F |

.

Note that the only difference between θ−(ε) and θ+(ε) is the placement of ε and 0. Also note
that if F is finite and C(ε) = F then θ−(0) = θ+(0) = θ, where θ was defined in Section
4. Now define the lower ε-haystack dimension HD−(ε) , 1

θ−(ε) and the upper ε-haystack

dimension HD+(ε) , 1
θ+(ε)

.

A simple approach to solving the ε-MAX problem is just to run a slightly modified
version of the greedy algorithm from Section 6 using C(ε) as the initial attention space,
and removing inconsistent functions only if they are inconsistent by more than ε. In other
words, in each round t, the ε-greedy algorithm Gε selects xt = arg supx∈X infy∈R |Ft(x, 0) ∪
Ft(〈x, y〉 , ε)| where the attention space Ft is defined inductively as follows: F1 = C(ε) and
Ft+1 = Ft \ (Ft(xt, 0) ∪ Ft(〈xt, yt〉 , ε)).

Theorem 14 Let Gε be the ε-greedy algorithm for the ε-MAX problem. Then QGε,2ε ≤
HD+(ε) log |C(ε)| for all ε > 0.

Proof The proof is nearly identical to the proof of Theorem 2. The algorithm Gε initializes
the attention space to C(ε), and after every query at least a θ+(ε) fraction of the attention
space is eliminated. By the time the attention space is empty, the Gε algorithm has selected
a maximum of some function f̂ ∈ C(ε) that ε-covers the true function f∗, which implies
that a 2ε-maximum of f∗ has been selected.

Furthermore, we can also straightforwardly lower bound the query complexity of any
algorithm for the ε-MAX problem.

16

Haystack Dimension

Theorem 15 Let A be any algorithm for the ε-MAX problem. Then QA,ε ≥ 1
6 HD−(ε) for

all ε > 0.

Proof The proof of Theorem 3 can be repeated, with essentially no changes, to prove this
theorem as well. The key is to observe that, when proving Theorem 3, we made no use of
the fact that Xf∗ contained the maxima of the true function f∗. We could have defined
Xf∗ to be any subset of X , including the ε-maxima of f∗.

Notice that the upper and lower bounds in Theorems 14 and 15 are not directly com-
parable, since we have not related the quantities HD−(ε) and HD+(ε). If it happens that
HD+(ε)

HD−(ε)
≤ K for some constant K, then clearly the upper and lower bounds above are within

constant and logarithmic factors of each other, just as we had for finite function classes.
Indeed, a simple infinite function class for which this occurs is the class of all bounded norm
hyperplanes. Let X = {x ∈ Rn | ‖x‖∞ ≤ 1} and Fhyper = {〈w, ·〉 | w ∈ Rn, ‖w‖∞ ≤ 1},
and let the finite covering oracle C be the appropriate discretization of Fhyper, i.e., C(ε) =
{w ∈ Rn | ∀i wi ∈ {0, εn ,

2ε
n , . . . , 1}}. Clearly |C(ε)| = Θ((nε)n), but nonetheless the ratio of

the lower and upper ε-haystack dimension is not large.

Theorem 16 For function class Fhyper we have HD+(ε)

HD−(ε)
≤ n for all ε > 0.

Proof By examining the definitions of HD+(ε) and HD−(ε), we see that it suffices to show

that supx∈X
|F (x,0)|
|F | ≥ 1

n for any finite F ⊆ F . Let ki = |{〈w, ·〉 ∈ F | wj ≥ wi, ∀j}| be
the number of functions in F which have their maximal component at i. Clearly there
must exist a ki ≥ |F |

n . Let ei be the vector with a one in its ith component and zeros
everywhere else. Since ei ∈ X and ei maximizes ki functions in F , there exists an x ∈ X
with |F (x,0)|

|F | ≥
1
n .

Unfortunately, the bound in Theorem 16 cannot be generalized to all function classes
with finite covering oracles. In the next theorem, we give an example of an infinite function

class F with a finite covering oracle C for which HD+(ε)

HD−(ε)
= Ω(|C(ε)|), which is essentially

the worst possible ratio.

Theorem 17 There exists a function class F with a finite covering oracle C such that
HD−(ε) = 1 and HD+(ε) = Ω (|C(ε)|) for all ε > 0.

Proof Let X = [0, 1] and fix any sequence {xn} ⊂ X , all elements distinct. For visualiza-
tion, it may be helpful to suppose that {xn} is strictly increasing, but this is not necessary.
Let {εi} be the sequence defined by εi = 1

2i
for all i ∈ N.

For each n ∈ N let there be a function fn ∈ F whose values are zero everywhere
except x1, . . . , xn. The nonzero values of fn are defined as follows: Let fn(xn) = 1

n and
fn(xm) = εi − 1

22n
for all m < n, where i = dlog2 ne. Let C(ε) = {f1, . . . , fNε}, where Nε is

the smallest integer such that 1/Nε < ε. We have that C is finite covering oracle because
each C(ε) is finite and because supx∈X fn(x) ≤ ε for all n ≥ Nε.

We only need the following properties of this construction, which can be verified: (1)
For all n ∈ N the elements of {fm(xn) : m ≥ n} are all distinct; (2) Each fn has a maximum

17

Amin Kearns Syed

at xn and nowhere else; (3) For all n ∈ N, if i = dlog2 ne then fn(xn) ≥ εi and fm(xn) < εi
for all m 6= n.

For the remainder of the proof fix ε > 0 and the smallest i ∈ N such that εi ≤ ε. We
will show that θ−(ε) = 1 and θ+(ε) ≤ 4

Nεi
, which suffices to prove the theorem.

First, we claim that θ−(ε) = 1. Let F+ = arg infF⊆C(ε) supx∈X infy∈R
|F (x,ε)∪F (〈x,y〉,0)|

|F | .

Let n be the smallest integer such that fn ∈ F+. Then each fm ∈ F+ has a distinct value
at xn, by property 1. So infy∈R |F+(〈xn, y〉 , 0)| = |F+|. Next, we claim that θ+(ε) ≤ 4

Nεi
.

Let Fi = {fn ∈ F : i = dlog2 ne}, and note that Fi ⊆ C(ε) and |Fi| =
Nεi
2 . For any x ∈ X

we have |Fi(x, 0)| ≤ 1, by property 2, and infy∈R |Fi(〈x, y〉 , ε)| ≤ 1, by property 3.

12. Computational Complexity

Our results have so far ignored computational complexity. In general a function class F ,
for which finding the optimal query is computationally intractable, might nevertheless have
small haystack dimension, admitting algorithms with low query complexity. Consider the
following simple example. Let X = X1∪X2∪X3 where X1,X2,X3 are disjoint, |X1| = |X2| = n
and X3 = 2n. Each function in F will attain its maximum on some action in X3. The
location of that maximum, as in Example 2, will be encoded by X1 and X2. However, we will
now encode the location cryptographically, with a function’s behavior on X1 representing
a public key, and a function’s behavior on X2 representing the encrypted location of its
maximum.

More precisely, let z be an n-bit number. For a pair of n2 -bit primes p and q, let Npq = pq.
Also let e(z,Npq) = z2 mod Npq be z encrypted with public key Npq.

Now let fz,p,q be the function that gives the ith bit of Npq as output to the ith input of
X1 and the ith bit of e(z,Npq) as output to the ith input of X2. On the zth input of X3,
fz,p,q outputs a 2. On all other inputs of X3, fz,p,q outputs 0. Let F be the function class
consisting of all functions fz,p,q for every pair of n

2 -bit primes p, q and n-bit integer z.
There exists an algorithm with query complexity O(n) for any f∗ ∈ F . That algorithm

queries each action in X1 ∪ X2, retrieving the public key Npq and the cypher e(z,Npq).
Information-theoretically, the maximum of f∗ can be found in a single additional query.
The algorithm may simply test every n-bit z′, checking if e(z,Npq) = e(z′, Npq). However,
computing z is as hard as factorization (Kearns and Vazirani, 1994).

Acknowledgments

We thank Alex Slivkins and the anonymous reviewers for their helpful comments.

References

Jacob Abernethy, Elad Hazan, and Alexander Rakhlin. Competing in the dark: An efficient
algorithm for bandit linear optimization. In Proceedings of the 21th Annual Conference
on Computational Learning Theory, 2008.

18

Haystack Dimension

Kareem Amin, Michael Kearns, and Umar Syed. Graphical models for bandit problems. In
Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, 2011.

Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1988.

Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvári. Online optimization
in X-armed bandits. In Advances in Neural Information Processing Systems 21, 2008.

Varsha Dani and Thomas P. Hayes. Robbing the bandit: Less regret in online geometric
optimization against an adaptive adversary. In Proceedings of the 17th Annual ACM-
SIAM Symposium on Discrete Algorithms, 2006.

Abraham Flaxman, Adam Tauman Kalai, and H. Brendan McMahan. Online convex op-
timization in the bandit setting: Gradient descent without a gradient. In Proceeding of
the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, 2005.

Tibor Hegedüs. Generalized teaching dimensions and the query complexity of learning. In
Proceedings of the 8th Annual Conference on Computational Learning Theory, 1995.

Michael Kearns and Umesh Vazirani. An Introduction to Computational Learning Theory.
MIT Press, 1994.

Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal. Multi-armed bandits in metric spaces.
In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, 2008.

John Langford and Tong Zhang. The epoch-greedy algorithm for contextual multi-armed
bandits. In Advances in Neural Information Processing Systems 20, 2007.

Tyler Lu, Dávid Pál, and Martin Pál. Showing relevant ads via Lipschitz context multi-
armed bandits. In Proceedings of the 13th International Conference on Artificial Intelli-
gence and Statistics, 2010.

Adam J. Mersereau, Paat Rusmevichientong, and John N. Tsitsiklis. A structured multi-
armed bandit problem and the greedy policy. IEEE Transactions on Automatic Control,
54(12):2787–2802, 2009.

Rob Nowak. Noisy generalized binary search. In Advances in Neural Information Processing
Systems 22, 2009.

Aleksandrs Slivkins. Contextual bandits with similarity information. In Proceedings of the
24th Annual Conference on Computational Learning Theory, 2011.

Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process
optimization in the bandit setting: No regret and experimental design. In Proceedings of
the 27th International Conference on Machine Learning, 2008.

William Thompson. On the likelihood that one unknown probability exceeds another in
view of the evidence of two samples. Biometrika, 25(3–4):285–294, 1933.

19

	Introduction
	Related Work
	Functional Bandits (MAB) and Maximizing From Queries (MAX)
	The Haystack Dimension
	Examples of the Haystack Dimension
	MAX Query Complexity Upper Bound
	MAX Query Complexity Lower Bound
	Relationship to VC Dimension and Extended Teaching Dimension
	Functional MAB Regret Upper Bound
	Functional MAB Regret Lower Bound
	Infinite Function Classes
	Computational Complexity

