T heoretical Issues in Probabilistic Artificial Intelligence

Michael Kearns

AT&T Labs

Road Map

e Overview of classical logic-based Al
e [he move towards probabilistic frameworks

e Graphical Models/Bayes Nets/Probabilistic Inference:
Representing knowledge as probability distributions

e Markov Decision Processes/Reinforcement Learning:
Planning under uncertainty

Subfields of “Core” Al

e Knowledge Representation and Reasoning:

— Representations of facts or assertions about the world

— Rules of inference
e Planning:

— Representations of the effects and applicability of actions

— Methods for finding sequences of actions achieving goals
e Learning

— Has always favored probabilistic frameworks

All three: expressiveness-tractability trade-off

“Classical” (logic-based) Al

e Knowledge Representation and Reasoning:

— Assert father(bill,ray), father(ray,joe),
father(X,Y)&father(Y,Z) — grandfather(X,Z)

— Query: grandfather(joe,bill)?

— Develop logics and (tractable) inference algorithms

e Planning:
— Operator with Preconditions: clear(X),clear(Y);
Effects: remove clear(X), add on(X,Y)
— @Goal: stack red block on green block on blue block

— Develop logics and (tractable) planning algorithms

Probabilistic Al

e Knowledge Representation and Reasoning:

— Logical assertions — probability distribution

— Logical inference — conditional distribution
e Planning:

— Logical operators — Markov decision process

— Operator sequence — policy

Some Feature of Probabilistic Al

e Unification of reasoning, planning, and learning
e Emphasis on approximation for hard problems
e Increased attention to algorithmic issues

e [he actual results achieved so far!

Part I: Graphical Models and Probabilistic Inference

Representing Distributions by Directed Graphs

e Joint distribution P(X1,...,Xn) on boolean variables

e Conditional factorization:

P(X1,...,Xn) P(X1)P(X2|X1) - P(Xn|X1,..., Xp_1)

11 P(X5|1 X0, .., Xi—1)

e Hope for simplifications through conditional independences:

wA;vmm_;vmu_.v...v;XM_.v — wA;vmm_;vmwv

Example: Burglar Alarm Model

e Variables A(larm), B(urglar), E(arthquake), J(ohn), M(ary)
e Joint distribution P(A, B, E,J, M)
e EXploit causality to choose ordering
e Assert factorization
P(A,B,E,J, M) = P(B)P(E)P(A|B, E)P(J|A)P(M|A)
e Associated directed dgraph: if factorization contains
P(X|pa(X)), have directed edges from pa(X) to X
e No directed loops, but may have undirected loops

e Full model = directed graph (factorization) + CPT's

Advantages of Bayes Nets

e Dimensionality reduction: O(2") — O(2¥n) parameters,
k = max in-degree (31 — 10 parameters in burglar alarm)

e Separate causality (qualitative) from CPT's (quantitative)
e Hidden variables can simplify model

e Graph-theoretic algorithms for natural problems

Caveats About Bayes Nets

e Order of decomposition can be crucial
e Generally want to reduce in-degree, undirected loops

e Basic problems still notoriously hard;
must find special cases of interest

Basic Problems on Bayes Nets

e INnference:
— Set S of instantitated evidence variables
(e.g., S={X,=0,X7;=1})
— Query variable(s) X
— Goal: compute P(X|S)
— Query types: diagnostic, predictive,. ..

e Learning:

— Parameter estimation: given directed graph; must learn
CPT's from sample data

— Structure learning: learn directed graph (and CPT's)
from sample data

Complexity of the Basic Problems

e INnference:

— #F#P-complete in the worst case;
many intractable restrictions

— Interesting algorithms for several special cases
e Learning:

— Efficient parameter estimation from fully observed data,
good heuristics for partially observable

— Structure learning: intractable

Subtleties of Conditional Independence:
“Explaining Away”’

e [woO variables that are independent with no evidence may

become dependent in the presence of evidence

e Burglar alarm example: B and E are independent, but if we
observe A = 1 then they are dependent

e If we learn there was an earthquake, less likely to believe
there was a burglary

e \What determines when X and Y are independent given S7

A Graph-Theoretic Characterization of Independence:
d-Separation

Let P be an undirected path between X and Y. Say that P is
blocked by S if:

e [hereis a node Z &S on P with an out-edge along P;
e Thereisanode Z & S on P, with both edges along P directed
in, and no descendant of Z is in S.
All paths blocked: d-separation, and

P(X,Y|S) = P(X|S)P(Y]S)

A Tractable Special Case for Inference: Polytrees

e Polytree: no undirected cycles
e Query node X, evidence set S, want to compute P(X = x|S)

e Let S(X,Y) C S be the evidence reachable (undirected)
from X avoiding Y

e Algorithm: for all nodes X.Y, if X — Y

— X sendstoY: P(X =2,5(X,Y)) for each x
— Y sends to X: P(S(Y,X)|X = «) for each x

e St S—: evidence “upstream” and ‘“downstream”
from query node X

Analysis

o First write P(X =z|S) =P(X =2,5)/P(S) =aP(X =1=z,5)

e By d-separation on X:

P(X =2z,5) P(X =z, 8STHP(STIX ==z,5T)

P(X =z,8T)P(S7|X = 1)

e Compute P(X =z,ST), P(57|X =) from messages to X

— —

o Let U be parents of X, V be children of X

Analysis Continued. ..

e Computing P(X = z,51): marginalize over parents

P(X=2,8T)=Y P(U=a,8T)P(X =z|U=a,ST)

Uu
e P(X =2|U=1,51)=P(X =2z|U =1), get from CPT

e P(U=1uS1T) =[P, =u;, S(U;, X)) by d-separation on X;
messages from U; to X

o P(S7T|X =2x)=1]P(S(V;, X)|X = x) by d-separation on X

e Messages from children V; to X

Wrapping Up

e If X has all but message from Y, can write to Y
e [Iree fills up from the leaves

e Running time: linear in tree size and CPT size

Generalizations to Sparse Networks

Two basic approaches:

e Cluster nodes until a polytree is obtained

e Instantiate some nodes to vield a set of polytrees, take
weighted average

Run time typically exponential in cluster size or number of in-
stantiated variables.

Approximate Inference in Dense Networks

e Often assume a parametric form for CPT's
e Parametric form assures “randomness” or averadging behavior
e Sampling/simulation methods: Gibbs sampling

e Variational methods: rigorous upper and lower bounds

Some Common Parametric CPT'’s

e Node X, parents Uq,...,Up

e CPT specified by weight vector §

e Look at forms Pr[X = 1|U = @] = o(6 - @)
e NOiIsy-OR: o(z) =1 —¢77

e Sigmoid: o(z) =1/(1 4 €%)

Inference in Two-Layer Noisy-OR Networks

e Input units Uq,...,U,, outputs Xq,...,Xm
e CPT's for outputs given by weight vectors §1,... g™
e Inputs have biases pq,...,pn, assume all 1/2

e Can reduce general queries to form

PriX;=1,...,Xn=1] = CBSMM 11 AH _ ®|%.mv

e Suppose we choose \;, : =1,...,m, such that
mv&& >1— o~

for all

Closed-Form Computation of the Variational Upper Bound
a2YSI (M) = a/2h % Am %,&
A

= /29X (11 imisv
[TE e 2]
J

How Should We Choose the)\;7?

e Basic idea: over the distribution on the weighted sums,
integrate an upper bound on transfer function

e Single unit: choose \; so upper bound approximates transfer
function well near u; = E[§" -]

e Many units: may do better than approximating near each p;
e The)\; capture (limited) correlations between the X,

—

e In practice: gradient descent on A

Analysis of Variational Methods

e Let P be true probability, 2;7(X), Pr(X) variational upper and
lower bounds

e Want to bound P;(X\) — Pr(N)

e Intuition: for “most” input settings «, all weighted sums are
“near” their means

Large Deviation Methods

e Probability that 0t . @ exceeds its mean p; by more than

bounded by e“% "

e Conditioned on this event E;, Pr[X; = 1|E;] < o(u; + €;)

2
e Probability some E; fails bounded by -, e“%™"

e Another parameterized upper bound:

WQAN = |1-— Mmo&mwi _,—O.A?@. + m@.v + Mmo&mwi
v i

?

e Lower bound:

~ L2
Pr(e)={1- Mum@@: [o(ui —€)
1

?

Bounds for Large, Dense Networks

e Can get bounds of form

m/n? + QSS/_OQAiv\S
for some 5 < 1 depending on network

e Larger « vields larger ¢;

e Generalizes to variational methods, arbitrary transfer func-
tions, multilayer networks,. . .

Further Topics

e Handling “loopy”’ networks: connections with
decoding turbocodes

e Object-oriented Bayesian networks

Part II: Markov Decision Processes, Probabilistic Planning,
and Reinforcement Learning

Planning Under Uncertainty: Markov Decision Processes

e State space {1,..., N} (or infinite)
e Actions ay,...,ay

e Transition probabilities P

e Rewards R! (assume deterministic)

e Return on reward sequence Ry, ..., R;:

— Discounted: Rqg+ YR{+ - + 'Ry,
0 < v < 1; e-horizon time He = (1/(1 —v))log(1/e)

— Average: (1/(t+ 1))(Ro+ -+ Ry)
(finite or infinite horizon)

Assume full observability for now.

Basic Problems on MDP’s

e Planning:

— Given complete MDP as input, compute strategy with
optimal expected return

e Learning:

— Only have access to experience in the MDP
— Learn a near-optimal strategy

— What kind of experience?

Problems and their solutions are often blurred.

Policies and Value Functions

e Policy: (randomized) mapping « of states to actions

e State value function for © (discounted): expected asymp-
totic discounted return starting from 2 following =

vy = RO 4+ 93 PEOVT()
J

e State-action value function: value of immediately taking
action a if we subsequently follow =

Q7(i,a) = R +~3_ PHV7(j)
J

e Optimal value functions V*(i), Q*(i, a)

Approaches to Optimal Planning

e Linear programming: action variable for each state
e Policy iteration: being greedy w.r.t. Q™(i,a) improves =

e Value iteration

Optimal Planning via Value Iteration

e Begin with initial guess Q*(i, a) for all state-action pairs (i, a);
value function defines (greedy) policy

e Iterative updates: for all (i,a)

Q*(i.a) + Rf + 73 Pimax{Q*(j.b))
J

o Q*(i,a) = Q*(4,a) is only fixed point of mapping
e Contraction property: after t iterations,

max{|Q*(i,a) — Q*(i,a)[} < 7'

e (Near) Optimal planning in time polynomial in N; large N7

e Advantages over linear programming

Learning in MDP’s

e Continuous experience vs. reset to a start state
VS. access to a simulator

e Credit assignment problem

o EXploration-Exploitation trade-off

An On-Line Version of Value Iteration: Q-Learning

e Again begin with initial guess Q*(i,a) for all (3, a)
e In response to observation ¢ —% j5:

Q*(4,a) + (1 — a)Q"(i,a) + a(Rf + v B%X,@*? b)})

e Adjustable learning rate «
e Typical choice is a = a(t) = 1/t at observation ¢

e Note:

Ely max{Q*(j,0)}] = v >_ Py max{Q"(j,b)}
J

e (Q-Learning can be applied to any observations

Indirect Methods for Learning

o (Q-Learning directly learns a value function
e Indirect methods

— Use observations to learn a model wm.

— Run value iteration on model

Q-Learning vs. Indirect Algorithm

e Both algorithms known to converge to optimal policy
asymptotically (infinite sampling at every (i,a))

e Number of parameters: O(N) vs. O(N?2)
e Sample sizes? Memory?

e Multiple reward functions?

Convergence Rates for Q-Learning and Indirect Algorithm

o After only O((log(1/e)/e?)log(N/e)) trials per state-action
pair, both algorithms will have an e-good policy with proba-
bility at least 1 — ¢

e Sparse sampling: only O(log(N)) samples per next-state
distribution

e Memory O(Nlog(N)) vs. O(N?2) for indirect algorithm

e Proof appeals to uniform convergence methods on O(N) ran-
dom variables per iteration, plus contraction property

e EXploration: account for mixing time of an arbitrary
“exploration policy”, but ...

Towards Near-Optimal Exploration

e Full learning problem: choose actions during training phase

e Discounted: effectively finite-horizon, given by e-horizon time
He = (1/(1 7)) 10g(1/e)

e Undiscounted: must depend on mixing time of
optimal policy

e More refined: compete against all policies with mixing time
T, in time polynomial in T

e Anytime algorithm?

The Explicit Explore or Exploit (E3) Algorithm

e Assume given mixing time T', optimal expected return Vp

e Learning algorithm:

— Wander randomly, estimate next-state distributions

—

— Let M be known sub-MDP

— Offline: compute optimal T-step return in M
— If near Vp, execute itl!

— Else appeal to Explore or Exploit Lemma

e Key idea: any time we are not gaining Vy, we improve our
statistics at an unknown state

Performance Guarantee

For any MDP on N states, and any T, ¢, &, if we run E3 for
poly(N,T,1/e,1/§) steps, then with probability at least 1 —§ the
total return will exceed Vp —e.

Handling Large or Infinite State Spaces

e Typically have N = 2™ (games) or N infinite
(control problems)

e Even explicitly specifying a policy is infeasible
e Cannot run directly on the Pj, value iteration doomed

e More realistic: assume we are given a generative model
for the MDP

e On input (¢,a), receive R and a random j drawn from P

e How can we use a generative model to plan optimally?

Near-Optimal Planning in Large MDP'’s
via Sparse Sampling

e GGiven access to a generative model for large MDP

e Instead of outputing a complete policy, give algorithm taking
(current) state ¢ as input

e Output: a near-optimal action from

e Algorithm builds sparse tree rooted at : to approximate
Q*(i,a) for each action a

e Claim: with a tree of size only O((1/¢e)e¢), get
e-good approximation

Near-optimal planning with no dependence on state space size.

Handling Partial Observability

e Many applications: do not see “full state”

e Example: elevator controller can detect pushed buttons, but
Markovian only if we know distribution of waiting passengers

e Example: learning finite-state automata

e Formal model: to MDP P7, R, POMDP adds observation

distributions @, on observation set for each state :

What Changes?

e Move from policies to strategies: optimal action may de-
pend on entire history

e Optimal planning (given Num;@@mmv intractable

e \What’s the optimal planning algorithm?

The Belief-State MDP of a POMDP

e Assume known initial distribution Py on the N states
of given POMDP

e States of Dbelief-state MDP: all possible distributions on
states of POMDP

e From distribution P, action a with observation o causes
transtion to P’ according to Bayesian posterior update

e (Generalization of value iteration runs on belief-state MDP in
time exponential in N

Further Topics

e Learning constrained strategies in POMDP’s

e Function approximation in large state spaces

