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In this paper we consider several variants of Valiant’s learnability model that
have appeared in the literature. We give conditions under which these models are
equivalent in terms of the polynomially learnable concept classes they define. These
equivalences allow comparisons of most of the existing theorems in Valiant-style
learnability and show that several simplifying assumptions on polynomial learning
algorithms can be made without loss of generality. We also give a useful reduction
of learning problems to the problem of finding consistent hypotheses, and give com-
parisons and equivalences between Valiant’s model and the prediction learning
models of Haussler, Littlestone, and Warmuth (in “29th Annual IEEE Symposium
on Foundations of Computer Science,” 1988).  © 1991 Academic Press, Inc.

1. INTRODUCTION

The model introduced by Valiant (1984) provides the framework for a
growing body of research in machine learning (Blumer et al., 1987, 1989;
Kearns et al, 1987; Pitt and Valiant, 1988; Rivest, 1987; Valiant, 1984,
1985). This research focuses on understanding the computational com-
plexity of various learning tasks. A central notion is that of polynomial
learnability. Rougly speaking, a concept class is said to be polynomially
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130 HAUSSLER ET AL.

learnable if there exists an algorithm that can find a hypothesis
approximating any concept in the class,' when given a polynomial number
of examples of the concept and polynomially bounded computational
resources. The polynomial growth is with respect to parameters measuring
the complexity of the concept, the size of the input to the algorithm, and
the accuracy of the resulting approximation.

The specific assumptions and criteria used to define polynomial
learnability have varied among the different researchers in the field. To
allow confident and accurate comparisons of the results obtained in the
different models, it is important to verify the equivalence of the models, or
to discover any differences. We perform that task here. The result is a
unification of previous work, a precise definition of polynomial learnability,
and an understanding of variations in the model that do not affect what is
polynomially learnable. A significant part of this paper consists of formal
proofs of “folk theorems” that have been known to many researchers in
computational learning theory for some time, but have never been
documented systematically.

In the first part of this paper (Sections 2 and 3), we consider a number
of existing variations of the learning model and show that they lead to
equivalent models of polynomial learnability. Some of the equivalence
proofs formalize arguments made informally in private communications to
the authors; others are new. We show that if all other parameters of the
model are equal, then the model where algorithms have access to a single
oracle returning labeled examples is equivalent to the model where there
are two oracles returning positive and negative examples, respectively; that
a model where a learning algorithm must output a good hypothesis with
only a fixed probability is equivalent to one where it must do so with
arbitrarily high probability; and that without loss of generality, all learning
algorithms can be deterministic.

In the process of formalizing the equivalences, we have uncovered inter-
actions between the initial information given to an algorithm and its ability
to halt deterministically in all cases. Our results demonstrate that the
models used in Blumer ez al. (1987, 1989), Kearns et al. (1987), Pitt and
Valiant (1988), Rivest (1987), and Valiant (1984, 1985) are equivalent if
probabilistic halting criteria are substituted for deterministic halting in
some of the models. The equivalence if deterministic halting is required
remains an open question. The results also show the equivalence of other
natural variations of these models in nearly all possible combinations of the
various modifications that we consider. In only one equivalence proof (the
one that shows that the one- and two-oracle models are equivalent) do we

! This model has been termed the PAC-model by Angluin (1987) standing for probably
approximately correct.
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actually change the distribution on the examples. Thus most of the proven
equivalences hold also for learning with respect to any fixed distribution on
the examples.

After demonstrating these equivalences in Section 3, we turn to different
types of equivalence in Sections4 and S. In Blumer eral. (1989), a
necessary condition for polynomial learnability is given in terms of a com-
binatorial parameter of the concept class called the Vapnik—Chervonenkis
dimension (Vapnik and Chervonenkis, 1971). This condition does not
address issues of computational complexity but does address the minimum
amount of information needed to perform inductive inference. Using tools
from Pitt and Valient (1988), we show that the problem of polynomially
learning C by H is equivalent (modulo polynomial-time transformations)
to the problem of polynomially finding (with fixed probability) a
hypothesis in H consistent with a given sequence of examples of a target
concept in C, provided that the VC dimension of H grows only polyno-
mially with the concept complexity measure used for C. This allows one in
many cases to view a learning problem in the more traditional light of
complexity-theoretic search problems.

The definitions of learnability discussed here depend fundamentally on
the hypothesis space from which the learning algorithm must choose its
hypothesis. In many cases it is of interest to study the learnability of a
concept class when no restriction is placed on the hypothesis space to be used.
For this purpose, a new model of learning was introduced in Haussler et al.
(1988) that discards the constraints placed on hypotheses of the learning
algorithms. In that model the polynomial learning algorithm must predict
accurately the label (positive or negative) of an unlabeled random example
after receiving polynomially many random examples that are labeled con-
sistently with the target concept. In the main theorem of Section 5 we show
that a concept class is polynomially learnable in the prediction model of
Haussler et al. (1988) iff there exists a polynomially evaluatable (defined in
the next section) hypothesis space such that the concept class is polyno-
mially learnable by this hypothesis space.

2. MODELS OF POLYNOMIAL LEARNABILITY

2.1. Representing Examples and Concepts

DEerFINITION 2.1. Representation of domains. For each n> 1, X, denotes
a set called a learning domain on n attributes. The X, for different values
of n are assumed to be disjoint. We let X={X,},.,. We say a poznt (or
instance) x is in X if xe J {X, },5,-
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For example, X, might be the set of all points in Euclidean n-dimen-
sional space R” or the Boolean domain {0, 1}".2

For the purposes of computation, we assume that points are encoded as
tuples using any of the standard schemes (see Garey and Johnson, 1979)
in such a way that the representation of each point in X, has length
between n and /= I(n), where /(n) is a polynomial. The equivalence results
given below will not depend on how real numbers are handled (ie.,
whether the uniform or logarithmic cost model is used to define the length
of representations and inputs to algorithms (Aho ez al,, 1974). We assume
that from the representation of any tuple of X one can efficiently determine
the unique set X, to which it belongs. ’

We think of concepts as subsets of a learning domain X,. For some
purposes, we must also have a language in which concepts are represented
as strings, and a notion of the size or complexity of a concept, which is
usually related to the length of its shortest representation.

DErFINITION 2.2. Representations of concepts and concept classes.
Given a learning domain X, a set C<=2¥ is called a set of concepts on X.
A representation for C consists of a set of strings L and a mapping ¢ from
L onto C that associates each string in L with a concept in C. A concept
complexity measure for C is a mapping size from C to {1, 2, ...}.

For each n>1, let C,, = 2* be a set of concepts, L, and g, be a represen-
tation for C,, and size, be a concept complexity measures for C,. Then
C={\X,C,L,, 0,,size,)},-, denotes a concept class over X. Normally
the representation and concept complexity measure will be understood
from the context, in which case we will abbreviate C as {(X,,, C,,)},>1. We
say that a concept ¢ is in C if ce{JC,. When the concept complexity
measure is understood from the context, it is also convenient to let C,
denote {ce C,:size(c)<s}.

To illustrate these definitions, consider the concept class k-CNF from
Valiant’s original paper (1984) for some fixed k > 1. Here X,,= {0, 1}", the
representation language L, consists of all CNF expressions on n variables
(say x,, .., x,) that have at most k literals per clause, C, consists of all
c<= {0, 1}" such that ¢ is the set of satisfying assignments of one of these
expressions, o, maps a-CNF expression to its set of satisfying assignments,
and size, (c) is the number of literals in the smallest k.-CNF representation
of ¢. The concept classes k-DNF, k-term DNF, and k-clause CNF are
defined similarly by restricting to DNF expressions with at most & literals
per term, DNF expressions with at most k terms, and CNF expressions
with at most k clauses, respectively. The concept classes DNF and CNF

2 We assume that any learning domain X, that we consider can be embedded in R” by a
measurable embedding.
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can also be defined in this manner. Here C, =2{*!"", but C,  includes only
those concepts that can be represented by a DNF (resp. CNF) expression
with at most s literals.

For real-valued domains, examples of concept classes include the class of
closed halfspaces and the class of closed convex polytopes. In the case of
halfspaces in n dimensions, one possibility is to assume that concepts are
represented by the n+ 1 coefficients of the separating hyperplane, and that
size,(c)=n+ 1 for all ce C, (uniform cost model). In the case of convex
polytopes, concepts might be represented either as the intersection of a set
of halfspaces, or by specifying the vertices of the convex polytope.

DEerFINITION 2.3. Examples and hypotheses. Let C be a concept class
over X. Given a concept ¢ in C, we define an example of ¢ to be a pair
{x,a), where x is in X and a€ {0, 1} such that a=1iff xec. If xec then
{x,1) is called a positive example of ¢, and if x ¢ ¢ then {x, 0) is called
a negative example of c. A sample of ¢ is a sequence of examples of c. As
above, for computational purposes we assume samples are represented as
sequences of pairs using any of the standard schemes. The size of a sample
is the number of examples it contains. The length of a sample is the number
of symbols in its encoding. (In case of the uniform cost model, each real
number contributes one to the length.)

Let C and H be two concept classes. An algorithm for learning C by H
is an algorithm that when given examples of some concept ce C will
produce as output (a representation of) some concept ~eH that is an
approximation of ¢ in a sense made precise below. The class C is called the
target class and c is called the target concept. The class H is called the
hypothesis space used by the algorithm and the hypothesis 4 (whose
representation is output by the algorithm) is called the hypothesis of the
algorithm.

We say that a hypothesis # in H is consistent with a sample
X1y A1) ey Xy Ay Of c if x;,€eh<>a,=1for all 1<i<m.

2.2. Models for Polynomial Learnability

We now define the three most popular variants of Valiant’s original
model. In the following models, we assume that X is a learning domain and
that C and H are concept classes over X.

Model 1. The Functional Model. In this model a learning algorithm
implements a function that maps from samples to hypotheses. If ce C,
is a given target concept, he H, is a hypothesis, and D is any fixed
probability distribution on X,, then define the error of h (with respect
to ¢ and D) to be the probability that 4 is inconsistent with a random
example of ¢ (i.e., an example. {(x;, a) of ¢ in which x is drawn randomly

L]



134 HAUSSLER ET AL.

from X, according to D). We will say that C is polynomially learnable
by H (in the functional model) if there exists an algorithm A that takes as
input a sample of a target concept in C, and outputs a representation of a
hypothesis in H such that the following property holds:

Property 1. (a) There is a function m(e, d, n, s), polynomial in 1/g,
1/6, n and s, such that for all 0<e¢, <1, and n, 5> 1, and for all target
concepts ce C, , and all probability distributions D on X, if 4 is given a
random sample of ¢ of at least m(e, d, n, s) examples drawn independently
according to D, then A produces a representation in H of a hypothesis
he H,, and with probability at least 1 — ¢ the hypothesis 4 has error at
most &.

(b) Algorithm 4 runs in time polynomial in the length of its input.

We let S, (e, , n, s) denote the smallest sample size m(e, 6, n, s) such that
Property 1(a) holds for algorithm A. S (e, 6, n, s) is called the sample
complexity of A. Note that in the functional model the algorithm A is not
given any of the parameters ¢, d, n, and s as input. The only input to 4 is
a batch of examples. Throughout the paper ¢ will be called the accuracy
parameter and J the confidence parameter.

Model2. The One-Oracle Model. Instead of specifying that A be
simply a function mapping samples to hypotheses, we can allow 4 to
explicitly use information about the desired accuracy and confidence
parameters ¢ and J, as well as the complexity parameters n and s. This can
be accomplished by giving ¢, 4, n, and s as input to 4 and supplying 4 with
an oracle EX for random examples of the target concept. Each time EX is
called, it selects an instance in X, independently at random according to
the distribution D and returns it along with a label indicating whether or
not it is in the target concept. Throughout this paper whenever an oracle
returns an example to an algorithm, then we charge the algorithm with
time equal to the length of the received example. We say that C is polyno-
mially learnable by H (in the one-oracle model) if there is an algorithm A
taking inputs ¢, 4, n, and s and outputting a representation of a hypothesis
in H such that the following property holds:

Property2. For all 0<e, 0< 1, and n, s> 1, and for all target concepts
ceC,, and all probability distributions D on X,,,

(a) A outputs a representation in H of a hypothesis he H,, and with
probability at least 1 — ¢ the output hypothesis 4 has error at most e.

(b) The total running time is bounded by a polynomial in 1/e, 1/9, n,
and s.

In this model, the sample complexity S, (¢, 4, n, s) of an algorithm A4 is
taken to be the worst-case number of oracle calls on input ¢, §, n, s, over
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all ceC,, and all sequences of examples of c. Similarly, the worst-case
running time is denoted 7', (¢, 0, n, s).

Model 3. The Two-Oracle Model. The one-oracle model can be further
modified to allow the algorithm A access to two oracles, one that returns
random positive examples of the target concept (which we will call POS),
and one that returns random negative examples (which we will call NEG).
In this case there are two distributions D* and D~. D* is a distribution
on ¢ and D~ is a distribution on X, —c. Calls to POS return examples
chosen according to D% and calls to NEG return examples chosen
according to D~

In this two-oracle model we also define two types of error: error™ (the
positive error) is the probability that a random example form POS is
classified as negative by the hypothesis, and error~ (the negative error) is
the probability that a random example from NEG is classified as positive
by the hypothesis. The definition of polynomial learnability is now as in the
one-oracle model, except that in Property 2 we now require the hypothesis
of learning algorithm A4 to have both positive error at most ¢ and negative
error at most ¢, that is:

Property 3. For all 0<e, <1 and n, s, >1, and for all target concepts
ce C, , and all probability distributions D on X,,,

(a) A outputs a representation in H of a hypothesis e H,, and with
probability at least 1 — & the output hypothesis / has positive error at most
¢ and negative error at most e&.

(b) The total running time is bounded by a polynomial in 1/e, 1/5, n
and s.

The main contribution of this paper is to prove the equivalence of these
models, along with a number of additional variations. The equivalence
results depend only on weak assumptions about the target class and the
hypothesis space, outlined below. The variations that we consider are:

(1) Randomized: vs. deterministic: We consider both randomized and
deterministic learning algorithms. Randomized algorithms are allowed to
make use of flips of a fair coin. These coin flips are independent of the
random examples of the target concept received by the algorithm. A
randomized algorithm is charged one unit of time for each coin-flip that
it uses. The sample complexity. S (¢, 0,n,s) and the running time
T (s, 6, n, s) are extended to worst case measures over the coin-flips of the
algorithm. We show that without loss of generality, with respect to polyno-
mial learnability all learning algorithms are deterministic (modulo some
weak regularity assumptions on the hypothesis space that we discuss
below). : : :

|
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(2) Polynomial in 1/§ vs. polynomial in log(1/) vs. fixed 6: We con-
sider three ways to treat the confidence parameter J. In one case the sample
and time complexities of a polynomial learning algorithm are required to
be polynomial in 1/5, as described above. In the second case, the sample
and time complexities are required to be polynomial in log 1/6. In the final
case we fix 6 =, for any constant 0 <J, < 1 (so the learning algorithm no
longer requires & as an input), and we require only that a polynomial
learning algorithm achieve this level of confidence, with sample and time
complexity polynomial in the remaining variables of the model. We show
that in all three cases, the same class of polynomially learnable concept
classes is obtained.

For the one-oracle and two-oracle models, we also consider the case in
which the value of s is not given as input to the algorithm. We will show
that such a model is equivalent to the model where s is given, provided that
one also relaxes the halting criterion, changing it to a probabilistic halting
criterion. Similar results are obtained in Linial et al (1988) (see also
Benedek and Itai (1988b). We thus consider the following two further
modifications:

(3) Knowledge of s vs. no knowledge of s.

(4) Deterministic halting vs. probabilistic halting. For the proba-
bilistic halting case, property 2 in the definitions of the one-oracle model
is changed to:

Property 2’. There exists some polynomial p such that for all
O<e 0<1, and n,s>1, and for all target concepts ceC,, and all
probability distributions D on X,,, with probability at least 1 — 9,

(a) 4 outputs a representation in H of a hypothesis in H, that has
error at most &.

(b) The total running time is bounded by p(1/g, 1/0, n, s).

Property 3 in the definition of the two-oracle model is changed
analogously. Sample complexity is not defined in the probabilistic halting
case. Note that Property 2’ allows for the possibility that the expected
running time of the learning algorithm is infinite.

For convenience of notation, we will introduce a parameterized version
of the three basic models along with their various modifications. Thus,
functional( p,, p,) will denote those pairs of concept classes (C, H) such
that C is polynomially learnable by H in the functional model under
modifications p, and p,, where p, is either 1/ (when polynomial
dependence on 1/6 allowed), log(1/d) (for restriction to polynomial depen-
dence on log(1/d)), or fixed 6 (when we fix d to 0 <d,< 1), and p, is either
rand (for randomized learning algorithms) or det (for deterministic algo-

1
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rithms). Similarly, one-oracle(p,, p,, ps, p.) and two-oracle( p,, p,, ps, p4)
will denote those pairs of concept classes (C, H) such that C is polyno-
mially learnable by H in the one- and two-oracle models respectively,
under modifications p,, p,, p; and p,. Here p, and p, are as above, and
P is either s_known or s_unknown (according to whether s is given to the
learning algorithm or not) and p, is either always_halts or usually_halts
(according to whether learning algorithms are required to halt or not).

As examples, functional(log(1/5), rand) is the set of all pairs of concept
classes (C, H) such that C is polynomially learnable by H in the functional
model by randomized algorithms with sample complexity polynomially
dependent on log(1/8), and two-oracle(1/d, det, s_unknown, usually_halts)
is the set of all pairs of concept classes (C, H) such that C is polynomially
learnable by H in the two-oracle model by deterministic algorithms with
running time polynomial in 1/ and no explicit knowledge of s that halt
probabilistically.

In the following section we demonstrate that all three of the basic models
are equivalent to each other, and that models resulting from all combina-
tions of the above variations are equivalent to each other, except for the
restriction mentioned above that if an oracle algorithm does not know s
then the halting criterion of the learning algorithm is probabilistic.

In all the models described above the algorithm has to perform well for
all probability distributions. For each model one can define learnability
with respect to a fixed distribution (or two fixed distributions in the two-
oracle case) (Benedek and Itai, 1988a). The question arises which of the
equivalences proven in this paper still hold if learnability is defined with
respect to fixed distributions. Interestingly enough all equivalences hold in
that case as well, with the exception of the equivalence between the one-
and two-oracle models.

We make some general assumptions about the concept classes C and H
that hold throughout the following analysis. First we assume that the
language used for representing hypotheses in H is such that one can
efficiently determine if an instance is a member of a given hypothesis. For-
mally, we assume that there is a polynomial algorithm that, given a string
win L, and a representation of an instance x € X,,, determines whether or
not xea,(w). Such an H is called polynomially evaluatable. Second, when
the domain is real-valued we also assume that all concepts are Borel sets,
and that all sets of concepts are well-behaved in the measure-theoretic
sense defined in Blumer et al. (1989). We let regular, denote the set of all
pairs (C, H) that satisfy the above regularity assumptions.

For certain of the relationships among the models we require stronger
regularity assumptions. We let regular, be the set of all pairs (C, H) in
regular, such that for each H,eH we have JeH,, X, H,, and for all
xeX,, {x}eH,. : '

il i
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3. Equivalence Results of Learnability Models

In this section we prove our main theorem which shows the equivalence
of the learnability models introduced in the previous section. As the only
restriction we require that if s unknown, then the halting criterion must be
usually_halts.

THeEOREM 3.1. If (C, H)eregular, is an element of any of the following
sets, then it is an element of all of them:

functional( p,, p,),

one-oracle(p,, py, P, Pa)s

two-oracle(py, p, ps, p4).
Here

pie{log 1/, 1/9, fixed 5},

p, € {rand, det},

ps € {s_known, s_unknown},

if p3=s_known then p, e {always_halts, usually_halts },
if p3 =s_unknown then p, = usually_halts.

Figure 1 presents a graph whose vertices represent the models that we
show to be equivalent in this theorem. The directed edges represent the
implications that we will directly demonstrate in our proof of the theorem.
Some of these edges are labeled with the numbers of the lemmas in which
the corresponding implications are demonstrated. The other implications
are considered below.

Proof of Theorem 3.1. The implications corresponding to the unlabeled
edges of Fig.1 follow immediately from the following observations. A
deterministic algorithm for learning C by H in some model is also a ran-
domized algorithm for learning € by H in the model that differs only in
replacing the parameter det with rand. Similarly, a deterministically halting
algorithm is also a probabilistically halting algorithm. A learning algorithm
for a model in which s is not available to the algorithm can also be used
when s is available: it just ignores s. The 1/0 models have been omitted
from the diagram, but would fit in the middle of each of the downward
pointing arrows between the log 1/6 and fixed-d models. For any particular
set of values of the other parameters, learnability in the log 1/0 model
implies learnability in the corresponding 1/6 model, and learnability in the
1/6 model-implies learnability in the corresponding fixed-6 model. To see
this note that an algorithm that is polynomial in log 1/ is polynomial in
1/6. An algorithm in either of the oracle models that is polynomial in 1/6
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usually always
halts halts
[
s-unknown s-known
—— —x
3.10 3.6
T T — g _\
&
log ¢
det
rand
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fixed s @
one-oracle 3.8

functional

w
=)
33

rand

fixed &

two-oracle 3.8

FiG. 1. Equivalences among models of learnability. The numbers on the arrows indicate
the corresponding lemmas. The top, front, bottom and backside of the cubes are labeled with
log 1, rand, fixed J, and det, respectively.

(and the other relevant parameters) can also be used as a polynomial algo-
rithm in the fixed-6 model: just set & to 3 in its input. A functional algo-
rithm does not receive J as input, but again, an algorithm for a 1/6 model
will also work in the corresponding fixed-6 model. These observations
cover the cases corresponding to the unlabeled arrows in the figure. The
implications corresponding to the labeled arrows are demonstrated in the
indicated lemmas. The proof of the theorem is completed by the following
lemma, which follows by inspection in Fig. 1. |

LEMMA 3.1. The directed graph given in Fig. 1 is strongly connected.

In the results of the rest of the paper we will make use of the following
bounds on the tails of the binonial distribution (Angluin and Valiant,
1979).

LeMMA 3.2 (Chernoff Bounds). For 0< p<1 and m a positive integer,
let LE(p, m, r) denote the probability of at most r successes in m independent
trials of a Bernoulli variable with probability of success p, and let
GE(p, m, r) denote the probability of at least r successes. Then if 0<a< 1,

Fact1. LE(p, m, (1 —a)mp)<e *" and

NI
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Fact2. GE(p, m, (1 +a)mp)<e ",

LEmMA 3.3.

1
one-oracle <10g 5 rand, s_known, always_ halts) Nregular,

1
= two-oracle <]og 5 rand, s_known, always_halts) Nregular,.

Proof. We first show that polynomial learnability in the one-oracle
model implies polynomial learnability in the two-oracle model. Let
(C, H) € one-oracle(log 1/, rand, s_known, always_halts) nregular,, and
let A, be an algorithm learning C by H in this model. We construct an
algorithm A, that learns C by H in the model two-oracle(log 1/5, rand,
s_known, always_halts).

Let ¢ e C be the target concept over domain X to be learned in the two-
oracle model, and let D* and D~ be the probability distributions over the
positive and negative examples of ¢, respectively. We now define a single
distribution D over the entire domain X by

D(x)=1iD*(x)+ 3D (x)

for each x e X. We now use 4, to learn ¢ as follows: on inputs ¢, é, n, and
s, algorithm A4, simulates algorithm A4, with inputs ¢/2, J, n, and s. Each
time algorithm A, requests an example from the oracle EX, algorithm 4,
flips a fair coin. If the outcome is heads, 4, calls POS and gives the
positive example returned by the oracle to 4,, along with a label indicating
that this example is positive. If the outcome is tails, 4, calls NEG and gives
the returned negative example to A4,, along with a label indicating that the
example is negative. Thus the examples given to A4, on calls to EX are
drawn independently from the distribution D defined above.

Suppose that 4 is the hypothesis output by algorithm A, following this
simulation, and let e, e*, and e~ denote the error of A on D, D*, and D,
respectively. Since 4, must work for any distribution, we must have that
e < ¢/2 with probability at least 1 — 9. But

e=3%et +3e”
so with probability at least 1 -4,

1
—et K

3 and e <

2

N ™
N =
N ™

that is, as desired both e* and e~ are at most ¢ with probability at least
1-94.

T
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For the other direction, let (C, H) e two-oracle(log 1/3, rand, s_known,
always_halts) N regular, and let 4, be an algorithm learning C by H in this
model. Now we construct an algorithm A, for learning C by H in the
model one-oracle(log 1/6, rand, s_known, always_halts).

Let ceC be the target concept and D be the distribution over X. Let
m=3S,,(¢, 6/3, n, s) be the sample complexity of 4, when called with the
parameters ¢ J/3,n, and s, and let p* (respectively, p~) denote the
probability of drawing a positive (respectively, negative) example of ¢ from
the distribution D. If p* >¢ (respectively p~ >¢), then the probability of
getting at most m positive (respectively negative) examples of ¢ in g calls
to EX is at most LE(e, g, m). So choose g = (2/¢)m, and apply Lemma 3.2
with m' = (2/e)m and a=1/2 to get

2 1
LE(e, q, m)< LE (8, ~m, m) =LE <a, m', <1 ——2-> m’s> <e ™4,

Solving e ™*< /3 gives m>41n(3/8) and ¢>(8/¢)In(3/6). Thus, if
pt >¢, the probability that we fail to draw at least m positive examples in
max((2/e)m, (8/¢) In(3/8)) calls to EX is at most §/3. The same fact holds
for negative examples and p . ,

Algorithm A, uses this fact as follows: 4, sets ¢ to 3 if the input value
for ¢ was greater than 1; otherwise it leaves ¢ alone. It then makes
max((2/¢)m, (8/¢) In(3/8)) calls to the oracle EX. If A, fails to draw at least
m positive (respectively, m negative) points, the hypothesis &F (respectively,
X) is output. If both m positive and m negative examples were obtained,
then A4, simulates A, on the input parameters ¢, §/3, n, and s, using the
positive and negative examples received from EX to answer A4,’s calls to
POS and NEG.

Let 4 be the hypothesis output by A4, following this simulation. Define
the conditional distributions D*(x)=D(x)/p* if xec, D (x)=0
otherwise, and D~ (x)=D(x)/p~ if x¢c, D (x)=0 otherwise. Let e
denote the error of 4 on distribution D and e* and e~ denote the error of
h on the conditional distributions D* and D, respectively.

If both p* and p~ are at least ¢ then with probability at least 1 —26/3,
the algorithm will receive at least m positive and at least m negative exam-
ples. If this occurs then A, simulates A, with parameters ¢, §/3, and s. Then
with probability at least 1 —9/3, 4, will return a hypothesis 4 for which
et <eand e” <e. If & is such a hypothesis, then the error of 4 with respect
to Dise=p*tet+pe =pTet +(1—p*)e <e Thus when both p*
and p~ are at least ¢ the probability of finding a hypothesis with error no
more than ¢ is at least 1 — 4. If p* <¢ and p~ >¢ then with probability at
least 1 — /3 at least m negative examples will be drawn. In this case either
the hypothesis & will be output or 4, will be simulated. The hypothesis ¢

1
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has error p* <e. If A, is simulated, then with probability at least 1 —d/3
it will produce a hypothesis with error at most e&. Thus when p* <¢ and
P~ =¢ a hypothesis with error at most ¢ will be produced with probability
at least 1 —26/3. The case where p~ <¢ and p* >¢ is similar to this case.
The final case where both p* and p~ are less than ¢ cannot occur since
e<i 1

LemMmA 34.
one-oracle( fixed 6, rand, s_known, always_halts) N regular,

1
< one-oracle <]og 5 rand, s_known, always_ halts) N regular,

and
two-oracle( fixed 6, rand, s_known, always_halts) N regular,

1
< two-oracle <log 5 rand, s_known, always_halts> Nregular, .

Proof. The key idea is to run the algorithm for fixed 6 many times
until it has produced a good hypothesis with high probability. We then
test the hypotheses this algorithm has produced to find the good one.
We give the proof for the one-oracle model. The proof for the two-
oracle model is similar. Let (C, H) € one-oracle( fixed d, rand, s_known,
always_halts) N regular, and let 4 be an algorithm learning C by H in this
model when ¢ is fixed at some 0<Jd,< 1. We construct an algorithm B
that learns C by H in the model one-oracle(log(1/d), rand, s_known,
always_halts).

On inputs ¢, J, n and s, algorithm B simulates algorithm A4 on inputs ¢/4,
n, and s for k=[log s, (3/6)7 times. Since A4 always halts, these k runs
yield k hypotheses 4y, h,, .., h, in H. Now B draws (12/¢)In(3k/d)
additional examples and outputs a hypothesis that agrees with the largest
number of these examples.

It is easy to see that since the sample and time complexities of 4 are
polynomial in ¢, n, and s, the sample and time complexities of B are poly-
nomial in ¢, log1/d, n, and s. Thus we only have to show that the
hypothesis output by B has error at most ¢ with probability at least 1 — 4.

First, observe that the probability that there is no 4, with error at most
¢/4 is at most 5% < /3. If a hypothesis has error greater than e, then the
probability that it agrees with at least a fraction 1 —e&/2 of a sample of size
m is bounded above by

LE(E, m, (8/2)m) < e—(ms/S)

1
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Thus second, the probability that some h; with error greater than e
agrees with at least a fraction 1—(g/2) is at most ke "*<¢/3 for
m = 8/¢ In(3k/d). On the other hand, the probability that a hypothesis with
error at most ¢/4 agrees with less than a fraction 1 —(¢/2) of a sample of
size m is bounded above by

GE(g/4, m, (¢/2)m) <e "/'%

Thus, third, the probability that some h; with error at most &/4 agrees
with less than a fraction 1 — (¢/2) is at most ke ™/'* < §/3 for
m = (12/¢) In(2k/9).

The probability that B fails to find a hypothesis with error at most
¢ is at most the probability that no h; has error less than &/4, plus the
probability that some 4, with error greater than ¢ agrees with at least
a fraction 1 — (&/2) of the m examples used for the hypothesis test, plus the
probability that an 4, with error less than ¢/4 disagrees with more than
a fraction ¢/2 of the m examples. Since B draw at least (12/¢)In(3k/d)
additional examples, the sum of these probabilities is bounded by /3 +
3/3 4+ 6/3 =20 (above three cases). | :

LemMA 3.5.

one-oracle(log 1/3, rand, s_known, always_halts) N regular,
< one-oracle(log 1/3, det, s_known, always_halts) N regular,

and

two-oracle(log 1/8, rand, s_known, always_halts) N regular,
< two-oracle(log 1/9, det, s_known, always_halts) N regular,.

Proof. The key idea of the proof is to use the randomness of the order
of the examples produced by an oracle to simulate a fair coin. We first
describe how this is done. We distinguish two cases. In this first case we are
in the one-oracle model and randomness is extracted from the single oracle.
In the second, the two-oracle model, we show how to extract randomness
from POS.

Case 1. The label of an example from the oracle constitutes a biased
coin. We use a trick of von Neumann to convert this coin into a fair
coin. Draw a pair of examples and consider the order of their labels. The
sequences ¢ +, — » and { —, + ) are equally likely and thus constitute the
two events of a fair coin. In the case when the labels are equal the pair-is
discarded and a new pair is drawn. Let p denote the probability that the
labels of a pair are different and let ¢ be the probability of the most likely

1
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label when drawing one example. Observe that p>1—gq. Note also that
if p is very small then too many pairs need to be drawn to obtain a fair
coin flip. In that case we stop with the default hypothesis (¢ if the most
frequent label in a large enough sample is — and the whole domain if the
most frequent label in the sample is +).

Case 2. 1In the two-oracle model the learning algorithm decides whether
to draw the next example from POS or from NEG. Thus the label of the
example cannot be used as a source of randomness. We show a method of
extracting randomness from the examples of POS. (In a similar manner,
one can extract randomness from NEG or, in the one-oracle case, from the
examples drawn from the single oracle without using the labels of the
examples.) We first establish an arbitrary linear order on the domain. In
multidimensional spaces we can use a simple lexicographic ordering. Then
we repeatedly draw pairs of points from POS. If the points of the current
pair are the same, they are discarded. However, if they are different, then
the larger point is just as likely to occur in the first position as it is in
the second. As above, let p be the probability that the points of a pair
are different and let ¢ be the probability of the most likely point. Again
p=1—gq and if p is very small then we stop with a default hypothesis.
Here the default hypothesis is {x}, where x is the point that occurs with
highest frequency in a large enough sample. Note that the intersection
with regular, assures that in both cases the default hypotheses are in the
hypothesis class.

In both the one- and two-oracle models we have described how to get
fair coin flips from pairs of examples. In each case p denotes the probability
that a fair flip is obtained from a pair. We show now how, given any
polynomial-time, randomized learning algorithm A, a polynomial-time
simulation B of 4 can be constructed that uses the described method for
producing fair coin flips. We do this as follows. Let r denote an upper
bound on the number of time steps to be used by algorithm A4 when the
input parameters are ¢, 6/2, n, and s. Then r is clearly an upper bound on
the number of unbiased coin flips needed by 4. B will first try to get this
many random bits for 4 and then run A4 using the bits and these input
parameters. In case B fails to get enough bits (p is too small) then it will
output the default hypothesis. A more detailed description of B follows.

Reset ¢ to min(e, ;). B draws at least max((8/¢) In(2/8), 2r/¢) pairs. If at
least r coin flips are obtained then B uses these random bits to simulate A
on the input parameters ¢, 6/2, and s and outputs the hypothesis of A.
Otherwise, B draws a sample of size at least 24 In 2/6 from the oracle that
produced the pairs and outputs the default hypothesis corresponding the
most frequent label in the sample (Case 1) or the most frequent point in the
sample (Case 2).

1
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It remains to be shown that with probability at least 1 —J algorithm B
outputs a hypothesis with error at most &.

Case p>¢. The probability that fewer than r coin flips are obtained
from m >max((8/¢) In(2/6), 2r/¢) pairs is at most

1 b
LE(p’ m, r)gLE(E, m, r)SLE <£, m, Em,g) <€_(1/8)M€<§,

Also the probability that A4, when executed with the above input
parameters, outputs a hypothesis with error larger than & is at most /2.
Thus if p>e¢ then the total probability that B outputs a hypothesis with
error at most ¢ is at least 1 — 9.

Before we address the remaining case observe the following fact. Let E
be an event that has probability at least 3. The probability that E occurs
at most half the time in m > 24 In(2/5) independent draws is at most

3 1 o
e - S —(1/24)m<_.
LE<4,m,2m> e >

Case p<e. In this case the most likely label (respectively point) has
probability ¢>1—e. Thus the default hypothesis corresponding to the
most frequent label (respectively point) has error (respectively positive
error) less than e. There are two possibilities in which B might produce a
hypothesis of error greater than & A might produce such a hypothesis
or the most frequent label (respectively point) in a sample of size
m > 24 1n(2/8) might not be the most likely label (respectively point). The
first one occurs with probability at most 6/2 and the probability of the
second one is also bounded by /2 since ¢>1—¢>3. Thus in case p <e
the total probability that B outputs a hypothesis of error at most ¢ is at
least 1—0. |

The above proof crucially relies on the fact that the learner receives a
sequence of examples, drawn independently at random from the same dis-
tribution. The sequence may be produced by iteratively calling an oracle,
or in the case of the functional model, such a sequence constitutes the input
to the learning algorithm. Since each permutation of the sequence is
equally likely, a sequence of m distinct examples provides the learner with
log(m!) “free” random bits. Thus it is not surprising that probabilistic
learning algorithms can be converted to nonprobabilistic learning
algorithms by using the order in which the examples appear as a source
of randomness.

Suppose we changed the definition of sample to be a multiset of examples
rather than a sequence of examples. Then it is possible that learnability

Rt IR]
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with respect to the models functional( p,, det) and functional( p,, rand) (for
p, as in Theorem 3.1) would no longer be equivalent.

LEMMA 3.6.

1
one-oracle <log 5 det, s_known, always_halts> Nregular,
. 1
< functional <10g 5 a’et) Nregular, .

Proof. For any pair (C, H)eone-oracle(log(1/3), det, s_known,
always_halts) nregular,, let A be any polynomial algorithm for learning C
by H in that model. We will construct an algorithm B that learns C by H
polynomially in the functional(log(1/6), det) model. We know that there
exist bounds S,(e, d,n,5)<T,(s 0, n, s) polynomial in 1/e, log(1/d), n,
and s such that if 4 is given ¢, §, and s as input parameters and if the target
concept is in C, ,, then algorithm A halts after at most 7, time steps and
after at most S, calls to the oracle and with probability at least 1—4
produces a hypothesis with error at most ¢. Let p(n, x) be a polynomial in
n and x that is monotonically increasing in x for positive values of » and
x such that p(n, x)=T,(1/x,2" %, n,x)=S,(1/x,27% n, x).

Algorithm B will be constructed as follows: First the algorithm reads the
input and determines » and the number of examples m. Then it resets the
input to the beginning. Now it chooses a positive integer x such that
p(n, x)<m and p(n, 2x) > m. If it cannot do this because p(n, 1) > m then
it halts with a default hypothesis. This concludes the preprocessing step.
The time needed up to this point is clearly polynomial in the length of the
input.

Next, algorithm B simulates the action of algorithm A as if the values of
¢ 0, and s given to A4 were 1/x, 27%, and x, respectively. Whenever A
requests an example from the oracle, B gives 4 the next input example
instead. If A4 requests more input examples than are available, then B
aborts the simulation of A and halts with a default hypothesis. We claim
that the simulation satisfies Property 1. Specifically,

(a) there exists some polynomial ¢ such that for any ¢>0 and 9§,
0<d <1, if the sample contains m > q(1/e, log,(1/5), n, s) examples, then
with probability at least 1 — 6 the hypothesis that B outputs will have error
less than e.

(b) B runs in time poynomial in the length of its input.
To see (a), choose g such that g(1/e, log,(1/3),n,s)= p(n, 2(1/e+

log,(1/0) +s)). Now consider the case where m > g(1/e, log,(1/6), n, s). In
this case, B will be able to find an x such that p(n, x) <m and p(n, 2x)>m
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and this x will be at least 1/e+1log,(1/8)+s. Thus we have x>1/e,
x>log,(1/8), and x>s, ie, 1/x<g 27°<6, and s<x Thus B will
simulate 4 using values of & and § which are no larger than the values of
¢ and & that we used in choosing the sample size m for B. Because B is
receiving examples from some concept in C,, it can pass these examples
to A which is expecting examples from a concept in C,, (since s<Xx,
C,,<C,,). Furthermore, enough examples will be available for B to

n,s —

complete simulating A, since
S, (1/x,27%, n,x)< p(n, x)<m,

and with probability at least 1 —27*>1—§ the simulation will output a
hypothesis with error no more than 1/x <e.

To see (b), note that whenever an x is successfully found, and B
simulates 4, then the number of simulated time steps of 4 will be bounded
by

T,(1/x,27%, n,x)< p(x,n)<m.

Thus the total time required by algorithm B will be polynomial in the
length of the input. |

LEmMA 3.7.

functional( fixed 0, rand) N regular,
< one-oracle( fixed 9, rand, s_known, always_halts) N regular, .

Proof. Let (C,H) be any pair in functional( fixed 6, rand) Nregular,.
Consider an algorithm 4 that lears C by H in that model for  fixed at .
We will construct an algorithm B for learning C by H in the one-
oracle( fixed 9, rand, s_known, always_halts) model. Let S, (e, n, s) be the
sample complexity of A. Let p be any polynomial in three variables such
that for all positive ¢, n, and s we have p(1/e, n, s) =S, (&, n, s). Algorithm
B will receive ¢ and s as input. Algorithm B first requests | p(1/¢, n, s) |
examples from the oracle. It then simulates algorithm A with these exam-
ples as input. With this many examples algorithm 4 will with probability
at least 1 — d,, find a hypothesis with error at most &, as desired. Since algo-
rithm A runs in time polynomial in the length of its input, algorithm B
runs in time polynomial in 1/e,n, and 5.

LemMma 3.8.

one-oracle( fixed &, rand, s_known, usually_halts) 0 regular,
< one-oracle( fixed 6, rand, s_known, always_halts) N regular,
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and
two-oracle( fixed 8, rand, s_known, usually_halts) ~ regular,

< two-oracle( fixed 9, rand, s_known, always_halts) N regular, .

Proof. We state the proof for the one-oracle model. The proof for the
two-oracle model is essentially identical. Let (C, H) be any pair in one-
oracle( fixed 0, rand, s_known, usually_halts) ~ regular,. Consider an algo-
rithm A4 that learns C by H in that model for some fixed 6=J,. We
construct an algorithm B for learning C by H in the one-oracle( fixed 6, rand,
s—known, always_halts) model. Let p be a polynomial bound for algorithm
A as in Property 2'. Algorithm B receives ¢ and s as input. Algorithm B
simulates algorithm A, keeping track of the total number of time steps of
A that have been simulated. If this number ever exceeds | p(1/e, n, s) |, then
algorithm B terminates and outputs a default hypothesis. With probability
at least 1 —d,, the simulation of algorithm A halts with a hypothesis with
error at most ¢ after no more than p(1/e, n, s) time steps of 4 have been
simulated. In this case B halts with a hypothesis with error no more than
e. In every case, the time used by B is polynomial in 1/e, n, and s, as
desired. |

One final equivalence (Lemma 3.10) is needed to complete the proof of
Theorem 3.1. To show this equivalence we need the following algorithm for
testing hypotheses.

ALGORITHM TESTI(e, 0, i, h). This is a hypothesis testing algorithm
with parameters ¢, d, i, and & that runs in the one-oracle model. It makes
[(32/e)(iln 2+1n2/6)7 calls to the oracle to test hypothesis A. It accepts
the hypothesis if the hypothesis is wrong on no more than a fraction 3¢ of
the examples returned by the oracle, and rejects it otherwise.

LeMMA 3.9. The test TEST1(e, J, i, h) has the property that

(1) When h has error greater than br equal to ¢, the probability is at
most 5/2' ! that the test will accept h.

(2) When h has error at most ¢/2, the probability is at most 5§/2°*! that
the algorithm will reject h.

Proof. If the hypothesis has error p, then errors of the kind mentioned
in (1) above occur only if p >¢, and in that case the probability of such an
error is bounded by LE(p, m, 3em)= LE(p, m, (1 —a)mp), for some o > i
This is bounded by e "2, Plugging in the value for m we get a bound
of 21+,
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Errors of the kind mentioned in (2) occur only if p<e¢/2 and in that
case the probability of such an error is bounded by GE(p,m, 3em) <
GE(g/2, m, (14 1/2) m(&/2) < e ™. Again this gives the desired bound. i

A two-oracle version TEST2(e, 8, i, h) can be constructed by running the
one-oracle version TEST1(e, 8/2, i, h) twice, once using the positive oracle
and once using the negative oracle. TEST2 accepts 4 if and only if both of
the above calls to TEST1 accept 4. The above lemma holds for TEST2 as
well.

LeMMA 3.10 (see also Benedek and Itai, 1988b, and Linial et al., 1988).

1
one-oracle <log 5 det, s_known, always_halts> Nregular,

1
< one-oracle <log 5 det, s_unknown, usually_ halts) N regular,
and
1
two-oracle ( log 5 det, s_known, always_halts | N regular,

1
< two-oracle (log 5 det, s_unknown, usually-halts) Nregular,.

Proof. We state the proof for the one-oracle model. The proof of the
two-oracle model is identical except for replacing TEST1 by TEST2.
Let (C,H) be any pair in one-oracle(log1/6, det, s_known,
always_halts) N regular,. Consider an algorithm A4 that learns C by H in
that model. We construct an algorithm B for learning C by H in the one-
oracle(log 1/9, det, s_unknown, usually_halts) model. Let p be a polynomial
such that for all positive ¢, n, and s we have p(1/e, n, )= S, (s, i, n,s) and
p(1/e,n,5)>T (& 3,n,5). We construct an oracle algorithm B that
receives ¢ and & as input. Since s is not known to the algorithm, the algo-
rithm performs the following procedure repeatedly, gradually increasing its
guess of the size of 5. Specifically, at the ith repetition (calling the first time
the procedure is performed the first repetition), algorithm B lets
§=| 20~ 1A | For each repetition, B simulates the action of 4 as if the
size parameter given to 4 were §, using the value 1 for 6 and using for ¢
one-half of the value of ¢ given to B. When this simulation finishes,
producing a hypothesis h, algorithm B tests the hypothesis. For the ith
repetition, B uses the testing procedure TEST1(e, 6, i, h) to decide whether
or not to accept A If it accepts A then it halts with A as its hypothesis.

WAL T 1
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If it rejects A then it continues on to the next repetition. The procedure
TEST1 has been constructed so that no matter how many repetitions are
performed the total probability that a hypothesis with error greater than ¢
is accepted is bounded by /2.

We next show that with high probability the algorithm halts in polyno-
mial time. Let j=[1n(2/6)/In(8/5)7 and let

In(2/6)
In(8/5)

We claim that with probability at least 1 — §/2 the algorithm will halt after
at most j' repetitions. To see this note that for all i>[1+ (In(2/6)) log,s7,
the algorithm will choose §>s at the ith repretition. After any repetition
for which §>s, the probability will be at least one-half that the resulting
hypothesis will have error no more than ¢/2. A hypothesis with error at
most ¢/2 will be accepted by TEST1 with probability at least 2 (by the pre-
vious lemma). Therefore after such a repetition the probability is at least 3
that the algorithm will halt. For the algorithm to fail to halt after a total
of j' repetitions, it must fail to halt after each of j repetitions for which
§>s, which will occur with probability at most (3)’ < /2. This proves the
claim.

We now show that if the algorithm halts after no more than j’ repeti-
tions then it runs in polynomial time. The number of time steps of 4
simulated at the ith repetition is bounded by [ p(2/e, n, | 2V~ V™2 )7 <
K=/ pr(1 /e, n) for some constant k and polynomial p’. Thus the
total number of simulated time steps for j' repetitions will be bounded by

, 1 Jj' =1 e 1 2kj'/ln(2/6) 1
p <;,n> Z 2KmER) = p! <— ”> 2k/n(2/8) _{

i—0

=[(In(2/8)) log, s 1+ j < (In(2/0)) log, s +

1 2klog2s+k/ln(8/5) + 2k/In(2/6) __ 1
SP <;’ n) 2k/n(2/6) _ |
1 ln(z/é)(zklog23+k/ln(8/5)+2k/ln(2)_ 1)
<p'|-,n
kln2

which is polynomial in 1/e, log(1/5), n, and s. Thus the time used by B-to
simulate 4 will be polynomial in these variables.

The time for the hypothesis testing g1ows in proportion to the number
of examples used in the tests. For j' repetitions, this is bounded by
[(32/¢)(j' In 2 +1n(2/8))7/". This is polynomial in 1/e, log(1/6), n, and s.
Thus the total time needed by algorithm B for ;' repetltlons is polynomial
in these variables.

We have shown that that probability is at most §/2 that the algorlthm

1

i



MODELS FOR POLYNOMIAL LEARNABILITY 151

fails to halt in polynomial time, and earlier that the probability is at most
/2 that the algorithm halts with a hypothesis with error greater than e
Therefore, with probability at least 1 — 6 the algorithm runs in polynomial
time and produces a hypothesis with error at most ¢, as desired. 1

It is easy to see that in the above reduction the expected running time
of Algorithm B is polynomial. Thus we never exploit the full generality of
Property 2/, which allows infinite expected running time.

4. LEARNABILITY AND THE PROBLEM OF FINDING CONSISTENT HYPOTHESES

We now consider the relationship between polynomial learnability and
the ability to efficiently produce a hypothesis that is consistent with a given
sample. Throughout this section we assume that C and H are concept
classes over a domain X that satisfy the regularity conditions regular,
defined in Section 2 (i.e., that H is polynomially evaluatable, which means
that it is easy to determine if a point is in a hypothesis).

For this section, we will make the assumption that size, (c) is bounded
by a polynomial in n for all c=C,. This is true for many concept classes
of interest, including k-DNF and k-CNF for fixed k, p(n)-term DNF and
p(n)-clause CNF for fixed polynomial p(n), halfspaces, and others. By
making this assumption, we can ignore the concept complexity parameter
s for the purposes of defining polynomial learnability. Thus this parameter
will not be included in our bounds. It is an open problem to generalize the
results of this section to the case when no assumptions are made about the
parameter s.>

We use the following notion from Haussler and Welzl (1987) (following
Vapnik and Chervonenkis, 1971).

DEFINITION 4.1, For any set X, nonempty H<2* and finite S< X,
M,(S)={hnS:heH}. We say S is shattered by H if IT,(S)=25.
VCdim(H) denotes the cardinality of the largest S< X that is shattered by
H. For a concept class H and a function p(n), we say that VCdim(H) is
bounded by p(n) if VCdim(H,) < p(n) for all n> 1. If p(n) is a polynomial,
we say VCdim(H) is polynomial.

Lemma 4.1 (Sauer, 1972). If VCdim(H)=d < oo then for all nonempty
finite S X, [, (S)| <Xio (S)<|S|9+ 1.

It is easily verified that if there exists a polynomial p(n) such that
log |H,| < p(n) for all n>1 then VCdim(H) is polynomial. In fact, for
Boolean domains, a stronger relationship holds.

3 This problem has been recently solved by Board and Pitt (1989).
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LeEMMA 4.2 (Natarajan, 1987a, b, 1989). Ler H be a hypothesis space
over the Boolean domain X. Then VCdim(H) is polynomial if and only. if
there a polynomial p(n) such that log |H,| < p(n) for all n> 1.

Proof. Since H,=1II, (X,), the above lemma shows that |H,|<
(2r)VedimHn) 4 | = pnVCdim(Ha) 4 1 Thus when VCdim(H) is polynomial,
log |H,| is polynomial. On the other hand, if log |H,| < p(n) then no
subset of X, of cardinality larger than p(n) can be shattered by H,, and
hence VCdim(H,) < p(n). Thus when log |H,| is polynomial, VCdim(H) is
polynomial. ||

Thus our restriction that size is polynomial insures that VCdim(H) is
polynomial for most definitions of size on discrete hypothesis spaces.

LEMMA 4.3 (Blumer et al., 1989, following Vapnik, 1982). Let H be a
hypothesis space on X such that VCdim(H) is bounded by p(n). Let D be any
probability distribution on X, and c be any* target concept on X,. Then for
any 0<eg, 6 <1, given

log

2 Soln) 5, )
6 e e

(4
m > max | —log —

independent random examples of ¢ drawn according to D, with probability at
least 1 — 4, no hypothesis in H, with error more than ¢ is consistent with all
these examples.

DEFINITION 4.2. A random polynomial time hypothesis finder (r-poly
hy-fi) for C by H is a randomized polynomial time algorithm A that takes
as input a sequence of examples of a concept in C and outputs a hypothesis
in H such that for some fixed y>0, with probability at least 7y this
hypothesis is consistent with this sequence of examples. We refer to y as the
success rate of A.

LemMa 4.4. If VCdim(H) is polynomial and there exists an r-poly hy-fi
for C by H then C is polynomially learnable by H.

Proof. Assume we have an r-poly hy-fi for C by H with success rate 7y
and let p(n) be a polynomial such that VCdim(H,,) < p(n) for all n > 1. We
define a learning algorlthm A for C by H in the one-oracle model as
follows.

4We assume that ¢ is Borel and H is well-behaved as in the definition of regularl in
Section 2.

I
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On input (&, 8, n), 4 calls the oracle EX for

m = max <f logi, 8p(n) log E)
€ 0 € €

independent random examples of an unknown target concept c€ C,, each
example drawn independently according to some fixed distribution D on
X,. Let Q be the resulting sample of ¢. Then A repeats the steps

(1) simulate the r-poly-hy-fi on Q,
(2) check if the output of the r-poly-hy-fi is consistent with O,

until either a consistent hypothesis is found or the number of repetitions
exceeds (1/y)In(2/8). If a consistent hypothesis is found, A returns it.
Otherwise A returns some default hypothesis in H,.

First note that the sample size used by 4 is polynomial in 1/e, log(1/5),
and 7. In addition, since the hypothesis finder runs in polynomial time, the
time required for a single execution of step (1) is polynomial in the length
of the sample. Since we are assuming H is polynomially evaluatable, step
(2) can be executed in time polynomial in the length of the sample and the
length of the hypothesis produced in step (1). Finally, since the maximum
number of repetitions is O(log(1/6)), this implies that the total run time of
A is polynomial in 1/g, log(1/6), and n.

We now calculate the probability that 4 fails to produce a representation
in H of a hypothesis that has error at most &. This happens only if either
the number of repetitions exceeds (1/y) In(2/8) or 4 finds a hypothesis that
is consistent with the sample Q but has error greater than &. By definition,
the probability that the r-poly-hy-fi fails to produce a representation in H
of a consistent hypothesis on any single iteration of step (1) is at most
1—7. Hence the probability that the number of iterations exceeds
(1/7) In(2/6) is at most

0

(1 — y)(l/?)ln(Z/é) < e In(2/3) — —

By Lemma 4.3, the probability that there is any hypothesis in H, with
error greater than ¢ that is consistent with the sample Q is at most 0/2.
Hence the probability that 4 finds a hypothesis that is consistent with the
sample Q but has error greater than ¢ is at most 6/2. It follows that A fails
to produce a hypothesis with error at most ¢ with probability at most 6.

By the properties of 4 that we have demonstrated, it follows from
Theorem 3.1 that C is polynomially learnable by H. |

The next lemma is a technical lemma relating to the construction of

randomized algorithms. For the proof of Lemma 4.6, we would like

(IR
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to construct an algorithm that chooses a random element uniformly from
a finite set of some arbitrary size. Our model of randomized algorithms
gives us only flips of a fair coin as a source of randomness. We will use
a number of flips of a fair coin too create an approximately uniform
distribution on the set, as described in the following lemma.

LEMMA 4.5. There exists a randomized algorithm that when given as
input a positive integer N and a finite set of k elements will use exactly N
Slips of a fair coin to randomly choose a single point from the set with the
property that the probability of choosing each point lies strictly between
/k—1/2% and 1/k + 1/2". If this algorithm is run with N> 1+ log, k then
the probability of choosing each point lies strictly between 1/2k and 3/2k.

Proof. Let the input set be S= {x,, .., x,}. The algorithm flips a fair
coin N times to choose an integer m uniformly at random from {1, .., 2"}.
The algorithm then chooses the point x; if j=m mod k. The number of
choices of m for which any given x; will be chosen is either [ 2"/k | or
[2%/k7. Thus for any j, the probability of choosing x; is either | 27/k |2V
or [2V/k7/2V. Since 2V/k—1<|2V/k|<[2¥/k7<2/k+1 the lemma
follows immediately. |

LemMA 4.6. If C is polynomially learnable by H then there exists an
r-poly hy-fi for C by H.

Proof. Here we use a construction from Pitt and Valiant (1988).

Assume C is polynomially learnabiec by H. Let 4 be a polynomial
learning algorithm for C by H in the functional model with sample
complexity S (e, 6, n). Using A4, we define an r-poly hy-fi B for C by H
with success rate 3 as follows. Suppose that B is given a nonempty sample
U of some concept ce C,, for some n> 1. Let m be the number of examples
in U, e=1/2m+1), and d=4. Algorithm B determines » and then
produces a sample U’ of size S, (¢, 8, n) by drawing random points from U
using the method described in Lemma 4.5. It uses [log, m + 17 coin flips
for each draw, so that on each draw the probability of choosing each point
in U is at least 1/2m. Algorithm B labels each point with the same label it
had in U. Algorithm B then simulates 4 on U’ and returns the output of A.

First note that since we are assuming a standard encoding for tuples
representing instances, B can determine 7 is polynomial time from any
example in U. It is also clear that B can simulate each random draw in
time polynomial in m. Now S, (e, 8, n) is polynomial in » and l/e=2m+1,
and the simulation of 4 is polynomial in S, (e, J, n). It follows that B runs
in time polynomial in the length of its input. '

The points in U’ have been independently chosen by B according
to some probability distribution D that assigns to each point in U a

|
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probability at least 1/2m. Since d=14 and B produces a sample of the
target concept ¢ of size S,(, d, n) independently drawn according to the
distribution D, by our assumptions on the learning algorithm A4, B’s
simulation of 4 produces a representation in H of a hypothesis that has
error at most ¢ with respect to ¢ and D with probability at least 1. Since
every point of X, that appears in U has probability at least 1/2m according
to D, any hypothesis that is not consistent with U has error greater than
¢ with respect to the target concept ¢ and the distribution D. Hence B
produces a representation in H of a hypothesis that is consistent with U
with probabilty at least 1. Thus B is an r-poly-hy-fi for C by H with success
rate at least 3. ||

THEOREM 4.1. Under the assumption that concepts have size polynomial
in n, if VCdim(H) is polynomial then for all C, C is polynomially learnable
by H if and only if there exists an r-poly hy-fi for C by H.

Proof. This follows directly from Lemmas 4.4 and 4.6. |

The above theorem generalizes Theorem 3.1.1 of Blumer et al. (1989),
which was restricted to the case C=H. Similar results are also given in
Natarajan (1989).

5. LEARNABILITY AND PREDICTION

The characterizations of polynomial learnability in the previous section
section depend fundamentally on syntactic restrictions placed on the
hypothesis space. Here we look at polynomial learnability when the only
restrictions are those given by the regularity assumptions regular, of Sec-
tion 2. Primarily, this involves restricting our attention to hypothesis spaces
that are polynomially evaluatable, ie., such that membership in the
individual hypotheses can be efficiently tested. We introduce a model of
prediction and show that polynomial predictability of C is equivalent to
the existence of a polynomially evaluatable hypothesis space H such that C
is polynomially learnable by H. :

The prediction model that we use was introduced in Haussler et al.
(1988) and further investigated in Pitt and Warmuth (1990). In this model,
the learning mechanism is not required to output a hypothesis, but only to
predict the correct classication of randomly drawn instances based on pre-
vious examples. An algorithm that, given a sequence of examples and a
single unclassified instance, predicts a classification for that instance is
called a prediction algorithm. We restrict our attention to deterministic
prediction algorithms.

It is natural to view learning in the prediction model as an incremental -

i
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process. In each step of this process a random instance is independently
selected according to a fixed distribution, the algorithm makes a prediction,
and then it receives some form of feedback indicating whether or not its
prediction was correct with respect to a fixed target concept. (An incorrect
prediction is called a mistake.) Each such step is called a trial. After m trials
the algorithm has thus received m independent random examples of the
target concept.

The state of the algorithm at the beginning of any trial can be viewed as
representing a hypothesis that is implicitly defined as the set of all instances
for which the algorithm would, at this point, predict the classification “1.”
The error of this hypothesis, as defined above, is the probability that it will
disagree with the target concept, ie., the probability that the algorithm
will make a mistake on this given trial, given the state that it is in at the
beginning of the trial. Thus, it is perhaps no surprise that there is a close
relationship between prediction algorithms that make few mistakes and
learning algorithms that produce hypotheses with small error. We give the
exact relationship below.

We begin with a more formal treatment of prediction algorithms.

DerINITION 5.1, Let C be a concept class. Let S denote the set of all
samples of concepts in C. A prediction strategy for C is a mapping
Q:ScxX—-{0,1}. A prediction algorithm is any computational
mechanism that implements a prediction strategy.

We associate a random variable with each prediction strategy Q that
indicates whether or not Q makes a mistake predicting the classification of
the instance x with respect to target ce C, given the classifications of
instances Xxi, ..., X,,.

DeFINITION 5.2, For each m>0, n>1, ceC, and x, .., X, €X,,
My Y(X1, s X4 1) is 1if, given the classifications of X1 e Xy with respect
to ¢, Q predicts the wrong classification of x,,,; with respect to ¢, and
M7y, s Xy q) ds O otherwise.

The expectation of this random variable is denoted by EDmH(M'g_j‘),
where D, k>0, denotes the k-fold product distribution generated by D on
sequences of instances from X, of length k. This expectation E pm+1 (Mg 1
is the probability that Q makes a mistake if it is given m random examples
of ¢ and asked to predict the classification of an (m + 1)st random instance,
i.e., the probability of a mistake on the m+ 1st trial.

DEFINITION 5.3.- Let C be a concept class on X. We say that C is poly-
nomially predictable if there exists a prediction algorithm Q for C and a
sample size m(e, n, s) that is polynomial in 1/¢, n,-and s such that Q runs

i 1] 1
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in time polynomial in the length of its input and has the property that for
all n, s =1, m=mfe, n, s), e >0, target concepts c€ C, , and distributions D
on X,,

Epni (M <6

We now show that C is polynomially predictable if and only if there
exists a polynomially evaluatable hypothesis space H such that C is poly-
nomially learnable by H. Note that if there exists such a hypothesis space
then there exists such a hypothesis space that also satisfies the requirements
of the condition regular, (for each n>1 the hypothesis space H, includes
the empty hypothesis, the hypothesis X,, and hypotheses consisting of
singletons from X,). Thus by Theorem 3.1, if there exists a polynomially
evaluatable hypothesis space H such that C is polynomially learnable by H
in any of the models of polynomial learnability discussed in Section 3, then
this holds in all of the models of Section 3.

It is clear that any learning algorithm in the functional model can easily
be converted into a prediction algorithm. We simply run the algorithm on
the given sample, and then use the resulting hypothesis to predict the
classification of the given instance. The resulting prediction algorithm will
run in polynomial time if the original learning algorithm runs in polyno-
mial time and uses a polynomially evaluatable hypothesis space. Conver-
sion in the other direction is also straightforward. In this case we simply
feed the examples to the prediction algorithm and output the resulting state
of the prediction algorithm as the hypothesis. If the prediction algorithm
runs in polynomial time then the resulting learning algorithm will also run
in polynomial time and will use a polynomially evaluatable hypothesis
space.

When a prediction algorithm Q is used as a learning algorithm in the
functional model, we are interested in the error of the final hypothesis that
it produces. We define a random variable that gives the error with respect
to a given distribution D of the hypothesis of Q used for trial m + 1, given
that the instances from the previous trials were X, .., X,, and the target
concept is c.

DEeFNITION 5.4. For each m>0, n>1, ceC, and x,, .., x,€X,, let
ho (X1s s Xp) = {x e X,: given the classifications of x,, .., X, with respect
to ¢, Q predicts 1 for x}. We call hy () the initial hypothesis of Q and
hg, (X1, ..y X,,) the hypothesis generated by Q from x,, ..., X,, and c. For any
distribution D on X,,, ERy , (X, «s X)) = D(hg. (X1, s X,,) 4c), Where 4
denotes the symmetric difference.

The expectation of this random variable is denoted by E o (ERG . p)
The following is easily verified (see Haussler et al., 1988).

[TIIIR
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LemMA 5.1. Epm(ERG . )= EDm+1(M”‘“) for any prediction strategy
Q, target concept c e C,, distribution D on X,,, and m = 0.

The following is the main result of this section.’

THEOREM 5.1. Let C be a concept class on X. Then C is polynomially
predictable if and only if for every model of polynomial learnability of
Section 3 there exists a polynomially evaluatable hypothesis space H on X
such that C is polynomially learnable by H.

Proof. We will first prove that if C is polynomially predictable then

there exists some H such that
(C, H) € functional( fixed 0, det) N regular.

Theorem 3.1 then implies that there exists some H such that C is learnable
by H in any of the models of Section 3. If C is polynomially predictable,
then there exists a prediction algorithm Q for C and a sample size (e, n, 5)
that is polynomial in 1/e, n, and s such that for all n, s> 1, m = m(e, n, s),
¢ >0, target concepts ce C,,,, and distributions D on X,

Epna (M3 1Y) <e
or equivalently, by Lemma 5.1,
Epn(ERy ) <e

The last inequality states that the expected error of the hypothesis
generated by the prediction algorithm is at most ¢ when the sample size is
at least m(e, n, s). Thus for sample size at least m(g/2, n, s), the expected
error is at most &/2. Since the error is a positive random variable, by
Markov’s inequality this implies that the probability that the error is
greater than ¢ is at most 3. Thus the conversion from prediction algorithms
to learning algorithms outlined above implies that C is polynomially
learnable in the fixed-6 model.

For the other direction, we assume there exists a polynomially evaluable
hypothesis space H such that

1
(C, H) € functional (3’ det) Nregular,.

Thus there exists a learning algorithm A in the functional model and a
sample size m(e,.n, s) that is polynomial in 1l/e, n, and s such that A4

SIn a major new result Schapire (1990) showed that “weak” polynomial predictability
(where the prediction error need only be slightly less than one-half) is equlvalent to “strong”
polynomial predictability, the notion used in this paper.

T
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produces a hypothesis in H with error at most &/2 with probability at least
1 —¢/2. Hence the expected error of the hypothesis produced by 4 is at
most (1 —¢/2)(e/2) + (¢/2)(1) <e. Using the conversion from learning algo-
rithms to prediction algorithms outlined above, this gives a prediction
algorithm with expected error at most ¢. ||

It is also useful to have a form of the above theorem that explicitly
shows how the probability of making a mistake must decrease as a function
of the number of trials. This gives an upper bound on the “learning curve™®
for the prediction algorithm.

COROLLARY 5.1. Let C be a concept class on X. Then for there to exist
a polynomially evaluatable hypothesis space H such that C is polynomially
learnable by H it is necessary and sufficient that there exist a prediction
algorithm Q for C, a polynomial p(n,s), and 0< B <1 such that Q runs in
time polynomial in the length of its input and for all m, n, s > 1, all distributions
D on X,, and all target concepts ce C, , the probability that Q makes a
mistake on the (m+ 1)st trial is at most p(n,s)m~".

Proof. (=) By Theorem 5.1, if C is polynomially learnable then there
exists a prediction algorithm Q for C that runs in polynomial time and
there exists a sample size m(e, n, s) that is polynomial in (1/¢), n and s such
that for all n,s>1, m>=ml(e, n,s), 0<e<1, target concepts ce C, , and
distributions D on X,,,

Epn (M3 <.

Without loss of generality we can assume that m(e, n, 5) = co(ns/e)*, where
o, k=1 are constants. Let f=1/k and p(n,s)=chns. Given m>1, if
p(n,s)ym~?>1 then the conclusion clearly follows. Otherwise, for
e=p(n, s)mF, we have m=m(e, n, ), so EDmH(ng Y < p(n, s)ym =~

(<) Let m(e, n, s) = (p(n, s)/¢)"#. Then

Epnsi (Mgt )< p(n, sym= P <e

for all n,s>=1, m=>m(e, n,s), all distributions D on X,, and all target
concepts ce C,, ;. |

6 Most learning curves in the machine learning literature plot the “accuracy” -of the
hypothesis as a function of the number of examples, averaged over several runs. The accuracy
is estimated by calculating the fraction of examples correctly classified in an independent test
set. In view of Lemma 5.1, plotting the probability of making a mistake as a function of the
number of trials is, in the limit, the same as plotting 1 —accuracy as a function of the number
of examples.




160 HAUSSLER ET AL.

ACKNOWLEDGMENTS

A significant part of this 'paper consists of “folk theorems”. For providing informal
arguments that we have formalized here, and for many helpful discussions, we are indebted
to Dana Angluin, Sally Floyd, B. K. Natarajan, Lenny Pitt, Ron Rivest and Les Valiant.

RECEIVED January 24, 1989; FINAL MANUSCRIPT RECEIVED March 16, 1990

REFERENCES

Ano, V. A., HOPCROFT, J. E.,, AND ULLMAN, J. D. (1974), “The Design and Analysis of
Computer Algorithms,” Addison-Wesley, Menlo Park.

ANGLUIN, D. (1987), Queries and concept learning, Machine Learning 2, 319-342.

ANGLUIN, D., AND VALIANT, L. D. (1979), Fast probabilistic algortihms for Hamiltonian
circuits and matchings, J. Comput. System Sci. 18, 155-193.

BENEDEK, G., AND ITAl, A. (1988a), Learnability by fixed distributions, in “Proceedings,
Ist Workshop on Computational Learning Theory,” pp. 80-90, MIT, Cambridge, MA;
Theoretical Computer Science, to appear.

BENEDEK, G., AND ITal, A. (1988b), Nonuniform learnability, in “Proceedings, 15th Inter-
national Colloquium on Automata Languages and Programming,” pp. 82-92.

BLUMER, A., EHRENFEUCHT, A., HAUSSLER, D., AND WARMUTH, M. K. (1987), Occam’s razor,
Inform. Process. Lett. 24, 377-380.

BLUMER, A., EHRENFEUCHT, A., HAUSSLER, D., AND WARMUTH, M. K. (1989), Learnability
and the Vapnik—Chervonenkis dimension, J. Assoc. Comput. Mach. 36 (4), 929-965.

BoARD, R. A., AND P1TT, L. (1990), On the Necessity of Occam Algorithms, in “Proceedings,
22nd Annual ACM Symposium on Theory of Computing, Baltimore, Maryland,”
pp. 54-63; Theoretical Computer Science, to appear.

GAREY, M. AND JOHNSON, D. (1979), “Computers and Intractability: A Guide to the Theory
of NP-Completeness,” Freeman, San Francisco.

HAUSSLER, D., LITTLESTONE, N., AND WARMUTH, M. K. (1988), “Predicting {0, 1 }-functions
on randomly drawn points, in “29th Annual IEEE Symposium on Foundations of
Computer Science, White Plains, New York,” pp. 100-109.

HaussLer, D. aND WELzL, E. Epsilon nets and simplex range queries, Discrete Comput.
Geom. 2, 127-151. ' ‘

KEearns, M., L1, M., PiTT, L., AND VALIANT, L. (1987), Recent results on Boolean concept
learning, in “Proceedings, 4th International Workshop on Machine Learning, Irvine,
California,” pp. 337-352.

LiNniaL, N., MANSOUR, Y., AND RIVEST, R. (1988), Results on learnability and the Vapnik—
Chervonenkis dimension, in “Proceedings, 29th IEEE Symposium on Foundations of
Computer Science, White Plains, New York,” pp. 120-129.

NaTARAJAN, B. K. (1987a), On learning boolean functions, in “Proceedings, 19th Annual
ACM Symposium on Theory of Computation.” pp. 296-304.

NATARAJAN, B. K. (1987b), Learning Functions from Examples, Technical Report CMU-RI-
TR-87-19, Carnegie Mellon University. .

NATARAJAN, B. K. (1989), On learning sets and functions, Machine Learning 4 (2).

PitT, L. AND VALIANT, L. G. (1988), Computational limitations on learning from examples,
J. Assoc. Comput. Mach. 35 (4), 965-984. .

PitT, L. AND WARMUTH, M. K. (1990), Prediction preserving reducibility, J. Comput. System
Sci. 41 (3), 430-467.

[ RN




MODELS FOR POLYNOMIAL LEARNABILITY 161

RIvesT, R. (1987), Learning decision-lists, Machine Learning 2 (3), 229-246.

SAUER, N. (1972), On the density of families of sets, J. Combin. Theory Ser. A 13, 145-147.

SCHAPIRE, R. F. (1990), The strength of weak learnability, Machine Learning 5 (2), 197-227.

VALIANT, L. G. (1984), A theory of the learnable, Comm. ACM 27 (11), 1134-1142.

VALIANT, L. G. (1985), Learning disjunctions of conjunctions, in “Proceedings, 9th IJCAI,
Los Angeles, California,” Vol. 1, pp. 560-566.

VaPNIK, V. N. (1982), “Estimation of Dependences Based on Empirical Data,” Springer-
Verlag, New York.

VAPNIK, V. N. AND CHERVONENKIS, A. YA. (1971), On the uniform convergence of relative
frequencies of events to their probabilities, Theory Probab. Appl. 16 (2), 264-280.

Printed by Catherine Press, Ltd., Tempelhof 41, B-8000 Brugge, Belgium







