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Kearns and Singh (1998¢cently presented a new algo-
rithm for reinforcement learning in Markov decision pro-
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Abstract

We present a provably efficient and near-optimal al-
gorithm for reinforcement learning in Markov deci-
sion processes (MDPs) whose transition model can
befactoredas a dynamic Bayesian network (DBN).
Our algorithm generalizes the recent &gorithm

of Kearns and Singh, and assumes that we are given
both an algorithm for approximate planning, and
the graphical structure (but not the parameters) of
the DBN. Unlike the original Ealgorithm, our new
algorithm exploits the DBN structure to achieve a
running time that scales polynomially in the num-
ber ofparameterof the DBN, which may be expo-
nentially smaller than the number of global states.

Introduction

cesses (MDPs). Their®Ealgorithm (forExplicit Explore or o
Exploif) achieves near-optimal performance ina runningtime2 ~ Preliminaries

and a number of actions which are polynomial in the num
ber of states and a parametgy which is the horizon time

in the case of discounted return, and the mixing time of th
optimal policy in the case of infinite-horizon average return.;
The B algorithm makes no assumptions on the structure o
the unknown MDP, and the resulting polynomial dependence ;e
on the number of states make$ iEnpractical in the case of
very large MDPs. In particular, it cannot be easily applie
to MDPs in which the transition probabilities are represente

in the factored form of @ynamic Bayesian netwo(OBN).
MDPs with very large state spaces, and sD&N-MDPsin

particular, are becoming increasingly important as reinforce;
ment learning methods are applied to problems of growing

difficulty [Boutilieret al, 1999.

In this paper, we extend the’Elgorithm to the case of
DBN-MDPs. The original E algorithm relies on the abil-

ity to find optimal strategies in givenMDP — that is, to
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particular[Boutilier et al, 1999, and for large state spaces

in general[Kearnset al., 1999; Koller and Parr, 1999 Our

new DBN-E algorithm therefore assumes the existence of a
procedure for finding approximately optimal policies in any
givenDBN-MDP. Our algorithm also assumes that the quali-
tative structure of the transition model is known, i.e., the un-
derlying graphical structure of the DBN. This assumption is
often reasonable, as the qualitative properties of a domain are
often understood.

Using the planning procedure as a subroutine, DBNsE
plores the state space, learning the parameters it considers
relevant. It achieves near-optimal performance in a running
time and a number of actions that are polynomidiand the
number of parameters in the DBN-MD®hich in general is
exponentially smaller than the number of global states. We
further examine conditions under which the mixing tiffef
a policy in a DBN-MDP is polynomial in the number of pa-
rameters of the DBN-MDP. The “anytime” nature of DBN-E
allows it to compete with such policies in total running time
that is bounded by a polynomial in the number of parameters.

"We begin by introducing some of the basic concepts of MDPs

and factored MDPs. Aarkov Decision Process (MDR%

&efined as a tuplés, A, R, P) where: S is a set of states4

s a set of actionsR is areward functionR : S +— [0, Rz,

uch thatR(s) represents the reward obtained by the agentin
L. P is atransition modelP : S x A — Ag, such that
P(s"| s, a) represents the probability of landing in statef

(}he agent takes actianin states.

Most simply, MDPs are described explicitly, by writing
down a set of transition matrices and reward vectors — one
for each actione. However, this approach is impractical
or describing complex processes. Here, the set of states
s typically described via a set of random variabbés =
{X1,..., X}, where each¥; takes on values in some finite
domainVal(X;). In general, for a set of variabl& C X, an
instantiatiory assigns a value € Val(X) foreveryX € Y;
we useVal(Y) to denote the set of possible instantiations to

perform planning This ability is readily provided by al-
gorithms such as value iteration in the case of small state 1 reward function is sometimes associated with (state,action)
spaces. While the general planning problem is intractabl@airs rather than with states. Our assumption that the reward depends
in large MDPs, significant progress has been made recentlynly on the state is made purely to simplify the presentation; it has
on approximatesolution algorithms for both DBN-MDPs in  no effect on our results.



Y. A state in this MDP is an assignmesnte Val(X); the There are three standard notions of the expeetedn en-
total number of states is therefore exponentially large in thgoyed by a policy in an MDP: the asymptotic discounted re-
number of variables. Thus, it is impractical to represent theurn, the asymptotic average return, and the finite-time aver-
transition model explicitly using transition matrices. age return. Like the original®algorithm, our new general-
The framework oflynamic Bayesian networks (DBN&)  ization will apply to all three cases, and to convey the main
lows us to describe a certain important class of such MDPs ifdeas it suffices for the most part to concentrate on the finite-
a compact way. Processes whose state is described via a setiofie average return. This is because our finite-time average
variables typically exhibit a weak form of decoupling — not return result can be applied to the asymptotic returns through
all of the variables at time directly influence the transition either thehorizon timel/(1 — v) for the discounted case,
of a variableX; from timet to timet¢ + 1. For example, ina or themixing timeof the optimal policy in the average case.
simple robotics domain, the location of the robotat timel ~ (We examine the properties of mixing times in a DBN-MDP
may depend on its position, velocity, and orientation at timen Section 5.)
t, but not on what it is carrying, or on the amount of paper Let M be a Markov decision process, tetbe a policy in
in the printer. DBNs are designed to represent such processég, and letp be a7'-path inA/. Theaverage return along

compactly. in M is
Leta € A be an action. We first want to specify the
transition modelP(x’ | x,a). Let X; denote the variable Um(p) = (1/T)(R(x1) + - - -+ R(xr41)).

X; at the current time and(/ denote the variable at the ,
next time step. The transition model for actiorwill con- ~ The 7-step (expected) average return from state is
sist of two parts — an underlyingansition graphassoci- Unr(x,T) = >, Pi;[plUn(p) where the sum is over all
ated witha, and parameters associated with that graph. Thé-pathsp in M that start at. Furthermore, we define the
transition graph is a 2-layer directed acyclic graph whoseoptimal7-step average returfromx in M by Uz, (x,T) =
nodes are{X,,...,X,, X! ..., X,}. Al edges in this max.{Ug(x,7)}. . . -
graph are directed from nodes {1, . .., X,,} to nodes in An important problem in MDPs iglanning finding the
{X1,..., X/}, note that we are assuming that there are ngpolicy 7 that achieves optimal return ingavenMDP. In our
edges between variables within a time slice. We denote thease, we are interested in achieving the optitfiaitep av-
parents ofX! in the graph byPa,(X/). Intuitively, the tran- ~ €rage return. The complex[ty of all exact MDP planning al-.
sition graph fora specifies thequalitative nature of prob- —gorithms depends polynomially on the number of states; this
abilistic dependencies in a single time step — namely, th@roperty renders all of these algorithms impractical for DBN-
new setting ofX; depends only on the current setting of the MDPs, where the number of states grows exponentially in
variables inPa,(X!). To make this dependencpiantita- the size of the representation. However, ther_e has been re-
tive, eachnode X! is associated with aonditional probabil- ~ cent progress on algorithms fapproximatelysolving MDPs
ity table (CPT)P, (X! | Pa,(X!)). The transition probability ~With large state spacd&earnset al, 1999, particularly on
P(x' | x,a) is then defined to bE[, P, (x} | u;), whereu, is ~ Ones represented in a factored way as an MiB&utilier et
the setting in of the variables ifPa, (X!). al., 19995 Koller and Parr, '1999 The focus 'of our work is

We also need to provide a compact representation of then the reinforcement learning task, so we simply assume that
reward function. As in the transition model, explicitly spec- We have access to a “blatiox” that performs approximate
ifying a reward for each of thexponentially many states is Planning for a DBN-MDP.
impractical. Again, we use the idea of factoring the repre
sentation of the reward function into a setlotalizedre- ithm for a DBN-MDP is one that, given a DBN-MDP
Wa(d functions, each of which only depends on _asmall set 05\4, produces a (compactly represented) policguch that
variables. In our robot example, our reward might be com-;» B +

: ’ (x,T) > (1 - Uz (x,7).1

posed of several subrewards: for example, one associated"
with location (for getting too close to a wall), one associatedwe will charge our learning algorithm a single step of com-
with the printer status (for letting paper run out), and so onputation for each call to the assumed approximate planning
More precisely, leRR be a set of function®, . .., Ry; each  algorithm. One way of thinking about our result is agea
function R; is associated with a cluster of variablé€s C ductionof the problem of efficient learning in DBN-MDPs to
{X1,...,X,}, suchthatR; is afunction fromVal(C;)to[R.  the problem of efficient planning in DBN-MDPs.
Abusing notation, we will usé?; (x) to denote the value that ~ Our goal is to perform model-based reinforcement learn-
R; takes for the part of the state vector correspondinGto ing. Thus, we wish to learn an approximate model from ex-
The reward function associated with the DBN-MDP at a stateperience, and then exploit it (or explore it) by planning given
x is then defined to b&(x) = Zle Ri(x) € [0, Riag)]- the approximate model. In this paper, we focus on the prob-

The following definitions for finite-length paths in MDPs lem of learning the modgdarametergthe CPTSs), assuming
will be of repeated technical use in the analysis. L&tbe  that the modestructure(the transition graphs) is given to us.
a Markov decision process, and tetbe a policy inM. A It is therefore useful to consider the set of parameters that
T-pathinM is a sequencgof 7'+ 1 states (thatis{ transi-  we wish to estimate. As we assumed that the rewards are
tions)of M: p = x1,...,xp,x741. The probability thap is  deterministic, we can focus on the probabilistic parameters.
traversed inV/ upon starting in state; and executing policy (Our results easily extend to the case of stochastic rewards.)
7 is denotedPf; [p] = F_, P(xp41 | Xk, 7(xx)). We define aransition componentf the DBN-MDP to be a

Definition 2.1:A p-approximationT-step planning algo-



distribution P, (X! | u) for some actioru and some partic- in M achieves its high return by staying (with high proba-
ular instantiation: to the parent®a,(X/) in the transition bility) in the setS of currently known states, or the optimal
model. Note that the number of transition components is apolicy has significant probability déavingS within 7" steps.
most)_, ; [Val(Paq(X;))|, but may be much lower when a Mostimportantly, the algorithm can detect which of these two

variable’s behavior is identical for several actions. is the case; in the first case, it can simulate the behavior of the
optimal policy byfinding a high-returexploitationpolicy in
3 Overview of the Original E? the partial modell/s, and in the second case, it can replicate

the behavior of the optimal policy by finding &xploration

Since our algorithm for learning in DBN-MDPs will be a di- policy that quickly reaches the adidnal absorbing state of

rect generalization of the®Ealgorithm of Kearns and Singh . 2 ) !
— h(greafter abbreviated KS & we begin with an overviegv ofthe partial model/s. Thus, by performing two off-line plan-
that algorithm and its analysis. It is important to bear in mindninNg computations of/s, the algorithm s guaranteed to find
that the original algorithm is designed only for the case wheréither a way to get near-optimal return for the néxsteps,
the total number of state¥ is small, and the algorithm runs OF @ way to improve the statistics at an unknown or unvisited
in time polynomial in\V. state within the next’” steps. KS show that this algorithm
E3 is what is commonly referred to as ardirectormodel- ~ €nsures near-optimal return in time polynomiain
basedalgorithm: rather than maintaining only a current pol- .
icy or value function, the algorithm maintains a model for4 The DBN-E’ Algorithm

the transition probabilities and the rewards for sosnéset  Qur goal is to derive a generalization ot Eor DBN-MDPs,

of the states of the unknown MDR!. Although the algo-  and to prove for it a result analogous to that of KS — but

rithm maintains a partial model @, it may choose tmever  with a polynomial dependence not on the number of stéites

build acompletemodel of M/, if doing so is not necessary to byt on the number of CPT parametéri the DBN model.

achieve high return. _ . Our analysis closely mirrors the original, but requires a sig-
The algorithm starts off by doingalanced wanderinghe  nificant generalization of the Simulation Lemma that exploits

algorithm, upon arriving in a state, takes the action it has trieqpe structure of a DBN-MDP. a modified constructionds

the fewest times from that state (breaking ties randomly). Atpat can be represented as a DBN-MDP, and a number of al-
each state it visits, the algorithm maintains the obvious statisgrations of the details.

tics: the reward received at that state, and for each action, | jke the original B algorithm, DBN-E will build a model

the empirical distribution of next states reached (that is, thettne unknown DBN-MDP on the basis of its experience, but

estimated transition probabilities). now the model will be represented in a compact, factorized
A crucial notion is that of e&nown state— a state that torm . More precisely, suppose that our algorithm is in state

the algorithm has visited “so many” times that the transition, oyacutes action. and arrives in state’. This experience

probabilities for that state are “very close” to their true val- i he ysed to update all the appropriate CPT entries of our
ues inM. This definition is carefully balanced so that “so

— i 5% (! ) i
many” times is still polynomially bounded, yet “very close” tmhgdoet!vi oSSvmngy'ﬁHé?:zggtLr:l?;ﬁi(fﬁe| suét)tiirgeouigg%e(c’j)m
suffices to meet the simulation requirements below. An im- . SRR ;o A
portant observation is that we cannot do balanced wanderinIn X WeAW'” ?ISO maintain count€’, (z;, u;) of the number
indefinitely before at least one state becomes known: by th8f imes Pu(z} | u;) has been updated. .
Pigeonhoie Principle, we will soon startascumulate accu- _Recall thata crucial element of the origingl &nalysis was
rate statistics at some state. the notion of &nown stateln the original analysis, it was ob-

The most important construction of the analysis is theS€rved thatifV is the total number of states, then aitV )
known-state MDPIf & is the set of currently known states, €XPeriences some state must become known by the Pigeon-
the known-state MDP is simply an MDR's that is naturally hole Principle. We cannot hope to use the same logic here,
inducedon S by the full MDP M. Briefly, all transitionsin &S We aré now in a DBN-MDP with an exponentially large
M between states i§ are preserved ififs, while all other number of states. Rather, we must “pigeonhole” not on 'ghe
transitions inM are “redirected” inMs to lead to a single numbe( of states, but on the numbe_r of parameters required
new, absorbing state that intuitively represents all of the unt© SPecify the QBN:MDP- Towards this goal, we will say that
known and unvisited states. Although @oes not have direct the CPT entry P, (=} | ;) is knownif it has been visited

access td/s, by virtue of the definition of the known states, “€nough”times to ensure that, with high probability
it does have a gooapproximation/s. p S,
The KS analysis hinges on two central technical lemmas. |Pairi [ wi) = Pa(e | wi)] < o
The first is called Fhe Simulation Lemma,.and it establisheSyie now would like to establish that if, for an appropriate
that Ms has goodsimulation accuracythat is, the expected  cpoice ofa, all CPT entries are known, then our approximate
T'-step return of any policy i/ is close to its expectel-  DBN-MDP can be used to accurately estimate the expected
step return inMs. Thus, at any time}s is a usefulpartial return of any policy in the true DBN-MDP. This is the de-
model of M, for that part ofM that the algorithm “knows”  sired generalization of the original Simulation Lemma. As in
very well. the original analysis, we will eventually apply it to a gener-
The second central technical lemma is the “Explore or Ex-alization of the induced MDR/s, in which we deliberately
ploit” Lemma. It states that either the optimal-6tep) policy  restrict attention to only the known CPT entries.



4.1 The DBN-MDP Simulation Lemma

Returning to the main development, we can now give a

Let M and M be two DBN-MDPs over the same state spacePrecise definition of a known CPT entry. It is a simple ap-

with the same transition graphs for every actigrand with
the same reward functions. Then we say thatis an -
approximationof M if for every actiona and nodeX/ in
the transition graphs, for every settingf Pa, (X ), and for
every possible valug; of X7,

|Pa(} | 0) = Pa(a} [w)| < a

where P,(- | -) and P,(- | -) are the CPTs of\/ and M,
respectively.

Lemma4.1: Let M be any DBN-MDP over state variables
with ¢ CPT entries in the transition model, and lef be an
a-approximation ofM, wherea = O((¢/(T*(Rmaz))?)-
Then for any policyr, and for any statex, |Uf,(x,T) —
U;‘;[(x, T)| < e

Proof: (Sketch) Let us fix a policy and statex. Recall that
for any next stat&’ and any actiom, the transition probabil-
ity factorizes viathe CPTs aB(x’ | x, a) = [[, Pu(x] | u;).

whereu; is the setting ofPa,(X/) in x. Let us say that

P(x' | x,a) contains ag-small factorif any of its CPT fac-
tors P,(x} | wu;) is smaller than3. Note that a transition

plication of Chernoff bounds to show that provided the count
Ca(},v;) exceeds)(1/a” log(1/3)), Pa(z} | u;) has addi-
tive error at mosty with probability at least — 4. We thus
say that this CPT entry is known if its countoeeds the given
bound for the choice = O((¢/(T?nvRq:))?) specified by
the DBN-MDP Simulation Lemma. The DBN-MDP Simula-
tion Lemma shows that i&ll CPT entries are known, then
our approximate model/ can be used to find a near-optimal
policy in the true DBN-MDPM .

Note that we candentify which CPT entries are known
via the count<”, (x4, u;). Thus, if we are at a state for

which at least one of the associated CPT entFgs: | u;)

is unknown, by taking action we then obtain an experience
that will increase the corresponding cod(z}, u;). Thus,

in analogy with the original £ as long as we are encoun-
tering unknown CPT entries, we can continue taking actions
that increase the quality of our model — but now rather than
increasing counts on a per-state basis, the DBN-MDP Simu-
lation Lemma shows why it suffices to increase the counts on
a per-CPT entry basis, which is crucial for obtaining the run-
ning time we desire. We can thus show that if we encounter
unknown CPT entries for a number of steps that is polyno-
mial in the total numbef of CPT entriesand1/¢, there can

probability may actually be quite small itself (exponentially no longer be any unknown CPT entries, and we know the true

small inn) without necessarily containing a-small factor.
Our first goal is to show that trajectories M and M

DBN-MDP well enough to solve for a near-optimal policy.
However, similar to the original algorithm, the real diffi-

that cross transitions containingfasmall CPT factor can be culty arises when we are in a state with no unknown CPT
“thrown away” without much error. Consider a random tra- entries, yet there do remain unknown CPT entries elsewhere.
jectory of " steps inM from statex following policy =. It ~ Then we have no guarantee that we can improve our model
can be shown that the probability that such a trajectory willat the next step. In the original algorithm, this was solved by
cross at least one transitidgh(x’ | x, «) that contains &-  defining the known-state MDR/s, and proving the afore-
small factor is at most'¢3. Essentially, the probability that mentioned “Explore or Exploit” Lemma. Duplicating this

at any step, any particul@grsmall transition (CPT factor) will
be taken by any particular variahlé; is at most3. A sim-
ple union argument over the CPT entries and#tane steps

step for DBN-MDPs will require another new idea.

4.2 The DBN-MDP “Explore or Exploit” Lemma

the differencgUj; (x, T) — UZ, (x,T')| by these trajectories
can be shown to be at md&t R, q.¢(« + 3). We will thus

ignore such trajectories for now.
The key advantage of eliminatingrsmall factors is that

must satisfy the additional requirement that the known-state
MDP preserve the DBN structure of the original problem, so
that if we have a planning algorithm for DBN-MDPs that ex-
ploits the structure, we can then apply it to the known-state

we can convert additive approximation guarantees into mulMDP3. Therefore, we cannot justintroduce a new “sink state”

tiplicative ones. Lefp be any path of lengtfi’. If all the
relevant CPT factors are greater tharand we letA = o/,
it can be shown that

(1= A)" PR lp] < Piylp] < (1+A)"" P [p].

In other words, ignorings-small CPT factors, the distribu-

tions on paths induced by in M and M are quite similar.
From this it follows that, for the upper bouid,

UL (x,T) < (1+ AUz (%, T) 4+ T Rynan £ + 23).

For the choicess? = \/a, a = O((G/(T%Rmafv))z) the
lemma is obtainedl

2The lower bound argument is entirely symmetric.

to represent that part af/ that is unknown to us; we must
also show how this “sink state” can be represented as a set-
ting of the state variables of a DBN-MDP.

We present a new construction, which extends the idea of
“known states” to the idea of “known transitions”. We say
that a transition componerft, (X! | u) is knownif all of
its CPT entries are known. The basic idea is that, while it is
impossibleto check locally whether a state is known, itis easy
to check locally whether a transition component is known.

Let 7 be the set of known transition components. We de-
fine the known-transition DBN-MDR\/+ as follows. The

?Certain approaches to approximate planning in large MDPs do
not require any structural assumptigiearnset al, 1999, but we
anticipate that the most effective DBN-MDP planning algorithms
eventually will.



model behaves identically t& as long as only known transi- transition probabilities are regted with their current approx-
tions are taken. As soon as an unknown transition is taken fdmation in the model. The definition af/+ uses only the
some variableX!, the variableX/ takes on a newandering  CPT entries of known transition components. The Simula-
valuew, which we introduce into the model. The transition tion Lemma now tells us that, for an appropriate choice of
model is defined so that, once a variable takes on the value- a choice that will result in a definition of known transition
w, its value never changes. The reward function is defined sthat requires the corresponding count to be only polynomial
that, once at least one variable takes on the wandering valug 1 /¢, n, v, and7 — the return of any policyr in My is

the total reward is nonpositive. These two properties give Ugithin ¢ of its return inM;. We will specify a choice for

the same overall behavior that KS got by making a sink statgater (which in turn sets the choice afand the definition of
for the set of unknown states. known state).

Definition 4.2:Let M be a DBN-MDP and lef” be any sub- Let us now consider the two cases in the “Explore or Ex-
set of the transition components in the model. Tinduced ploit” Lemma. In the exploitation case, there exists a policy

DBN-MDP on7, denotedV/7, is defined as follows: min My such thatUy, (x,7T) > Uy (x,T) — 7. (Again,
T we will discuss the choice of below.) From the Simulation

e M7 has the same set of state variablesiashowever, | emma, we have that” (x,7) > Uy, (x,T)—(r+¢). Our
in M, each Vaﬂablé(i has, in addition to its original approximate planning glgorithm returns a policy whose
set of values/al™ (X;), a new valuev. value inMT is guaranteed to be a multiplicative factor of at

 Mr has the same transition graphs/ds For eacha,  most1 - away from the optimal policy id/7. Thus, we are
i' anduMe Val (Pa,(X7)), we have that’'”(X{ |  gyaranteed thaf™ (x,7) > (1—p)(Us (x,T) = (T +€)).

u) = Pa. (.XZ' |.u) if the correspojr&dmg transition com- Therefore, in the eszpIoitation case, our approximate planner
ponentis 7 in all other casesl’,”” (w [u) = 1,and s guaranteed to return a policy whose value is close to the
PM7 (2; | u) = 0 for all ; € Val' (X;). optimal value.

e M+ has the same s® asM. Foreachi = 1,...,k In the exploration case, there exists a policiyn M+ (and
andc € ValM(CZ»), we have thaRf”T(c) = RM(c). therefore inMT) that is guaranteed to take an unknown tran-
For other vectors, we have thaRY™ (¢) = — Rpar. I sition within 7" steps with some minimum probability. Our

goal now is to use our approximate planner to find such a pol-

With this definition, we can prove the analogue to the “EX-jcy. In order to do that, we need use a slightly different con-

plore or Exploit” Lemma (details omitted). structionM/- (M/). The transition structure of//- is iden-
Lemma 4.31et M be any DBN-MDP, lef be any subset of tical to that ofA/7. However, the rewards are now different.
the transition components f, and let}M; be the induced Here, foreachi = 1,..., k ande € Val* (C;), we have that

MDP on M. Foranyx € 5, anyT, and anyl > 7 >0,  gM7(¢) = 0; for other vectors:;, we have thaR7 (c) = 1.
either there exists a policy in M7 such that/y;_(x,T) > Now let#’ be the policy returned by our approximate planner
Ujr(x,T) — 7, or there exists a policyr in My such that  on the DBN-MDPAMZ. It can be shown that the probability
the probability that a walk of " steps followingr will take at  that a7-step walk followingr’ will take at least one unknown
least one transition not ifit exceeds/((k + 1)T Ryax). transition is at leastl — 1) (r/((k + 1)T Rpnaz) — €)/kT.

This lemma essentially asserts that either there exists a pol- To summarize: our approximate planner either finds
icy that already achieves near-optimal (global) return by stayan exploitation policyr in My that enjoys actual return
ing only in the local modelM+, or there exists a policy that Uj;(x,T) > (1 — p)(Us(x,T) — (7 + €)) from our cur-
quickly exits the local model. rent statex, or it finds an exploitation policy idf/ that has

. probabilityat leasp = (1 — p)(7/((k+ 1)T Rpnax) — €)/ kT
4.3 Putting It All Together of improving our stati(stics rz\f[ a{r(l(unkn)own tra%sitigé in the
We now have all the pieces to finish the description and analynext7" steps. Appropriate choices feandr yield our main
sis of the DBN-E algorithm. The algorithminitially executes theorem, which we are now finally ready to describe.
balanced wandering for some period of time. After some Recall that for pository purposes we have concentrated
number of steps, by the Pigeonhole Principle one or moren the case of -step average return. However, as for the orig-
transition components become known. When the algorithminal E3, our main result can be stated in terms of the asymp-
reaches a known state— one where all the transition com- totic discounted and average return cases. We omit the details
ponents are known — it can no longer perform balanced wanof this translation, but it is a simple matter of arguing that it
dering. At that point, the algorithm performs approximatesuffices to sef” to be eithef1/(1—+)) log(1/¢) (discounted)
off-line policy computations for two different DBN-MDPs. or the mixing time of the optimal policy (average).

The first corresponds to attempted exploitation, and the sec- i ,
ond to attempted exploration. Theorem 4.4: (Main Theorem) Let/ be a DBN-MDP with

Let 7 be the set of known transitions at this step. In thef total entries in the CPTs.
attempted exploitation computation, the DBN-&lgorithm e (Undiscounted case) L&t be the mixing time of the pol-
would like to find the optimal policy on the induced DBN- icy achieving the optimal average asymptotic retirh
MDP M7 . Clearly, this DBN-MDP is not known to the al- in M. There exists an algorithm DBN:Ehat, given ac-
gorithm. Thus, we use its approximatiéf;, where the true cess to ge-approximation planning algorithm for DBN-



MDPs, and given inputs 4, ¢, 7" andU*, takes a num-  tool for analyzing the mixing time of a policy in a DBN-MDP,
ber of actions and computation time bounded by a polywhich can give us much better bounds on the mixing time. In
nomialinl/(1—u),1/¢,1/4,¢, T, andR,, 45, and with  particular, we demonstrate a class of DBN-MDPs and associ-
probability at leastl — J, achieves total actual return ated policies for which we can guarantee rapid mixing.
exceeding/* — e. Note that any fixed policy in a DBN-MDP defines a

« (Discounted case) Ldt* denote the value function for Markov chain whose transition model is represented as a

the policy with the optimal expected discounted returnPBN- We therefore begin by considering the mixing time of
in M. There exists an algorithm DBN2Ehat, given & PUre DBN, with no actions. We then extend that analysis to

access to au-approximation planning algorithm for the mixing rate for a fixed policy in a DBN-MDP.

DBN-MDPs, and given inputs d, ¢ and ', takes a - . .
number of actions and computation time bounded by aDef|n|t|on 5.1:Let () be a transition model for a Markov

) R :
polynomial in1/(1 — 1), 1/e.1/6,¢, the horizon time cheﬂn, and lef X (1) }e2, re’present the state of the chain. Let
T = 1/(1— ), and Rppa., and with probability at least S = {@1, c Xt Let be the stationary probability of
1— &, will haltin a statex, and output a policyt, such %7 " t.hls Mark.ov chgm. We say thg the Markov(lc)h@n
that Vi (x) > V*(x) — c. is e-mixed at timem if max; ; [P(X"Y) = z; | XV =
M z;) — p;| < el
Some remarks: Our bounds on mixing times make use of tbeupling
¢ The loss in policy quality induced by the approximate method[Lindvall, 1994. The idea of the coupling method
planning subroutine translates into degradation in thas as follows: we run two copies of the Markov chain in par-
running time of our algorithm. allel, from different starting points. Our goal is to make the
« As with the original B, we can eliminate knowledge of states of the two processes coalesce. Intuitivgly,'the first time
the optimal returns in both cases via search techniquesthe states of the two copies are the same, the initial states have
i ) been “forgotten”, which corresponds to the processes having
¢ Although we have stated our asymptotic undiscountedyixed.
average return result in terms of the mixing time of the - pore precisely, consider a transition mattjxover some
optimal po‘|‘|cy, we can instead give an “anytime” algo- gtate spaces. Let @* be a transition matrix over the state
rithm that “competes” against policies with longer and spacesS x S, such that if{(y(t)’ Z(t))}?il is the Markov

longer mixing times the longer it is run. (We omit de- . N e (1)1 00
tails, but the analysis is analogous to the originél E chain f(er » then the separated' Markov chaifis ™ }72,
and{Z®12 both evolve according t@. Let r be the ran-

analysis.) This extension is especially important in light X D e
of the results of the following section, where we exam- dom variable that represents ttmupling time— the smallest

the correspondence between mixing and coupling times.
5 Mixing Time Bounds for DBN-MDPs Lemma5.2: For any ¢, let m be such that for any,j =
As in the original B paper, our average case result dependd, - .-, s, P(r > m | Y = &;, 200 = ;) < ¢. ThenQ is

on the amount of tim& that it takes the target policy to mix. ¢-mixed at timen.
This dependence is unavoidable. If some of the probabilities

are very small, so that the optimal policy cannot easlych Thus, to show that a Markov chain ismixed by some

: o P ' d only construct a coupled chain and show

the high-reward parts of the space, it is unrealistic to expec me m, We neec : : .

the reinforcement learning algorithm to do any better. that the prObab'I'tthat.th'S chain has not coupled by time
decreases very rapidly in.

In the context of a DBN-MDP, however, this dependence Th lina method allow i nstruct the ioint chain
is more troubling. The size of the state space is exponentiall% e c?up tg nethod allows us to constructthe jointcha
ver (Y () Z(®)) in any way that we want, as long as each

large, and virtually all of the probabilities for transitioning J el - ¢
from one state to the next will be exponentially small (be-Of,the two chains in isolation has the same dynamics as the
cause a transition probability is the productafiumbers that ~ 0riginal Markov chain®. In particular, we carorrelatethe
are< 1). Indeed, one can construct very reasonable paN/ransitions of the two processes, so as to make thelr states
MDPs that have an exponentially long mixing time. For ex- coincide faster than they vyould if each was picked indepen-
ample, a DBN representing the Markov chain of an Isingdently of the other. That is, we choosg'*!) and 7(+!)
model[Jerrum and Sinclair, 19931as small parent sets (at t0 be equal to each other whenever possible, subject to the
most four parents per node), and CPT entries that are reasofnstraints on the transition probabilities. More precisely, let
ably large. Nevertheless, the mixing time of such a DBN cant' ) = z; and 2" = z;. For any valuer € S, we can
be exponentially large in. make the event '+1) = x; Z(*+1) = &, have a proba-
Given that even “reasonable” DBNSs such as this can haveility that is the smaller ofP?(X’ = z; | X = ;) and
exponential mixing times, one might think that thisis the typ-P(X’ = =, | X = ;). Compare this to the probability
ical situation — that is, that most DBN-MDPs have an ex-of this event if the two processes were independent, which
ponentially long mixing time, reintroducing the exponential is the product of these two numbers rather than their mini-
dependence on that we have been trying so hard to avoid. mum. Overall, by correlating the two processes as much as
We now show that this is not always the case. We provide gossible, and considering the worst case over the current state



of the process, we can guarantee that, at every step, the twoln general, a variable pair can only be stable if their parents
processes couple with probability at least are also stable. So what happens if we add the edge»

X1 to our transition model? In this case, neith&r 7, nor
mianin[P(X’ =i | X =), P(X' =2 | X =2;)] Y, 7, can stabilize in isolation. They can only stabilize if
" they couple simultaneously.
This quantity represents the amount of probability mass that 1his discussion leads to the following definition.
any two transition distributions are guaranteed to have imefinition 5.3:Consider a DBN over the state variables
common. It is called th@®obrushin coefficientand is the ' X . Thedependency grapP for the DBN is a di-
contraction rate for;-norm [Dobrushin, 195Bin Markov  rected cyclic graph whose nodes afe, .. ., X,, and where
chains. , , there is a directed edge froiy; to X; if there is an edge in

Now, consider a DBN over the state variabl® = the transition graph of the DBN fror; to X".

{Xy,...,X,}. As above, we create two copies of the pro- J

cess, letting, ..., ¥, denote the variables in the first com- Hence, there is a directed path fro to X in D iff X"
ponent of the coupled Markov chain, a#d, . . ., Z,, denote ’ !

. t! .
those in the second component. Our goal is to construct gﬂuencesX} ) for somet’ > t. We assume that the transi-
Markov chain ovefY, Z such that botf¥ andZ separately tion graph of the DBN always has aré§ — Xj, so that the
have the same dynamics Xsin the original DBN. every node irD has a self-loop.

Our construction of the joint Markov chain is very simi-  LetT's,.... I’ be the maximal strongly connected compo-
lar to the one used above, except that will now choose th@ents inD, sorted so that if < j, there are no directed edges
transition ofeachvariable pairY; and Z; so as to maximize from I'; to I';. Our analysis will be based on stabilizing the
the probability that they couple (assume the same value). AEi’s in succession. (We note that we provide only a rough

above, we can guarantee thatand Z; couple at any time¢ ~ bound; a more refined analysis is possible.) £et min; 5;
with probability at least andg = max; |I';|. Assume thaf', ..., T;_; have all stabi-

lized by timet. In order forl'’; to stabilize, all of the variables
need to couple at exactly the same time. This event happens
B = min Z min[P(z; | u), P(z; | u’)] ; at timet with probability > 39. As soon ad’; stabilizes,
wweVal(Pa(X)) |, evar(x,) we can move on to stabilizing; ;. When all thel';’s have

. - . , stabilized, we are done.
This coefficient was defined HBoyen and Koller, 1998in

their analysis of the contraction rate of DBNs. Note that Theorem 5.4For anye > 0, the Markov chain correspond-
depends only on the numbers irsingle CPT of the DBN. ing to a DBN as described abovedsmixed at timen pro-
Assuming that the transition probabilitiesdiach CPT are not  vided Q

too extreme, the probability that any single variable couples m > — log(1/e).

will be reasonably high. B

Unfortunately, this bound is not enough to show that alltp g the mixing time of a DBN grows exponentially with the
of the variable pairs couple within a short time. The prob-gi,e of the largest component in the dependency graph, which
lem is that it is not enough for two variables”’ and z{" may be significantly smaller than the total number of vari-
to couple, as process dynamics may force us to decouplgblesina DBN. Indeed, in two real-life DBNs BAT [Forbes
them at subsequent time slices. To understand this issuet al, 1999 with ten state variables, andaTER [Jenseret
consider a simple process with two variabl&s, X», and  al., 1989 with eight — the maximal cluster size is 3—4.

a transition graph with the edges, — X{, Xo — X}, It remains only to extend this analysis to DBN-MDPs,
X1 — X}. Assume that at timg the variable pain(t), th) where we have a policy. Our stochastic_ coupling scheme
has coupled with values, but Yl(t)’ Z{t) has not, so that must now dea'l with the fact that the actlons taken at timel

o o , , in the two copies of the process may be different. The diffi-
Y = @ and 7y’ = 7. Atthe next time slice, we cyty is that different actions at timtecorrespond to different
must selecty,'t), Z{+Y from two different distributions transition models. If a variabl&; has a different transition
— P(X% | w1,22) and P(XY | @), x2), respectively. Thus, model in different transition graphg,, it will use a different
our sampling process may be forced to give them differentransition distribution if the action is not the same. Henge
values, decoupling them again. cannot stabilize until we are guaranteed that the same action

As this example clearly illustrates, it is not enough for ais taken in both copies. That is, the action must also stabilize.
variable pair to couple momentarily. In order to eventually The action is only guaranteed to have stabilized when all of
couple the two processes as a whole, we need to rea&le  the variables on which the choice of action can possibly de-
variable pair astable pair— i.e., we need to guarantee that pend have stabilized. Otherwise, we might encounter a pair
our sampling process can keep them coupled from then on. lof states in which we are forced to use different actions in the
our example, the pairy, 7, is stable as soon as it first cou- two copies.
ples. And oncé?, 7 is stable, thefr;, Z, will also be stable We can analyze this behavior by extending the dependency
as soon as it couples. HoweverYif, 7, couples whil& | 7, graph to include a new node corresponding to the choice of
is not yet stable, then the sampling process cannot guaranteetion. We then see what assumptions allow us to bound
stability. the set of incoming and outgoing edges. We can then use



the same analysis described above to bound the mixing timeecentbody of work on learning Bayesian networks from
The outgoing edges correspond to the effect of an action. Idata[Heckerman, 1995lays much of the foundation, but
many processes, the action only directly affects the transitiothe integration of these ideas with the problems of explo-
model of a small number of state variables in the process. Ination/exploitation is far from trivial.

other words, for many variableX;, we have thaPa,(X;)

and P,(X; | Pa,(X;)) are the same for all. In this case,
the new action node will only have outgoing edges to the reJVé are grateful to the members of the DAGS group for use-
ful discussions, and particularly to Brian Milch for point-

maining variables (those for which the transition model might.n out a problem in an earlier version of this paper. The
differ). We note that such localized influence models have and P Paper.
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policy might well be such that the action depends on ever PKB program, and by the generosity of the Powell Founda-

. ; ion and the Sloan Foundation.
variable. However, the mere representation of such a pol-
icy may be very complex, rendering its use impractical in &
DBN-MDP with many variables. Therefore, we often want to Refgrences =
restrict attention to a simpler class of policies, such as a smalPoutilieretal, 1999 C. Boutilier, T. Dean, and S. Hanks. De-
finite state machine or a small decision tree. If our target pol- Cision theoretic planning: Structural assumptions and computa-
icy is such that the choice of action only depends on a small tional leverageJournal of Artificial Intelligence Research999.
number of variables, then there will only be a small number of To appear. .
incoming edges into the action node in the dependency grapHBoyen and Koller, 1998 X. Boyen and D. Koller. Tractable in-
Having integrated the action node into the dependency ference for complex stochastic processesPiac. UAI pages
graph, our analysis above holds unchanged. The only differ- 33_42’_ 1998. ) o
ence from a random variable is that we do not have to includéP0Prushin, 1956 R.L. Dobrushin. Central limit theorem for non-
the action node when computing the size of Ihehat con- stationary Markov chainsTheory of Probaliity and its Applica-
tains it, as we do not have to stochastically make it couple; tions, pages 65-80, 1956.
rather, it couples immediately once its parents have couplediForbeset al, 1998 J. Forbes, T. Huang, K. Kanazawa, and S.J.
Finally, we note that this analysis easily accommodates Russell. The BATmobile: Towards a Bayesian automated taxi.
DBN-MDPs where the decision about the action is also In Proc. ICAI 1995. _ ) )
decomposed into several independent decisions (e.g., ageckerman,1995D. Heckerman. A tutorial on leaming with
in [Meuleauet al, 1998). Different component decisions Bayesian networks. Technical Report MSR-TR-95-06, Microsoft
can influence different subsets of variables, and the choice Research, 1995.
of action in each one can depend on different subsets of varlHoward and Matheson, 19BR. A. Howard and J. E. Matheson.
ables. Each decision forms a separate node in the dependency/nfluénce diagrams. In R. A. Howard and J. E. Matheson, editors,
graph, and can stabilize independently of the other decisions. Readings on the Principles and Applications of Decision Analy-

. . : - ; sis, pages 721-762. Strategic Decisions Group, Menlo Park, Cal-
The analysis above gives us techniques for estimating the if;rﬁagmm_ g P

mixing rate of policies in DBN-MDPs. In particular, if we ,
. Jensert al, 1989 F.V. Jensen, U. Kjeerulff, K.G. Olesen, and
want to focus on getting a good steady-state return fron{ J. Pedersen. An expert system for control of waste water

- S .
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mix rapidly given the structure of the given DBN-MDP.
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