
Exact Identi�cation of Read-once Formulas Using Fixed Points of

Ampli�cation Functions

Sally A. Goldman
Department of Computer Science

Washington University
St. Louis, MO 63130

sg@cs.wustl.edu

Michael J. Kearns
AT&T Bell Laboratories
Murray Hill, NJ 07974

mkearns@research.att.com

Robert E. Schapire
AT&T Bell Laboratories
Murray Hill, NJ 07974

schapire@research.att.com

March 9, 1992

Abstract

In this paper we describe a new technique for exactly identifying certain classes
of read-once Boolean formulas. The method is based on sampling the input-output
behavior of the target formula on a probability distribution that is determined by the
�xed point of the formula's ampli�cation function (de�ned as the probability that a
1 is output by the formula when each input bit is 1 independently with probability
p). By performing various statistical tests on easily sampled variants of the �xed-
point distribution, we are able to e�ciently infer all structural information about any
logarithmic-depth formula (with high probability). We apply our results to prove the
existence of short universal identi�cation sequences for large classes of formulas. We
also describe extensions of our algorithms to handle high rates of noise, and to learn
formulas of unbounded depth in Valiant's model with respect to speci�c distributions.

Most of this research was carried out while all three authors were at MIT Laboratory for Computer
Science with support provided by ARO Grant DAAL03-86-K-0171, DARPA Contract N00014-89-J-1988,
NSF Grant CCR-88914428, and a grant from the Siemens Corporation. R. Schapire received additional
support from AFOSR Grant 89-0506 while at Harvard University. S. Goldman is currently supported in
part by a G.E. Foundation Junior Faculty Grant and NSF Grant CCR-9110108.

1

1 Introduction

In this paper we describe e�cient algorithms for exactly identifying certain classes of read-

once Boolean formulas by observing the target formula's behavior on examples drawn ran-

domly according to a �xed and simple distribution that is related to the formula's ampli�ca-

tion function. The class of read-once Boolean formulas is the subclass of Boolean formulas

in which each variable appears at most once. The ampli�cation function Af (p) for a function

f : f0; 1gn ! f0; 1g is de�ned as the probability that the output of f is 1 when each of the n

inputs to f is 1 independently with probability p. Ampli�cation functions were �rst studied

by Valiant [24] and Boppana [4, 5] in obtaining bounds on monotone formula size for the

majority function.

The method used by our algorithms is of central interest. For several classes of formulas,

we show that the behavior of the ampli�cation function is unstable near the �xed point; that

is, the value of Af(p) varies greatly with a small change in p. This in turn implies that small

but easily sampled perturbations of the �xed-point distribution (that is, the distribution

where each input is 1 with probability p, where Af(p) = p) reveal structural information

about the formula. For instance, a typical perturbation of the �xed-point distribution hard-

wires a single variable to 1 and sets the remaining variables to 1 with probability p.

We apply this method to obtain e�cient algorithms for exact identi�cation of classes of

read-once formulas over various bases. These include the class of logarithmic-depth read-once

formulas constructed with not gates and three-input majority gates (for which the �xed-

point distribution is the uniform distribution), as well as the class of logarithmic-depth read-

once formulas constructed with nand gates (for which the �xed-point distribution assigns 1

to each input independently with probability 1=� � 0:618, where � = (1+
p
5)=2 is the golden

ratio). Thus, for these classes, since the �xed point of the ampli�cation function is the same

for all formulas in the class, for each class we obtain a simple product distribution under which

the class is learnable. As proved by Kearns and Valiant [16, 13], these same classes of formulas

cannot be even weakly approximated in polynomial time when no restriction is placed on

the target distribution; thus, our results may be interpreted as demonstrating that while

there are some distributions that in a computationally bounded setting reveal essentially no

information about the target formula, there are natural and simple distributions that reveal

all information.

For Boolean read-once formulas (a superset of the class of formulas constructed from

nand gates) there is an e�cient, exact-identi�cation algorithm using membership and equiv-

alence queries due to Angluin, Hellerstein and Karpinski [1, 11]. The class of read-once

majority formulas can also be exactly identi�ed using membership and equivalence queries,

as proved by Hancock and Hellerstein [9] and Bshouty, Hancock, Hellerstein, and Karpin-

ski [6]. Briey, in the query model, the learner attempts to infer the target formula by asking

2

questions, or queries, of a \teacher." For instance, the learner might ask the teacher what

the formula's output would be for a speci�c assignment to the input variable; this is called a

membership query. On an equivalence query, the learner asks if a given conjectured formula

is equivalent to the target formula

Note that our algorithms' use of a �xed distribution can be regarded as a form of \ran-

dom" membership queries, since this �xed and known distribution can be easily simulated

by making random membership queries. Thus, our algorithms are the �rst e�cient proce-

dures for exact identi�cation of logarithmic-depth majority and nand formulas using only

membership queries. Furthermore, the queries used are non-adaptive in the sense that they

do not depend upon the answers received to previous queries. In contrast, all previous al-

gorithms for exact identi�cation, including the algorithms mentioned above, require highly

adaptive queries. As a consequence, our results can be applied to prove the existence of

polynomial-length universal identi�cation sequences for large classes of formulas; these are

�xed sequences of instances for which every unique formula in the class induces a di�erent

labeling.

We also prove that our algorithms are robust against a large amount of random misclas-

si�cation noise, similar to, but slightly more general than that considered by Sloan [23] and

Angluin and Laird [2]. Speci�cally, if �0 and �1 represent the respective probabilities that an

output of 0 or 1 is misclassi�ed, then a robust version of our algorithm can handle any noise

rate for which �0+�1 6= 1; the sample size and computation time required increase only by an

inverse quadratic factor in j1� �0 � �1j. Again regarding our algorithms as using \random"

membership queries, these are the �rst e�cient procedures performing exact identi�cation

in some reasonable model of noisy queries. Our algorithms can also tolerate a modest rate

of malicious noise, as considered by Kearns and Li [14].

Finally, we present an algorithm that learns any (not necessarily logarithmic-depth)

read-once majority formula in Valiant's model against the uniform distribution. To obtain

this result we �rst show that the target formula can be well approximated by truncating

the formula to have only logarithmic depth. We then generalize our algorithm for learning

logarithmic-depth read-once formulas to handle such truncated formulas. A similar result

also holds for read-once nand formulas of unbounded depth.

The problem of learning Boolean formulas against special distributions has been con-

sidered by a number of other authors. In particular, our technique closely resembles that

used by Kearns et al. [15] for learning the class of read-once formulas in disjunctive normal

form (DNF) against the uniform distribution. A similar result, though based on a di�erent

method, was obtained by Pagallo and Haussler [18]. These results were extended by Hancock

and Mansour [10], and by Schapire [21] as described below.

Also, Linial, Mansour and Nisan [17] used a technique based on Fourier spectra to learn

3

the class of constant-depth circuits (constructed from gates of unbounded fan-in) against

the uniform distribution. Furst, Jackson and Smith [7] generalized this result to learn this

same class against any product distribution (i.e., any distribution in which the setting of each

variable is chosen independently of the settings of the other variables). Verbeurgt [25] gives

a di�erent algorithm for learning DNF-formulas against the uniform distribution. However,

all three of these algorithms require quasi-polynomial (npolylog(n)) time, though Verbeurgt's

procedure only requires a polynomial-size sample.

Finally, Schapire [21] has recently extended our technique to handle a probabilistic gen-

eralization of the class of all read-once Boolean formulas constructed from the usual basis

fand;or;notg. He shows that an arbitrarily good approximation of such formulas can be

inferred in polynomial time against any product distribution.

2 Preliminaries

Given a Boolean function f : f0; 1gn ! f0; 1g, Boppana [4, 5] de�nes its ampli�cation

function Af as follows: Af(p) = Pr[f(X1; . . . ;Xn) = 1], where X1; . . . ;Xn are independent

Bernoulli variables that are each 1 with probability p. The quantity Af(p) is called the

ampli�cation of f at p. Valiant [24] uses properties of the ampli�cation function to prove

the existence of monotone Boolean formulas of size O(n5:3) for the majority function on n

inputs. We denote by D(p) the distribution over f0; 1gn induced by having each variable

independently set to 1 with probability p.

For qj 2 f0; 1g and ij 2 f1; . . . ; ng, 1 � j � r, we write f jxi1 q1; . . . ; xir qr to denote

the function obtained from f by �xing or hard-wiring each variable xij to the value qj. If

each qj = q for some value q, we abbreviate this by f jxi1 ; . . . ; xir q.

In our framework, the learner is attempting to infer an unknown target concept c chosen

from some known concept class C. In this paper, C =
S
n�1 Cn is parameterized by the

number of variables n, and each c 2 Cn represents a Boolean function on the domain f0; 1gn.
A polynomial-time learning algorithm achieves exact identi�cation of a concept class (from

some source of information about the target, such as examples or queries) if it can infer

a concept that is equal to the target concept on all inputs. A polynomial-time learning

algorithm achieves exact identi�cation with high probability if for any � > 0, it can with

probability at least 1 � � infer a concept that is equal to the target concept on all inputs.

In this setting polynomial time means polynomial in n and 1=�. Our algorithms achieve

exact identi�cation with high probability when the example source is a particular, �xed

distribution.

In the distribution-free or probably approximately correct (PAC) learning model, intro-

duced by Valiant [24], the learner is given access to labeled (positive and negative) examples

4

of the target concept, drawn randomly according to some unknown target distribution D.

The learner is also given as input positive real numbers � and �. The learner's goal is to

output with probability at least 1 � � a hypothesis h that has probability at most � of dis-

agreeing with c on a randomly drawn example from D (thus, the hypothesis has accuracy at

least 1� �). In the case of a randomized hypothesis h, the probability that h disagrees with

c is taken over both the random draw from D and the random coin ips used by h. If such

a learning algorithm exists (that is, a polynomial-time algorithm meeting the goal for any

n � 1, any c 2 Cn, any distribution D, and any �; �), we say that C is PAC-learnable. In this

setting, polynomial timemeans polynomial in n, 1=� and 1=�. In this paper, we are primarily

interested in a variant of Valiant's model in which the target distribution is known a priori

to belong to a speci�c restricted class of distributions. This distribution-speci�c model has

also been studied by Benedek and Itai [3].

In this paper we give e�cient algorithms that with high probability exactly identify the

following classes of formulas:

� The class of logarithmic-depth read-once majority formulas: This class con-

sists of Boolean formulas of logarithmic depth constructed from the basis fmaj;notg
where a maj gate computes the majority of three inputs, and each variable appears at

most once in the formula. Without loss of generality, we assume all not gates are at

the input level.

� The class of logarithmic-depth read-once positive nand formulas: This is

the class of read-once formulas of logarithmic depth constructed from a basis fnandg
where a nand gate computes the negation of the logical and of two inputs. Note

that each input appears at most once in the formula and all variables are positive

(unnegated). Observe also that the class of read-once positive nand formulas is equiv-

alent to the class of read-once formulas constructed from alternating levels of or/and

gates, starting with an or gate at the top level, with the additional condition that

each variable is negated if and only if it enters an or gate. This observation is easily

proved by repeated application of DeMorgan's law.

Note that by a symmetry argument we can also handle read-once formulas constructed

over the fnorg basis.

In both cases above, our results depend on the restriction on the fan-in of the gates, as

well as the requirement that only variables (and not constants) appear in the leaves of the

target formula.

Note that because we consider only read-once formulas, there is a unique path from any

gate or variable to the output. We de�ne the level or depth of a gate � to be the number

5

of gates (not including � itself) on the path from � to the output. Thus, the output gate

is at level 0. Likewise, we de�ne the level or depth of an input variable to be the number

of gates on the path from the variable to the output. The depth of the entire formula is

the maximum level of any input, and the bottom level consists of all gates and variables of

maximum depth.

An input xi, or a gate �, feeds a gate �0 if the path from xi or � to the output goes through

�0. If xi or � is an input to �0, then we say that xi or � immediately feeds �0. For any two input

bits xi and xj we de�ne �(xi; xj) to be the deepest gate � fed by both xi and xj. Likewise,

�(xi; xj; xk) is the deepest gate � fed by xi, xj, and xk. We say that a pair of variables xi

and xj meet at the gate �(xi; xj). Also, if �(xi; xj) = �(xi; xk) = �(xj ; xk) = �(xi; xj; xk),

then we say that the variables xi, xj and xk meet at gate �(xi; xj; xk); otherwise, the triple

does not meet in the formula. (Note that this only makes sense if there are gates with more

than two inputs, such as a three-input majority gate.)

All logarithms in this paper are base 2.

3 Exact identi�cation of read-once majority formulas

In this section we use properties of ampli�cation functions to obtain a polynomial-time

algorithm that with high probability exactly identi�es any read-once majority formula of

logarithmic depth from random examples drawn according to a uniform distribution.

This type of formula is used by Schapire [20] in his proof that a concept class is weakly

learnable in polynomial time if and only if it is strongly learnable in polynomial time. That is,

the hypothesis output by his boosting procedure can be viewed as a majority formula whose

inputs are the hypotheses output by the weak learning algorithm. We also note that a read-

once majority formula cannot in general be converted into a read-once Boolean formula over

the usual fand;or;notg basis. (For example, a single three-input majority gate cannot be

converted into a read-once Boolean formula over this basis; this can be proved, for instance,

by enumerating all three-input read-once Boolean formulas.)

It can be shown that the class of logarithmic-depth read-once majority formulas is

not learnable in the distribution-free model, modulo assorted cryptographic assumptions.1

Briey, this can be proved using a Pitt and Warmuth-style \prediction-preserving reduc-

tion" [19] to show that learning read-once majority formulas is at least as hard as learning

general Boolean formulas. Our reduction starts with a given Boolean formula which we

can assume without loss of generality has been converted using standard techniques into

an equivalent formula of logarithmic depth. The main idea of the reduction is to replace

1Namely, these hardness results depend on the assumed intractability of factoring Blum integers, inverting

RSA functions, and recognizing quadratic residues. See Kearns and Valiant [16] for details.

6

each or gate (respectively, and gate) occurring in this formula with a maj gate, one of

whose inputs is wired to a distinct variable that, under the target distribution, always has

the value 1 (respectively, 0). The resulting majority formula can further be reduced to one

that is read-once using the substitution method of Kearns et al. [15]. Finally, combined with

Kearns and Valiant's result that Boolean formulas are not learnable (modulo cryptographic

assumptions), this shows that majority formulas are also not learnable.

Despite the hardness of this class in the general distribution-free framework, we show

that the class is nevertheless exactly identi�able when examples are chosen from the uniform

distribution. The algorithm consists of two phases. In the �rst phase, we determine the

relevant variables (i.e., those that occur in the formula), their signs (i.e., whether they are

negated or not), and their levels. To achieve this goal, for each variable, we hard-wire its

value to 1 and estimate the ampli�cation of the induced function at 1
2
using examples drawn

randomly from the uniform distribution on the remaining variables. Here, by \hard-wiring"

a variable to 1, we really mean that we apply a �lter that only lets through examples

for which that variable is 1. We prove that if the variable is relevant, then with high

probability this estimate will be signi�cantly smaller or greater than 1
2
, depending on whether

the variable occurs negated or unnegated in the formula; otherwise, this estimate will be near
1
2
. Furthermore, the level of a relevant variable can be determined from the amount by which

the ampli�cation of the induced function di�ers from 1
2 .

In the second phase of the algorithm, we construct the formula. More precisely, we �rst

construct the bottom level of the formula, and then recursively construct the remaining

levels. To construct the bottom level of the formula, we begin by �nding triples of variables

that are inputs to the same bottom-level gate. To do this, for each triple of relevant variables

that have the largest level number, we hard-wire the three variables to 1 and again estimate

the ampli�cation of the induced function from random examples. We show that we can

determine whether the three variables all enter the same bottom-level gate based on this

estimate.

Briey, the recursion works as follows. When constructing level t of the formula, if we

�nd that xi, xj, and xk are inputs to the same level-t gate, then in the recursive call we

replace xi, xj, and xk by a level-t meta-variable y � maj(xi; xj; xk). Since y is a known

subformula, its output on any example can be easily computed and y can be treated like

an ordinary variable. Furthermore, since 1
2 is the �xed point for the ampli�cation function

of any read-once majority formula, it follows that y is 1 with probability 1
2. Thus, for the

recursive call we replace all triples of variables that enter level-t gates with meta-variables,

and we easily obtain our needed source of random examples drawn according to the uniform

distribution on the new variable set from the original source of examples.

For the remainder of this section, we explore some of the properties of the ampli�cation

7

function of read-once majority formulas, leading eventually to a proof of the correctness of

this algorithm.

Lemma 3.1 Let X1, X2 and X3 be three independent Bernoulli variables, each 1 with prob-

ability p1, p2 and p3, respectively. Then Pr[maj(X1;X2;X3) = 1] = p1p2 + p1p3 + p2p3 �
2p1p2p3.

Proof: The stated probability is exactly the chance that at least two of the three variables

are 1.

Lemma 3.1 implies that Af (
1
2
) = 1

2
for any read-once majority formula f . Thus, 1

2
is a

�xed point of Af .

Our approach depends on the fact that the �rst derivative of Af is large at
1
2
, meaning

that a slight perturbation of D(1=2) (i.e., the uniform distribution) tends to perturb the

statistical behavior of the formula su�ciently to allow exact identi�cation. See Figure 1

for a graph showing the ampli�cation function for balanced read-once majority formulas of

various depths.

We perturb D(1=2) by hard-wiring a small number of variables to be 1; such perturba-

tions can always be e�ciently sampled by simply waiting for the desired variables to be

simultaneously set to 1 in a random example from D(1=2).

We begin by considering the e�ect on the function's ampli�cation of altering the proba-

bility with which one of the variables xj is set to 1. This will be important in the analysis

that follows.

Lemma 3.2 Let f be a read-once majority formula, and let t be the level of an unnegated

variable xj. Then for q 2 f0; 1g, Af jxj q(
1
2) =

1
2 +

�
1
2

�t
(q � 1

2).

Proof: By induction on t. When t = 0, the formula consists just of the variable xj, and the

lemma holds. For the inductive step, let f1, f2 and f3 be the functions computed by the three

subformulas obtained by deleting the output gate of f ; thus, f is just the majority of f1,

f2 and f3. Note that xj occurs in exactly one of these three subformulas|assume it occurs

in the �rst. Since xj occurs at level t � 1 of this subformula, by the inductive hypothesis,

Af1jxj q(
1
2) = 1

2 +
�
1
2

�t�1
(q � 1

2), and since xj does not occur in the other subformulas,

Afijxj q(
1
2) =

1
2 for i = 2; 3. From Lemma 3.1, it follows that Af jxj q(

1
2) has the stated

value, completing the induction.

It can now be seen how we use the ampli�cation function to determine the relevant

variables of f : if xj is relevant, then the statistical behavior of the output of f changes

signi�cantly when xj is hard-wired to 1. Similarly, the sign and the level of each variable

can be readily determined in this manner.

8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p

A (p)f

h=1

h=3
h=5 h=10

Figure 1: The ampli�cation function for read-once majority formulas for complete ternary

trees of depth h.

Theorem 3.3 Let f be a read-once majority formula of depth h. Let �̂ be an estimate of

� = Af jxj 1(
1
2) for some variable xj, and assume that j�̂� �j < � �

�
1
2

�h+2
. Then

� xj is relevant if and only if j�̂ � 1
2j > � ;

� if xj is relevant, then it occurs negated if and only if �̂ < 1
2
;

� xj occurs at level t if and only if
����j�̂ � 1

2 j �
�
1
2

�t+1���� < � .

Proof: This proof follows from straightforward calculations using Lemma 3.2.

Thus, if one estimates the value of the ampli�cation function from a sample whose size is

polynomial in 2h, then with high probability one can determine which variables are relevant,

as well as the sign and level of every relevant variable. Speci�cally, we can apply Cherno�

bounds [12] to derive a sample size su�cient to ensure that all the above information is

properly computed with high probability. We therefore assume henceforth that the level of

every variable has been determined, and that (without loss of generality) all variables are

relevant and unnegated.

9

More problematic is determining exactly how the variables are combined in f . A natural

approach is to try hard-wiring pairs of variables to 1, and to again estimate the ampli�cation

of the induced function in the hopes that some structural information will be revealed. The

following lemma, that is useful at a later point, shows that this approach fails.

Lemma 3.4 Let f be a read-once majority formula, and let xi and xj be distinct, unnegated

variables that occur at levels t1 and t2, respectively. Then

Af jxi;xj 1(
1
2
) = 1

2
+
�
1
2

�t1+1
+
�
1
2

�t2+1
;

regardless of the depth d of � = �(xi; xj).

Proof: By induction on d. Let f1, f2 and f3 be the three subformulas of f that are inputs

to the output gate so that f = maj(f1; f2; f3).

If d = 0, then � is the output gate, and xi and xj occur in two of the subformulas (say,

f1 and f2, respectively). From Lemma 3.2, it follows that

Afkjxi;xj 1(
1
2
) = 1

2
+
�
1
2

�tk

for k = 1; 2, and, since neither xi nor xj is relevant to f3, Af3jxi;xj 1(
1
2
) = 1

2
. The stated

value for Af jxi;xj 1(
1
2
) follows then from Lemma 3.1.

If d > 0, then � is a gate occurring in one of the subformulas (say f1) at level d � 1 of

the subformula. By inductive hypothesis,

Af1jxi;xj 1(
1
2
) = 1

2
+
�
1
2

�t1
+
�
1
2

�t2
:

Also, Afkjxi;xj 1(
1
2
) = 1

2
for k = 2; 3. The stated value for Af jxi;xj 1(

1
2
) again follows from

Lemma 3.1.

Thus, if two relevant variables are hard-wired to 1, no information is obtained by knowing

the value of the ampli�cation function. That is, the ampli�cation function is independent of

the level at which the two variables meet.

Therefore, we instead consider what happens when three relevant variables of the same

level are �xed to 1. In fact, it turns out to be su�cient to do so for triples of variables all of

which occur at the bottom level of the formula. We show that by doing so one can determine

the full structure of the formula.

For each triple xi, xj and xk all occurring at level t, there are essentially two cases to

consider; either

1. the triple xi, xj, xk does not meet in the formula; or

2. the three variables xi, xj and xk meet at the gate �(xi; xj; xk). We divide this case

into two sub-cases:

10

(a) xi, xj and xk are inputs to the same gate so that �(xi; xj; xk) occurs at level t�1;
or

(b) �(xi; xj; xk) occurs at some level d < t� 1.

We are interested in separating Case 2a from the other cases by estimating the ampli�cation

of the function when all three variables are hard-wired to 1. This is su�cient to reconstruct

the structure of the formula: if we can �nd three variables that are inputs to some gate �

(and there always must exist such a triple), then we can essentially replace the subformula

consisting of the three variables and the gate � by a new meta-variable whose value can

easily be determined from the values of the original three variables. Furthermore, since 1
2

is a �xed point for all read-once majority formulas the meta-variables' statistics will be the

same as those of the original variables. Thus, the total number of variables is reduced by

two, and the rest of the formula's structure can be determined recursively.

The following two lemmas analyze the ampli�cation of the function when three variables

are hard-wired to 1 in both of the above cases. We begin with Case 2:

Lemma 3.5 Let f be a read-once majority formula. Let xi, xj and xk be three distinct,

unnegated inputs that occur at levels t1, t2 and t3, respectively, and which meet at gate

� = �(xi; xj; xk). Let d be the level of �. Then

Af jxi;xj;xk 1(
1
2
) = 1

2
+
�
1
2

�t1+1
+
�
1
2

�t2+1
+
�
1
2

�t3+1 � �1
2

�t1+t2+t3�2d�1
:

Proof: By induction on d. As in the preceding lemmas, suppose that f = maj(f1; f2; f3).

If d = 0, then � is the output gate of f , and, without loss of generality, xi, xj and xk occur

one each in f1, f2 and f3, respectively. From Lemma 3.2, Afr jxi;xj;xk 1(
1
2
) = 1

2
+
�
1
2

�tr
, for

r = 1; 2; 3. The stated value for Af jxi;xj;xk 1(
1
2
) follows from Lemma 3.1.

If d > 0, then one of the subformulas (say, f1) contains � at depth d � 1. By inductive

hypothesis,

Af1jxi;xj ;xk 1(
1
2
) = 1

2
+
�
1
2

�t1
+
�
1
2

�t2
+
�
1
2

�t3 � �1
2

�t1+t2+t3�2d�2
;

and of course, Afrjxi;xj;xk 1(
1
2
) = 1

2
for r = 2; 3. The proof is completed by again applying

Lemma 3.1.

So, unlike the situation in which only two variables are hard-wired to 1, here the value of

the ampli�cation function depends on the level of the formula at which the three variables

meet. However, it may be the case that xi, xj, and xk do not meet at all (i.e., we may be in

Case 1). The next lemma considers this case.

11

Lemma 3.6 Let f be a read-once majority formula. Let xi, xj and xk be three distinct,

unnegated inputs that occur at levels t1, t2 and t3, respectively, and for which �0 = �(xi; xj) 6=
�(xi; xj; xk) = �. Then

Af jxi;xj;xk 1(
1
2
) = 1

2
+
�
1
2

�t1+1
+
�
1
2

�t2+1
+
�
1
2

�t3+1
;

regardless of the levels d and d0 of gates � and �0.

Proof: By induction on d. As before, assume that f = maj(f1; f2; f3). If d = 0, then � is

the output gate, �0 occurs (say) in f1, and xk in f2. From Lemma 3.4, Af1jxi;xj;xk 1(
1
2
) = 1

2
+�

1
2

�t1
+
�
1
2

�t2
, and from Lemma 3.2, Af2jxi;xj;xk 1(

1
2
) = 1

2
+
�
1
2

�t3
. Also, Af3jxi;xj;xk 1(

1
2
) = 1

2
.

Lemma 3.1 then implies the stated value for Af jxi;xj;xk 1(
1
2
).

If d > 0, then � occurs, say, in f1. By inductive hypothesis, Af1jxi;xj;xk 1(
1
2
) = 1

2
+
�
1
2

�t1
+�

1
2

�t2
+
�
1
2

�t3
, and clearly Afrjxi;xj;xk 1(

1
2) =

1
2 for r = 2; 3. An application of Lemma 3.1

completes the induction.

Combining these lemmas, we can show that Case 2a can be separated from the other

cases by estimating the function's ampli�cation with triples of variables hard-wired to 1.

Theorem 3.7 Let f be a read-once majority formula. Let xi, xj and xk be three distinct,

unnegated, level-t inputs. Let �̂ be an estimate of � = Af jxi;xj;xk 1(
1
2) for which j�̂��j < � �

3
�
1
2

�t+4
. Then xi, xj and xk are inputs to the same gate of f if and only if �̂ < 1

2
+
�
1
2

�t
+� .

Proof: If Case 2a applies, then Lemma 3.5 implies that � = 1
2 +

�
1
2

�t
. Otherwise, if either

Case 1 or 2b applies, then Lemmas 3.5 and 3.6 imply that � � 1
2
+
�
1
2

�t
+ 3

�
1
2

�t+3
. The

theorem follows immediately.

We are now ready to state the main result of this section:

Theorem 3.8 There exists an algorithm with the following properties: Given h, n, � >

0, and access to examples drawn from the uniform distribution on f0; 1gn and labeled by

any read-once majority formula f of depth at most h on n variables, the algorithm exactly

identi�es f with probability at least 1 � �. The algorithm's sample complexity is O(4h �
log(n=�)), and its time complexity is O(4h � (r3 + n) � log(n=�)), where r is the number of

relevant variables appearing in the target formula.

Proof: First, for each variable xi, estimate the function's ampli�cation with xi hard-wired

to 1. (We will ensure that, with high probability, this estimate is within
�
1
2

�h+2
of the true

ampli�cation.) It follows from Theorem 3.3 that after this phase of the algorithm, with high

probability we know which variables are relevant, and the sign and depth of each relevant

variable. (So, we assume from now on that the formula is monotone.)

12

In the second phase of the algorithm, we build the formula level by level from bottom to

top. To build the bottom level, for all triples of variables xi, xj, xk that enter the bottom

level, we estimate the ampli�cation with xi, xj, and xk hard-wired to 1. (We will ensure that,

with high probability, this estimate is within 3
�
1
2

�h+4
of the true ampli�cation.) It follows

from Theorem 3.7 that we can determine which variables enter the same bottom-level gates.

We want to recurse to compute the other levels; however, we cannot hard-wire too many

variables without the �lter requiring too many examples. The key observation is that on

examples drawn from the uniform distribution, the output of any subformula is 1 with

probability 1
2
. Thus, the inputs into any level are in fact distributed according to a uniform

distribution. Since we compute the formula from bottom to top, the �lter can just compute

the value for the known levels to determine the inputs to the level currently being learned.

Our algorithm is described in Figure 2.

Given that the estimates for the formula's ampli�cation have the needed accuracy, the

proof of correctness follows from Theorems 3.3 and 3.7. To compute the actual sample size

needed to make these estimates, we use Hoe�ding's inequality [12] (also known as a form of

Cherno� bounds) as stated below:

Lemma 3.9 (Hoe�ding's Inequality) Let X1; . . . ;Xm be a sequence of m independent

Bernoulli trials, each succeeding with probability p. Let S = X1 + � � � + Xm be the random

variable describing the total number of successes. Then for 0 � � 1, the following holds:

Pr[jS � pmj > m] � 2e�2m
2

:

In the �rst phase of the algorithm, for each variable xi, we need a good estimate �̂ of

� = Af jxi 1(
1
2); speci�cally, we require that the chosen sample be su�ciently large that

j�� �̂j < 2�(h+2) with probability at least 1 � �=2n. Then every such estimate for the n

variables will have the needed accuracy with probability at least 1 � �=2.
Using Hoe�ding's inequality it can be shown that a �ltered sample (i.e., the sample after

all examples are removed for which xi = 0) of size m1 > 8 � 4h ln(8n=�) is su�ciently large

to ensure that the estimate �̂ has the needed accuracy with probability at least 1 � �=4n.
Again using Hoe�ding's inequality, it can be shown that if we draw an (un�ltered) sample

of size at least maxf4m1; 8 ln(4=�)g then with probability at least 1 � �=4n, at least 1=4 of

the examples chosen will be such that xi = 1, and thus, the �ltered sample will have size at

least m1. So by using a sample of size exceeding 32 � 4h ln(8n=�), all of the estimates satisfy

the requirements for the �rst phase of the algorithm with probability at least 1� �=2.
In the second phase, we require good estimates of the formula's ampli�cation when triples

of variables are hard-wired. In fact, we need such estimates not only when ordinary variables

are hard-wired, but also when we hard-wire meta-variables. Note that, assuming all estimates

have the needed accuracy, every (meta-)variable added to the set X in Figure 2 in fact

13

LearnMajorityFormula(n; h; �)

m 228 � 4h ln(8n3=�)
E fm labeled examples from D(1=2)g
X ;
for 1 � i � n

E0 examples from E for which xi = 1

�̂ fraction of E0 that are positive

if j�̂� 1
2
j >

�
1
2

�h+2
then

if �̂ > 1
2
then X X [fxig
else X X [f�xig

t(xi) compute-level(�̂; h)

BuildFormula(h;X;E)

BuildFormula(t;X;E)

if t = 0 then the target formula is the only variable in X

else

for all distinct triples xi; xj; xk 2 X for which t(xi)= t(xj)= t(xk) = t

E 0 examples from E for which xi=xj=xk=1

�̂ fraction of E0 that are positive

if �̂ < 1
2 +

�
1
2

�t
+ 3

�
1
2

�t+4
then

let y � maj(xi; xj; xk) be a new variable

t(y) t� 1

X (X [fyg)� fxi; xj; xkg
BuildFormula(t� 1;X;E)

Figure 2: Algorithm for exactly identifying read-once majority formulas of depth h. Pro-

cedure compute-level(�̂; h) computes the level associated with �̂ as given by Theorem 3.3.

14

computes some subformula g of f . Thus, for every triple of subformulas g1, g2 and g3 of f ,

our algorithm requires an estimate �̂ of �, the ampli�cation of f at 1
2
, given that the output

of each subformula g1, g2 and g3 is �xed to the value 1. Since a read-once majority formula

on n variables has at most 3n=2 subformulas (since it has at most n=2 maj gates), we require

a sample su�ciently large that j�� �̂j < 3
�
1
2

�h+4
with probability at least 1�4�=27n3. The

chance that all of the (at most (3n=2)3) estimates have the needed accuracy is then at least

1 � �=2. The analysis is similar to that given above, yielding the sample size stated in the

�gure.

Finally, the time complexity follows from the fact that LearnMajorityFormulamakes n

estimates from the sample and BuildFormula makes O(r3) estimates from the sample.

Note that our algorithm's sample complexity has only a logarithmic dependence on the

number of irrelevant attributes. Also, it follows immediately from Theorem 3.8 that any

read-once majority formula of depth O(log n) can be exactly identi�ed in polynomial time.

Finally, we note that our algorithm can be modi�ed to work without receiving a bound

for the height of the formula as input; the time and sample complexity only increase by a

factor of two. The idea is to guess an initial value of h = 1 and to increment our guess each

time the algorithm fails; it can be shown that, if the formula's height is greater than our

current guess, then this fact will become evident by our algorithm's inability to successfully

construct a formula. (Speci�cally, the algorithm BuildFormula in Figure 2 will reach a

point at which there remain level-t variables in X, but no three remaining level-t variables

are immediate inputs to the same gate.)

4 Exact identi�cation of read-once positive nand formulas

In this section we use the properties of the ampli�cation function to obtain a polynomial-

time algorithm that with high probability exactly identi�es any read-once positive nand

formula of logarithmic depth from D() where is the constant (
p
5 � 1)=2 � 0:618. Note

that = 1=� = �� 1, where � is the golden ratio.

As noted earlier, the class of read-once positive nand formulas is equivalent to the class

of read-once formulas constructed from alternating levels of or/and gates, starting with an

or gate at top level, and with the additional condition that each variable is negated if and

only if it enters an or gate.

We show that this class of formulas is learnable when examples are chosen from a distri-

bution in which each variable is 1 with probability . The basic structure of the algorithm

is just like that of the preceding algorithm for identifying read-once majority formulas. In

the �rst phase of the algorithm, we determine the relevant variables and their depths by

15

hard-wiring each variable to 0, and estimating the ampli�cation of the induced function at

 using random examples from D(). In the second phase of the algorithm, we construct the

formula by �nding pairs of variables that are direct inputs to a bottom-level gate. Here, we

show that this is possible by hard-wiring pairs of variables to 0 and estimating the function's

ampli�cation. After learning the structure of the bottom level of the formula, we again are

able to construct the remaining levels recursively.

Since the techniques used in this section are so similar to those in Section 3, the proofs of

the lemmas and theorems have been omitted. Most of the lemmas can be proved by simple

induction arguments as before.

We turn now to a discussion of some of the properties of the ampli�cation function of

read-once positive nand formulas; these lead to a proof of the correctness of our algorithm.

Lemma 4.1 Let X1 and X2 be independent Bernoulli variables, each 1 with probability p1

and p2, respectively. Then Pr[nand(X1;X2) = 1] = 1� p1p2.

It is easily veri�ed that 1� 2 = , and thus that is a �xed point of the ampli�cation

function Af whenever f is a read-once positive nand formula. Once again, our approach

depends on the fact that slight perturbations of D() tend to perturb the statistical behavior

of the formula su�ciently to allow exact identi�cation.

Lemma 4.2 Let f be a read-once positive nand formula, and let t be the level of some

variable xj. Then Af jxj q() = + (q �)(�)t.

Thus, hard-wiring an even-leveled input to 0 decreases the ampli�cation while hard-wiring

an odd-leveled input to 0 increases the ampli�cation. To give some intuition explaining this

behavior, consider the correspondence described above between read-once positive nand

formulas and leveled or/and formulas. An even-leveled input corresponds to an input to an

and gate and thus hard-wiring that input to 0 clearly decreases the ampli�cation. However,

an odd-leveled input corresponds to an input that is �rst negated and then fed to an or

gate; thus, this case corresponds to hard-wiring the input to an or gate to 1 which clearly

increases the ampli�cation function.

As we saw in the last section, the ampli�cation function can be used to determine the

relevant variables of f : if xj is relevant then the statistical behavior of the output of f

changes signi�cantly when xj is hard-wired to 0. Similarly, the level of each variable can be

computed in this manner.

Theorem 4.3 Let f be a read-once positive nand formula of depth h. Let �̂ be an estimate

of � = Af jxj 0() for some variable xj, and assume that j�̂ � �j < � � h+1=2. Then

� xj is relevant if and only if j�̂ � j > � ;

16

� xj occurs at level t if and only if j + (�)t+1 � �̂j < � .

We next consider the e�ect on the ampli�cation function of hard-wiring two inputs.

Unlike the case of majority formulas, measuring the ampli�cation of the function when pairs

of variables are hard-wired to 0 reveals a great deal of information about the structure of

the formula. In particular, the value of the ampli�cation function when two level-t variables

xi and xj are hard-wired to 0 depends critically on the depth of �(xi; xj).

Lemma 4.4 Let f be a read-once positive nand formula, and let xi and xj be two distinct

variables that occur at levels t1 and t2, respectively, and for which � = �(xi; xj) is at level d.

Then

Af jxi;xj 0() = + (�)t1+1 + (�)t2+1 � (�)t1+t2�d:

Using the same ideas as in the last section, it can now be proved that, given a good

estimate of the ampli�cation function, one can determine which variables meet at bottom-

level gates.

Theorem 4.5 Let f be a read-once positive nand formula. Let xi and xj be two level-t

inputs. Let �̂ be an estimate of � = Af jxi;xj 0() for which j�̂ � �j < � � t+3=2. Then xi

and xj are inputs to the same level-(t � 1) gate of f if and only if j + (�)t+1 � �̂j < � .

We are now ready to state the main result of this section:

Theorem 4.6 Let = 1=� = (
p
5�1)=2. Then there exists an algorithm with the following

properties: Given h, n, � > 0, and access to examples drawn from the distribution D()

on f0; 1gn and labeled by any read-once positive nand formula f of depth at most h on n

variables, the algorithm exactly identi�es f with probability at least 1 � �. The algorithm's

sample complexity is O(�2h � log(n=�)), and its time complexity is O(�2h � (r2+n) � log(n=�)),
where r is the number of relevant variables appearing in the target formula.

Our algorithm is obtained bymaking straightforward modi�cations to LearnMajorityFormula

and BuildFormula. The proof that this algorithm is correct follows from the preceding lem-

mas and theorems, and is similar to the proof of Theorem 3.8.

As before, it follows immediately that any read-once positive nand formula of depth at

most O(log n) can be exactly identi�ed in polynomial time.

17

5 Short universal identi�cation sequences

In this section we describe an interesting consequence of our results. Observe that if we regard

our algorithms' use of a �xed distribution as a form of \random" membership queries, then

it is apparent that these queries are non-adaptive; each query is independent of all previous

answers. In other words, our algorithms pick all membership queries before seeing the

outcome of any. From this observation we can apply our results to prove the existence of

polynomial-length universal identi�cation sequences for classes of formulas, that is, �xed

sequences of instances that distinguish all concepts from one another.

More formally, we de�ne an instance sequence to be an unlabeled sequence of instances,

and an example sequence to be a labeled sequence of instances. Let Cn be a concept class.

We say an instance sequence S distinguishes a concept c if the example sequence obtained

by labeling S according to c distinguishes c from all other concepts in Cn; that is, c is the
only concept consistent with the example sequence so obtained. A universal identi�cation

sequence for a concept class Cn is an instance sequence that distinguishes every concept

c 2 Cn.
In the language used in the related work of Goldman and Kearns [8], a sequence that

distinguishes c would be called a teaching sequence for c. Thus, in their terminology, a

universal identi�cation sequence is one that acts as a teaching sequence for every c 2 Cn.
See also the related work of Shinohara and Miyano [22].

The following theorem gives general conditions for when a deterministic exact identi�ca-

tion algorithm implies the existence of a polynomial-length universal identi�cation sequence.

We then apply this theorem to our algorithms of the previous sections.

Theorem 5.1 Let Cn be a concept class with cardinality jCnj � 2p(n), where p(n) is some

polynomial. Let A be a deterministic algorithm that, given � > 0 and random, labeled

examples drawn from some �xed distribution D, exactly identi�es any c 2 Cn with probability

exceeding 1 � �. Furthermore, suppose that the sample complexity of A is q(n) logk(1=�)

for some polynomial q(n) and constant k. Then there exists a polynomial-length universal

identi�cation sequence for Cn. Speci�cally, there exists such a sequence of length q(n)�(p(n))k.

Proof: The proof uses a standard probabilistic argument. Fix c 2 Cn, and let S be the

random example sequence drawn by algorithm A. Since algorithm A achieves exact iden-

ti�cation of c with probability exceeding 1 � � we have that the probability, taken over all

random example sequences for c, that A fails to exactly identify the particular target concept

c is less than �. Letting � = 2�p(n) it follows that the probability, taken over all random

instance sequences, that A fails to identify any target concept in Cn is less than jCnj� � 1.

Thus, with positive probability, an instance sequence of length q(n)(p(n))k drawn randomly

18

from D causes A to exactly identify any c 2 Cn. Call such a sequence good . Therefore there

must exist some good instance sequence S of this length.

We now show that a good S distinguishes all c 2 Cn. For c 2 Cn, let Sc be the example

sequence obtained by labeling S according to c. Suppose some c0 2 Cn is consistent with Sc so
that Sc = Sc0 . Since S is a good sequence and since A is a deterministic exact identi�cation

algorithm, it follows that on input Sc, A must output c and on input Sc0 = Sc, A must

output c0. Clearly this can only be true if c = c0. Thus c must be the only concept in Cn
that is consistent with Sc.

Applying this theorem to our exact identi�cation algorithms, we obtain the following

corollary.

Corollary 5.2 There exist polynomial-length universal identi�cation sequences for the classes

of logarithmic-depth read-once majority formulas and logarithmic-depth read-once positive

nand formulas.

6 Handling random misclassi�cation noise

Because the algorithms described in Sections 3 and 4 are statistical in nature, they are

easily modi�ed to handle a considerable amount of noise. In this section, we describe a

robust version of our algorithm for learning logarithmic-depth read-once majority formulas.

Although omitted, a similar (though slightly more involved) algorithm can be derived for

nand formulas.

Our algorithm is able to handle a kind of random misclassi�cation noise that is similar,

but slightly more general than that considered by Angluin and Laird [2], and Sloan [23].

Speci�cally, the output of the target formula is \ipped" with some �xed probability that

may depend on the formula's output. Thus, if the true, computed output of the formula

is 0, then the learner sees 0 with probability 1 � �0, and 1 with probability �0, for some

quantity �0. Similarly, a true output of 1 is observed to be 0 with probability �1 and 1

with probability 1� �1. When �0 = �1, this noise model is equivalent to that considered by

Angluin and Laird, and Sloan. Note that when �0 + �1 = 1, outputs of 0 or 1 are entirely

indistinguishable in an information-theoretic sense. Moreover, we can assume without loss

of generality that �0+�1 � 1 by symmetry of the behavior of the formula f with its negation

:f .
If we regard our algorithm's use of a �xed distribution as a form of membership query,

we can also handle large rates of misclassi�cation noise in the queries. Here the formulation

of a meaningful noise model is more problematic. In particular, we wish to disallow the

uninteresting technique of repeatedly querying a particular instance in order to obtain its

true classi�cation with overwhelming probability. Thus, we consider a model in which noisy

19

labels are persistent: for each instance x, on the �rst query to x, the true output of the

target concept is computed and is reversed with probability �0 or �1, according to whether

the true output is 0 or 1 (as described above). However, on all subsequent queries to x,

the label returned is the same as the label returned with the �rst query to x. A natural

interpretation of such persistent noise is that of a teacher who is simply wrong on certain

instances, and cannot be expected to change his mind with repeated sampling. This kind of

persistent noise is not a problem for our algorithms because, when n is large, the algorithm

is extremely unlikely to query the same instance twice.

Our algorithm assumes that �0 + �1 is bounded away from 1 so that �0 + �1 � 1 � � for
some known positive quantity �. The error rates themselves, �0 and �1, are assumed to be

unknown. Our algorithm exactly identi�es the target formula with high probability in time

polynomial in all of the usual parameters, and 1=�.

Our robust algorithm has a similar structure to that of the algorithm described previously

for the noise-free case: The algorithm begins by determining the relevance and sign of each

variable. However, it is not clear at this point how the level of each variable might be

ascertained in the presence of noise. Nevertheless, it turns out to be possible to �nd three

bottom-level variables that are inputs to the same gate. As before, once such a triple has

been discovered, the remainder of the formula can be identi�ed recursively.

To start with, note that if p is the probability that a 1 is output by the target formula f

under some distribution on f0; 1gn, then the probability that a 1 is observed by the learner

is

p(1 � �1) + (1 � p)�0 = p(1 � �0 � �1) + �0 :

Thus, ~Af(p) = Af(p) � (1 � �0 � �1) + �0 is the probability that a 1 is observed when

each input is 1 with probability p. Under the uniform distribution, a 1 is observed with

probability � = ~Af (
1
2). Since �0 and �1 are unknown, � is unknown as well. However, an

accurate estimate �̂ (say, within �(�=2h) of �) can be e�ciently obtained in the usual manner

by sampling.

The next lemma shows that a variable xi's relevance and sign can be determined by

hard-wiring it to 1 and comparing �̂ to an estimate of the value � = ~Af jxi 1(
1
2).

Lemma 6.1 Let f be read-once majority formula of depth h. Let �̂ and �̂ be estimates of

� = ~Af(
1
2
) and � = ~Af jxj 1(

1
2
), for some variable xj. Assume j� � �̂j < � and j� � �̂j < �

for some � � �=2h+3. Then

� xj is relevant if and only if j�̂ � �̂j > 2� ;

� if xj is relevant, then it occurs negated if and only if �̂ < �̂.

20

Proof: Note that � � � = (1 � �0 � �1)(Af jxj 1(
1
2
) � 1

2
). The lemma then follows from

Lemma 3.2, and by noting that 1 � �0 � �1 � �.
More di�cult is the problem of determining the level of each variable since �0 and �1

are unknown. Nevertheless, it turns out to be possible to identify the formula without �rst

determining the level of each variable. In particular, we can determine a triple of variables

that are inputs to the same bottom-level gate. As described in Section 3, once this is done,

the three variables can be replaced by a meta-variable, and the rest of the formula can be

constructed recursively. Thus, to complete the algorithm, we need only describe a technique

for �nding such a triple.

From the comments above, we can assume without loss of generality that all variables

are relevant and unnegated. The key point, proved below, is the following: ~Af jxi;xj;xk 1(
1
2
)

is minimized over triples xi, xj and xk whenever the three variables are inputs to the same

bottom-level gate. Thus, such a triple can be found by estimating ~Af jxi;xj;xk 1(
1
2) for each

triple and choosing the one with the smallest estimated value.

Lemma 6.2 Let f be a monotone, read-once majority formula of depth h. For all triples

of distinct indices i, j and k, let �̂ijk be an estimate of �ijk = ~Af jxi;xj;xk 1(
1
2
), and assume

that j�ijk � �̂ijkj < � � 3�=2h+4. Suppose that �̂qrs = minf�̂ijk : i; j; k distinct g. Then xq,

xr and xs are bottom-level variables that are inputs to the same gate.

Proof: From Lemma 3.5, if xi, xj and xk are bottom-level variables that are inputs to the

same gate, then

�ijk = (1 � �0 � �1)
�
1
2
+
�
1
2

�h�
+ �0:

Otherwise, Lemmas 3.5 and 3.6 imply that

�ijk � (1� �0 � �1)
�
1
2 +

�
1
2

�h
+ 3

�
1
2

�h+3�
+ �0:

Furthermore, since 1� �0 � �1 � � we get that

�ijk � (1� �0 � �1)
�
1
2
+
�
1
2

�h�
+ �0 + 3�=2h+3:

Since each �̂ijk is accurate to within 3�=2h+4, it follows that �̂qrs can be minimal only if xq,

xr and xs are bottom-level inputs to the same gate.

Thus, Lemma 6.2 gives a technique for �nding bottom-level inputs to the same gate, and,

as previously mentioned, the remainder of the formula can be constructed recursively as in

Section 3. We thus obtain the main result of this section:

Theorem 6.3 There exists an algorithm with the following properties: Given h, n, � > 0,

� > 0, and access to examples drawn from the uniform distribution on f0; 1gn, labeled by

21

a read-once majority formula f of depth at most h on n variables, and misclassi�ed with

probabilities �0 and �1 (as described above) for �0+�1 � 1��, the algorithm exactly identi�es

f with probability at least 1� �. The algorithm's sample complexity is O((4h=�2) � log(n=�)),
and its time complexity is O((4h=�2) � (n+ r3) � log(n=�)), where r is the number of relevant

variables appearing in the target formula.

Finally, we comment that our algorithms can be extended to handle a modest amount

of malicious noise. In this model, �rst considered by Kearns and Li [14], an adversary is

allowed to corrupt each example in any manner he chooses (both the labels and the variable

settings) with probability �. We can show that the algorithm described in Sections 3 for

majority formulas can handle malicious error rates as large as �(2�h) where h is the height

of the target formula. Thus, for logarithmic-depth formulas, we can handle malicious error

rates up to an inverse polynomial in the number of relevant variables. Similar results also

hold for nand formulas.

The extension of the algorithm to handle malicious noise is straightforward. The algo-

rithm of Section 3 depends only on accurate estimates of the ampli�cation of f when some

of f 's inputs are hard-wired. For instance, in the �rst phase of the algorithm, we need to

estimate, for each input xi, the ampli�cation � = Af jxi 1(
1
2
). This quantity is really just

the conditional probability

Pr[f = 1 j xi = 1] =
Pr[f = 1 ^ xi = 1]

Pr[xi = 1]
= 2 �Pr[f = 1 ^ xi = 1]

where the probabilities are computed with respect to the uniform distribution. Thus, we can

compute an estimate of � using an estimate for � = Pr[f = 1^xi = 1]. Note that malicious

noise can a�ect this probability � by at most an additive factor of �. That is, the chance

that f = 1 and xi = 1 (in the presence of malicious noise) is at least ��� and at most �+�.

Thus, using Hoe�ding's inequality (Lemma 3.9), an estimate of � that is accurate to

within �+� can be obtained from a sample of size polynomial in 1=� (with high probability).

Such an estimate for � yields an estimate for � that is accurate to within 2(� + �).

A similar argument can be made for computing the estimates required in the second phase

of the algorithm. Since Theorems 3.3 and 3.7 show that the required estimates need only be

accurate to within 3=2h+4, it follows that a malicious error rate of, say, 1=16 this amount can

be tolerated without increasing the algorithm's complexity by more than constant factors.

7 Learning unbounded-depth formulas

In this �nal section, we describe extensions of our algorithms to learn formulas of unbounded

depth in Valiant's PAC model with respect to speci�c distributions. As in the last section,

22

we focus only on majority formulas, omitting the similar application of these techniques to

nand formulas.2

For formulas of unbounded depth, exact identi�cation from the uniform distribution

in polynomial time is too much to ask: For purely information-theoretic reasons, at least

(2h) examples must be drawn from the uniform distribution to exactly identify a majority

formula of depth h. This can be proved by showing (say, by induction on h) that if xi occurs

at level h of formula f , then 2�h is the probability that an instance is chosen for which the

output of f depends on xi (i.e., for which f 's output changes if xi is ipped). Thus,
(2h)

random examples are needed simply to determine, for example, whether xi occurs negated

or unnegated.

Therefore, to handle arbitrarily deep formulas, we must relax our requirement of exact

identi�cation. Instead, we adopt Valiant's criterion of obtaining a good approximation of

the target concept (with high probability). As before, our algorithms do not work for all

distributions, just the �xed-point distribution. We describe an algorithm that, given �; � > 0

and access to random examples of the target majority formula drawn from the uniform

distribution, outputs with probability 1 � � an �-good hypothesis, that is, one that agrees

with the target formula on a randomly chosen instance from the uniform distribution with

probability at least 1 � �. Furthermore, the running time is polynomial in 1=�, 1=� and the

number of variables n.

We begin by briey discussing the main ideas of the algorithm. First, as noted above,

variables that occur deep in the formula are unimportant in the sense that their values are

unlikely to inuence the formula's output on a randomly chosen instance. Intuitively, we

would like to take advantage of this fact by somehow treating such variables as irrelevant.

However, they cannot be simply deleted from the formula without leaving \holes" that must

in some way be handled.

We therefore introduce the notion of a partially visible function. This is a function on

a set of visible variables whose values can be observed by the learner, and a set of hidden

variables that are not observable. With respect to a distribution on the set of assignments

to the hidden variables, we say that two partially visible Boolean functions are equivalent if,

for all assignments to the visible variables, the probabilities are the same that each function

evaluates to 1 (where the probabilities are taken over random assignments to the hidden

variables). In other words, the behaviors of the two functions are indistinguishable with

respect to the visible variables.

Thus, we handle all deep variables by regarding them as hidden variables, and the target

2Alternatively, the algorithm recently described by Schapire [21] could be used to PAC-learn unbounded-

depth nand formulas. His algorithm is more general but less e�cient than the approach described in this

section.

23

formula as one that is partially visible. In particular, insigni�cant variables|those that

occur below level h = dlog(n=2�)e|are considered hidden and their actual values ignored.

We call the partially visible formula obtained from the target formula f in this manner the

truncated target.

Our algorithm works by exactly identifying the truncated target, that is, by constructing

a partially visible formula f 0 that is equivalent to it (in the sense described above, with

respect to the uniform distribution). It will be shown that f and f 0 agree on a randomly

chosen instance with probability at least 1 � �, and therefore f 0 is an �-good hypothesis

satisfying the PAC criterion.

It remains then only to show how f 0 can be constructed. First, observe that by Lemma 3.2

all signi�cant variables occurring in f can be detected (and their signs and levels determined)

in polynomial time. Moreover, by arguments similar to those given in Section 3, it can be

shown that if some triple of signi�cant variables meet at a gate, then the level of that gate

can be detected from the ampli�cation function by hard-wiring the three variables to 1. We

call this information (the level and sign of each signi�cant variable, and the level at which

each triple of signi�cant variables meet, if at all) the formula's schedule. It turns out that the

schedule alone is su�cient to fully re-construct the partially visible formula f 0, as is shown

below.

These then are the main ideas of the algorithm. What follows is a more detailed exposi-

tion.

A partially visible function f(x : y) is a Boolean function f on a set of visible variables x =

x1 � � �xr, and a set of hidden variables y = y1 � � � ys. Two partially visible functions f(x : y)

and g(x : z) on the same set of visible variables are equivalent with respect to distributions

D and E on the domains of y and z if, for all x, Pr[f(x : Y) = 1] = Pr[g(x : Z) = 1], where

Y and Z are random variables representing a random assignment to y and z according to D

and E. In the discussion that follows, we will only be interested in uniform distributions.

As described above, our algorithm regards variables that occur deep in the target formula

as hidden variables. The next two lemmas show that two partially visible read-once majority

formulas that are identical, except for some deep hidden variables, are very likely to produce

the same output on randomly chosen inputs.

Lemma 7.1 Let f be a read-once majority formula on n variables. Let t be the level of xn

in f . Let X1; . . . ;Xn�1, Y and Z be independent Bernoulli variables, each 1 with probability

1=2. Then Pr[f(X1; . . . ;Xn�1; Y) 6= f(X1; . . . ;Xn�1; Z)] = 2�t�1.

Proof: By induction on t. If t = 0, then f is the function xn and since Pr[Y 6= Z] =

1=2, the lemma holds. If t > 0, then let f = maj(f1; f2; f3), and suppose that f1 is the

subformula in which xn occurs. Since xn does not also occur in f2 or f3, we will regard

24

these as functions only on the remaining n � 1 variables. It is not hard to see then that

f(X1; . . . ;Xn�1; Y) 6= f(X1; . . . ;Xn�1; Z) if and only if f2(X1; . . . ;Xn�1) 6= f3(X1; . . . ;Xn�1)

and f1(X1; . . . ;Xn�1; Y) 6= f1(X1; . . . ;Xn�1; Z). Since f2 and f3 each output 1 independently

with probability 1=2, we have

Pr[f2(X1; . . . ;Xn�1) 6= f3(X1; . . . ;Xn�1)] = 1=2:

Also, by inductive hypothesis,

Pr[f1(X1; . . . ;Xn�1; Y) 6= f1(X1; . . . ;Xn�1; Z)] = 2�t:

The lemma then follows by independence.

Lemma 7.2 Let f be a read-once majority formula on n variables. Let ti be the level of vari-

able xi in f . Let X1; . . . ;Xn;X
0
1; . . . ;X

0
r, r � n, be independent Bernoulli variables, each 1

with probability 1=2. Then Pr[f(X1; . . . ;Xn) 6= f(X 01; . . . ;X
0
r;Xr+1; . . . ;Xn)] � Pr

i=1 2
�ti�1.

Proof: By induction on r. If r = 0, then the lemma holds trivially. For r > 0, we have

Pr[f(X1; . . . ;Xn) 6= f(X 01; . . . ;X
0
r;Xr+1; . . . ;Xn)]

� Pr[f(X1; . . . ;Xn) 6= f(X 01; . . . ;X
0
r�1;Xr; . . . ;Xn)]

+Pr[f(X 01; . . . ;X
0
r�1;Xr; . . . ;Xn) 6= f(X 01; . . . ;X

0
r;Xr+1; . . . ;Xn)]

�
r�1X
i=1

2�ti�1 + 2�tr�1

where the last inequality follows from our inductive hypothesis and the preceding lemma.

As proved below, Lemma 7.2 implies that any partially visible formula is an �-good

hypothesis if it is equivalent to the truncated target, the partially visible formula obtained

from the target formula by regarding all variables at or below level h = dlog(n=2�)e as hidden
variables. Given an assignment to the visible variables, such a hypothesis is evaluated in the

obvious manner by choosing a random assignment to the hidden variables and computing

the output of the formula on the combined assignments to the hidden and visible variables.

(Thus, the hypothesis is likely to be randomized.)

Lemma 7.3 Let � > 0, and let f be a read-once majority formula on n variables. Let

x = x1 � � �xr be the variables occurring above level h = dlog(n=2�)e, and let y = y1 � � � yn�r
be the remaining variables. Let g(x : z) be any partially visible formula equivalent to the

partially visible formula f(x : y). Then Pr[f(X : Y) 6= g(X : Z)] � �, where X, Y and Z

are random variables representing the uniformly random choice of assignments to x, y and

z. That is, g(x : z) is an �-good hypothesis for f .

25

Proof: Let Y 0 be a random variable representing a random assignment to y, chosen inde-

pendently of Y . Since f(x : y) is equivalent to g(x : z), we have

Pr[f(X : Y) 6= g(X : Z)] = Pr[f(X : Y) 6= f(X : Y 0)]:

By Lemma 7.2, the right hand side of this equation is bounded by �, since each of the

n� r � n variables yi occurs at or below level h in f .

For � > 0 and target formula f , we will henceforth say that variables occurring above

level h = dlog(n=2�)e are signi�cant. Note that Theorem 3.3 implies that the signi�cance,

sign and level of any variable xj can be determined by hard-wiring that variable to 1, as

usual. More speci�cally, if �̂ is an estimate of � = Af jxj 1(
1
2
) for which j�̂ � �j < � �

�
1
2

�h+2

then xj is signi�cant if and only if
����̂ � 1

2

��� > �
1
2

�h+1
+ � , and, if it is signi�cant, then its sign

and level can be determined as in Theorem 3.3.

Similar to Theorem 3.7, we can show that, for any triple of signi�cant variables, we can

determine the level of the gate at which the triple meets, if at all. More precisely, if xi, xj and

xk are three unnegated variables occurring at levels t1, t2 and t3, and if �̂ is an estimate of

� = Af jxi;xj;xk 1(
1
2) for which j�̂� �j < � � 2�3h, then it follows from Lemmas 3.5 and 3.6

that xi, xj and xk meet at a level-d gate if and only if
����12 +

�
1
2

�t1+1
+
�
1
2

�t2+1
+
�
1
2

�t3+1 � �1
2

�t1+t2+t3�2d�1 � �̂
���� < �:

As mentioned above, we call the sum total of this information|the signi�cance of each

variable, the level and sign of each signi�cant variable, and the level of the gate at which each

triple of signi�cant variables meet, if at all|the formula's schedule. It remains then only

to show how an �-good hypothesis can be constructed from the schedule. Speci�cally, we

show how to construct a partially visible formula that is equivalent to the truncated target

f(x : y). (Here, x is the vector of visible (i.e., signi�cant) variables, and y is the vector of

hidden (insigni�cant) variables.)

Suppose �rst that no three visible variables meet in f . Such a formula is said to be

unstructured. Although strictly speaking f cannot be unstructured (by our choice of h), this

special case turns out nevertheless to be important in handling the more general case since

subformulas of f may be unstructured.

Lemma 7.4 below shows that an unstructured formula f(x : y) is equivalent to any other

unstructured partially visible formula whenever each visible variable occurs at the same level

with the same sign in both formulas. Thus, unstructured formulas are not changed when

visible variables are moved around within the same level. This fact makes the identi�cation

of unstructured formulas from their schedules quite easy.

For any partially visible read-once majority formula f(x : y), let pf (x) = Pr[f(x : Y) = 1]

where Y represents a random assignment to y.

26

Lemma 7.4 Let f(x : y) and g(x : z) be unstructured read-once majority formulas on s

visible variables. Suppose that each visible variable xj is relevant and occurs at the same

level tj with the same sign in both formulas. Then the two partially visible formulas are

equivalent.

Proof: It su�ces to prove the lemma when no visible variable is negated since negated

variables can simply be replaced by unnegated meta-variables.

To prove the lemma, we show that

pf (x) =
1
2
+

sX
i=1

2�ti(xi � 1
2
): (1)

Since this statement applies to any unstructured formula, it follows immediately that pf (x) =

pg(x) and the two partially visible formulas are equivalent.

We prove Equation (1) by induction on the height h of f . If h = 0, then f consists of

a single visible or hidden variable. If f is the formula xj, where xj is some visible variable,

then pf (x) = xj, satisfying (1). If f is the formula yj, where yj is a hidden variable, then

pf (x) =
1
2 , also satisfying (1).

If h > 0, then let f = maj(f1; f2; f3) where f1, f2 and f3 are partially visible subformulas.

Since f is unstructured, one of these (say f3) contains no visible variables, and thus pf3(x) =
1
2 . Suppose without loss of generality that x1; . . . ; xr are the visible variables relevant to f1.

Then, by inductive hypothesis,

pf1(x) =
1
2
+

rX
i=1

2�ti+1(xi � 1
2
)

and

pf2(x) =
1
2 +

sX
i=r+1

2�ti+1(xi � 1
2):

Applying Lemma 3.1, it is easily veri�ed that Equation (1) is satis�ed, completing the

induction.

Thus, if f(x : y) is unstructured, then an equivalent unstructured formula can be con-

structed from f 's schedule. For instance, here is an e�cient algorithm: Let t be the depth

of the deepest visible variable in f . Break the set of all level-t variables into pairs. Replace

each such pair xi; xj by a level-(t� 1) visible meta-variable w � maj(xi; xj; y), where y is

a new hidden variable. If an odd level-t variable xi remains, replace it with a level-(t� 1)

visible meta-variable w � maj(xi; y; y0), where y and y0 are new hidden variables. Repeat

for levels t� 1; t � 2; . . . ; 1. It is not hard to show that this algorithm results in a formula

that is unstructured, and that is consistent with f 's schedule (and so is equivalent).

With these tools in hand for dealing with unstructured formulas, we are now ready

to describe an algorithm for handling the general case, i.e., for reconstructing any (not

necessarily unstructured) formula from its schedule.

27

Let f(x : y) be the truncated target. If f is unstructured, then the previous algorithm

applies. Otherwise, we can �nd from the schedule three visible variables xi, xj and xk that

meet at some maximum-depth gate � of f ; that is, they meet at a level-d gate, and no triple

of visible variables meet at any gate of depth exceeding d. Then the subformula g subsumed

by � computes the majority of three subformulas g1, g2 and g3, each containing one of xi, xj

and xk (say, in that order). Let x` be some other visible variable. Then it is easily veri�ed

that x` is relevant to g1 if and only if x`, xj and xk meet at a level-d gate (namely, �). Thus,

all of the visible variables relevant to g1 (and likewise for g2 and g3) can be determined from

the schedule. Moreover, note that each of these subformulas is unstructured since � is of

maximum depth. Thus, each subformula can be identi�ed using the previous algorithm for

unstructured formulas, and therefore, the entire subformula subsumed by (and including) �

can be identi�ed.

The rest of the formula can be identi�ed recursively: we replace subformula g by a new

meta-variable w, and update the schedule appropriately.

This completes the description of the algorithm. We thus have:

Theorem 7.5 There exists an algorithm with the following properties: Given n, � > 0,

and access to examples drawn from the uniform distribution on f0; 1gn and labeled by any

read-once majority formula f on n variables, the algorithm outputs an �-good hypothesis for

f with probability at least 1 � �. The algorithm's sample complexity is O((n=�)6 � log(n=�)),
and its time complexity is O((n9=�6) � log(n=�)).

Proof: As before, let h = dlog(n=2�)e. To implement the procedure outlined above, we

must be able to compute from a random sample: (1) each variable's signi�cance, (2) each

signi�cant variable's sign and level, and (3) the level of the gate (if any) at which each triple

of signi�cant variables meet. As noted above, to compute (1) and (2), we need to �nd, for

each variable xi, an estimate �̂ of � = Af jxi 1(
1
2) for which j�� �̂j <

�
1
2

�h+2
. Hoe�ding's

inequality (Lemma 3.9) implies that such estimates can be derived, with high probability,

from a sample of size O(22h log(n=�)). We also noted above that we can compute (3) given,

for each triple of signi�cant variables xi; xj; xk, an estimate �̂ of � = Af jxi;xj ;xk 1(
1
2) for

which j�̂� �j < 2�3h. Again applying Hoe�ding's inequality, we see that such estimates

can be computed (with high probability) for all triples of variables from a sample of size

O(26h log(n=�)). This proves the stated sample size.

The running time of the procedure is dominated by the computation from the sample of

the O(n3) estimates described above.

28

8 Summary

In this paper, we have described a general technique for inferring the structure of read-once

formulas over various bases. We have shown how this technique can be applied to achieve

exact identi�cation when the formula is of logarithmic depth, even in the presence of noise.

We have also described how to use this technique to infer good approximations of formulas

with unbounded depth.

9 Acknowledgements

We are very grateful to Ron Rivest for his comments on this material, and for a careful

reading he made of an earlier draft. We also thank Avrim Blum for suggesting the notion

of a universal identi�cation sequence. Finally, we thank the anonymous referees for their

comments.

References

[1] Dana Angluin, Lisa Hellerstein, and Marek Karpinski. Learning read-once formulas

with queries. Technical Report UCB/CSD 89/528, University of California Berkeley,

Computer Science Division, August 1989. To appear, Journal of the Association for

Computing Machinery.

[2] Dana Angluin and Philip Laird. Learning from noisy examples. Machine Learning,

2(4):343{370, 1988.

[3] Gyora M. Benedek and Alon Itai. Learnability by �xed distributions. In Proceedings of

the 1988 Workshop on Computational Learning Theory, pages 80{90, August 1988.

[4] Ravi B. Boppana. Ampli�cation of probabilistic Boolean formulas. In 26th Annual

Symposium on Foundations of Computer Science, pages 20{29, October 1985.

[5] Ravi Babu Boppana. Lower Bounds for Monotone Circuits and Formulas. PhD thesis,

Massachusetts Institute of Technology, 1986.

[6] N. Bshouty, T. Hancock, L. Hellerstein, and M. Karpinski. Read-once formulas, justi-

fying assignments, and generic transformations. Unpublished Manuscript, 1991.

[7] Merrick Furst, Je�rey Jackson, and Sean Smith. Learning AC0 functions sampled

under mutually independent distributions. Technical Report CMU-CS-90-183, Carnegie

Mellon University, School of Computer Science, October 1990.

29

[8] Sally A. Goldman and Michael J. Kearns. On the complexity of teaching. In Proceedings

of the Fourth Annual Workshop on Computational Learning Theory, pages 303{314,

August 1991.

[9] Thomas Hancock and Lisa Hellerstein. Learning read-once formulas over �elds and ex-

tended bases. In Proceedings of the Fourth Annual Workshop on Computational Learning

Theory, pages 326{336, August 1991.

[10] Thomas Hancock and Yishay Mansour. Learning monotone k� DNF formulas on prod-

uct distributions. In Proceedings of the Fourth Annual Workshop on Computational

Learning Theory, pages 179{183, August 1991.

[11] Lisa Hellerstein. On Characterizing and Learning Some Classes of Read-Once Formulas.

PhD thesis, University of California at Berkeley, 1989.

[12] Wassily Hoe�ding. Probability inequalities for sums of bounded random variables. Jour-

nal of the American Statistical Association, 58(301):13{30, March 1963.

[13] Michael Kearns. The Computational Complexity of Machine Learning. MIT Press, 1990.

[14] Michael Kearns and Ming Li. Learning in the presence of malicious errors. In Proceedings

of the Twentieth Annual ACM Symposium on Theory of Computing, pages 267{280, May

1988.

[15] Michael Kearns, Ming Li, Leonard Pitt, and Leslie Valiant. On the learnability of

Boolean formulae. In Proceedings of the Nineteenth Annual ACM Symposium on Theory

of Computing, pages 285{295, May 1987.

[16] Michael Kearns and Leslie G. Valiant. Cryptographic limitations on learning Boolean

formulae and �nite automata. In Proceedings of the Twenty First Annual ACM Sym-

posium on Theory of Computing, pages 433{444, May 1989.

[17] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier

transform, and learnability. In 30th Annual Symposium on Foundations of Computer

Science, pages 574{579, October 1989.

[18] Giulia Pagallo and David Haussler. A greedy method for learning �DNF functions under

the uniform distribution. Technical Report UCSC-CRL-89-12, University of California

Santa Cruz, Computer Research Laboratory, June 1989.

[19] Leonard Pitt and Manfred K. Warmuth. Prediction-preserving reducibility. Journal of

Computer and System Sciences, 41(3):430{467, December 1990.

30

[20] Robert E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197{227,

1990.

[21] Robert E. Schapire. Learning probabilistic read-once formulas on product distributions.

In Proceedings of the Fourth Annual Workshop on Computational Learning Theory,

pages 184{198, August 1991.

[22] Ayumi Shinohara and Satoru Miyano. Teachability in computational learning. New

Generation Computing, 8:337{247, 1991.

[23] Robert H. Sloan. Types of noise in data for concept learning. In Proceedings of the 1988

Workshop on Computational Learning Theory, pages 91{96, August 1988.

[24] Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134{

1142, November 1984.

[25] Karsten Verbeurgt. Learning DNF under the uniform distribution in quasi-polynomial

time. In Proceedings of the Third Annual Workshop on Computational Learning Theory,

pages 314{326, August 1990.

31

