
Efficient Reinforcement Learning in Factored MDPs

Michael Kearns
AT&T Labs

mkearns@research.att.com

Daphne Koller
Stanford University

koller@cs.stanford.edu

Abstract

We present a provably efficient and near-optimal al-
gorithm for reinforcement learning in Markov deci-
sion processes (MDPs) whose transition model can
befactoredas a dynamic Bayesian network (DBN).
Our algorithm generalizes the recent E3 algorithm
of Kearns and Singh, and assumes that we are given
both an algorithm for approximate planning and the
graphical structure (but not the parameters) of the
DBN. Unlike the original E3 algorithm, our new
algorithm exploits the DBN structure to achieve a
running time that scales polynomially in the num-
ber ofparametersof the DBN, which may be expo-
nentially smaller than the number of global states.

1 Introduction
Kearns and Singh[Kearns and Singh, 1998] recently pre-
sented a new algorithm for reinforcement learning in Markov
decision processes (MDPs). Their E3 algorithm (forExplicit
Exploit or Explore) achieves near-optimal performance in a
running time and a number of actions which are polynomial
in the number of states and a parameterT (which is the time
horizon in the case of discounted return, and the mixing time
of the optimal policy in the case of infinite-horizon average
return). The E3 algorithm makes no assumptions on the struc-
ture of the unknown MDP, and the resulting polynomial de-
pendence on the number of states makes E3 inapplicable to
the case of very large MDPs. In particular, it cannot be ap-
plied to MDPs in which the transition probabilities are rep-
resented in the factored form of adynamic Bayesian network
(DBN). MDPs with very large state spaces, and suchDBN-
MDPs in particular, are becoming increasingly important as
reinforcement learning methods are attempted on problems
of growing difficulty and complexity[Boutilieret al., 1999].

In this paper, we extend the E3 algorithm to the case of
DBN-MDPs. The E3 algorithmrelies on the ability to find op-
timal strategies in MDPs. While this problem is intractable in
large MDPs, significant progress has been made recently on
approximatesolution algorithms for DBN-MDPs[Boutilier
et al., 1999]. Our new DBN-E3 algorithm therefore assumes
the existence of a procedure for finding approximately op-
timal policies in anygiven DBN-MDP. Our algorithm also

assumes that the qualitative structure of the transition model
is known, i.e., the underlying graphical structure of the DBN.
This assumption is often reasonable, as the qualitative prop-
erties of a domain are often understood. Using the planning
procedure as a subroutine, DBN-E3 explores the space, learn-
ing the parameters it considers relevant. It achieves near-
optimal performance in a running time and a number of ac-
tions that are polynomial inT and thenumber of parameters
in the DBN-MDP, which in general is exponentially smaller
than the number of global states. We further show that, under
very reasonable assumptions, the mixing timeT of a policy
in a DBN-MDP is polynomial in the number of parameters of
the DBN-MDP, thereby eliminating the other potential source
of exponential dependence in our algorithm.

2 Preliminaries
We begin by introducing some of the basic concepts of MDPs
and factored MDPs. AMarkov Decision Process (MDP)is
defined as a tuple(S;A;R; T ) where:S is a set of states;A
is a set of actions;R is areward functionR : S 7! [0; Rmax],
such thatR(s) represents the reward obtained by the agent in
states; T is a transition modelT : S � A 7! �S, such that
T (s0 j s; a) represents the probability of landing in states0 if
the agent takes actiona in states.

Most simply, MDPs are described explicitly, by writing
down a set of transition matrices and reward vectors — one
for each actiona. However, this approach is impractical
for describing complex processes. Here, the set of states
is typically described via a set of random variablesX =
fX1; : : : ; Xng, where eachXi takes on values in some finite
domainDi. A state in this context is an assignment of a value
xi 2 Di to each variableXi; we usex to denote such a state.
In such an MDP, the set of statesS is exponentially large in
the number of variables. Thus, it is impractical to represent
the transition model explicitly using transition matrices.

The framework ofdynamic Bayesian networks (DBNs)al-
lows us to describe a certain important class of such MDPs in
a compact way. Processes whose state is described via a set
of variables typically exhibit a weak form of decoupling —
not all of the variables at timet directly influence the transi-
tion of a variableXi from timet to timet + 1. For example,
in a simple robotics domain, the location of the robot at time
t+ 1 may depend on its position, velocity, and orientation at
time t, but not on what it is carrying.



Let a 2 A be an action. We first want to specify the
transition modelT (x0 j x; a). Let Xi denote the variable
Xi at the current time andX 0

i denote the variable at the
next time step. The transition model for actiona will con-
sist of two parts — an underlyingtransition graphassoci-
ated witha, and parameters associated with that graph. The
transition graph is a 2-layer directed acyclic graph whose
nodes arefX1; : : : ; Xn; X

0
1; : : : ; X

0
ng. All edges in this

graph are directed from nodes infX1; : : : ; Xng to nodes in
fX0

1; : : : ; X
0
ng, and we denote the parents ofX 0

i in the graph
by Paa(X0

i). Intuitively, the transition graph fora specifies
thequalitativenature of probabilistic dependencies in a sin-
gle time step — namely, the new setting ofXi depends only
on the current setting of the variables in Paa(X0

i). To make
this dependencequantitative, eachnodeX 0

i is associated with
a conditional probability table (CPT)Pa(X0

i j Paa(X0
i)).

The transition probabilityP (x0 j x; a) is then defined to beQ
i Pa(x

0
i j ui), whereui is the value inx of the variables in

Paa(X0
i).

We also need to provide a compact representation of the
reward function. As in the transition model, explicitly spec-
ifying a reward for each of the exponentially many states is
impractical. Again, we use the idea of factoring the repre-
sentation of the reward function into a set oflocalized re-
ward functions, each of which only depends on a small set of
variables. In our robot example, our reward might be com-
posed of several subrewards: for example, one associated
with location (for getting too close to a wall), one associated
with the printer status (for letting paper run out), and so on.
More precisely, letR be a set of functionsR1; : : : ; Rk; each
functionRi is associated with a cluster of variablesCi �
fX1; : : : ; Xng, such thatRi is a function fromVal(Ci) to IR.
Abusing notation, we will useRi(x) to denote the value that
Ri takes for the part of the state vector corresponding toCi.
The reward function associated with the DBN-MDP at a state
x is then defined to beR(x) =

Pk

i=1Ri(x) 2 [0; Rmax].
The following definitions for finite-length paths in MDPs

will be of repeated technical use in the analysis. LetM be
a Markov decision process, and let� be a policy inM . A
T -path inM is a sequencep of T +1 states (that is,T transi-
tions) ofM : p = x1; : : : ;xT ;xT+1. The probability thatp is
traversed inM upon starting in statex1 and executing policy
� is denotedP �

M [p] = �T
k=1P (xk+1 j xk; �(xk)).

There are three standard notions of the expectedreturnen-
joyed by a policy in an MDP: the asymptotic discounted re-
turn, the asymptotic average return, and the finite-time av-
erage return. Like E3, our new generalization will apply to
all three cases, and to convey the main ideas it suffices for
the most part to concentrate on the finite-time average return.
This is because our finite-time average return result can be
applied to the asymptotic returns through either thehorizon
time1=(1 � 
) for the discounted case or themixing timeof
the optimal policy in the average case.

Let M be a Markov decision process, let� be a policy
in M , and letp be a T -path inM . The (expected)av-
erage return alongp in M is UM (p) = (1=T )(R(x1) +
� � � + R(xT+1)). TheT -stepaverage return from statex is
U�
M (x; T ) =

P
p P

�
M [p]UM(p) where the sum is over allT -

pathsp in M that start atx. Furthermore, we define theop-

timal T -step average returnfrom x in M by U�
M (x; T ) =

max�fU�
M (x; T )g.

An important problem in MDPs isplanning: finding the
policy�� that achieves optimal return in a given MDP. In our
case, we are interested in achieving the optimalT -step av-
erage return. The complexity of all exact MDP planning al-
gorithms depends polynomially on the number of states; this
property renders all of these algorithms impractical for DBN-
MDPs, where the number of states grows exponentially in
the size of the representation. However, there has been re-
cent progress on algorithms for approximately solving MDPs
with large state spaces, and particularly on ones represented
in a factored way as an MDP[Boutilier et al., 1999]. The
focus of our work is on the reinforcement learning task, so
we simply assume that we have access to a “blackbox” that
performs approximate planning for a DBN-MDP.

Definition 2.1:A �-approximationT -step planning algo-
rithm for a DBN-MDP is one that, given a DBN-MDP
M , produces a (compactly represented) policy� such that
U�
M (x; T ) � (1� �)U�

M (x; T ).

We will charge our learning algorithm a single step of comup-
tation for each call to the assumed approximate planning al-
gorithm.

Our goal is to perform model-based reinforcement learn-
ing. Thus, we wish to learn an approximate model from ex-
perience, and then exploit it (or explore it) by planning given
the approximate model. In this paper, we focus on the prob-
lem of learning the modelparameters(the CPTs), assuming
that the modelstructure(the transition graphs) is given to us.
It is therefore useful to consider the set of parameters that
we wish to estimate. As we assumed that the rewards are
deterministic, we can focus on the probabilistic parameters.
(Our results easily extend to the case of stochastic rewards.)
We define atransition componentof the DBN-MDP to be a
distributionPa(X0

i j u) for some actiona and some partic-
ular instantiationu to the parents Paa(X0

i) in the transition
model. Note that the number of transition components is at
most

P
a;i jVal(Paa(X0

i))j, but may be much lower when a
variable's behavior is identical for several actions.

3 Overview of the Original E3

Since our algorithm for learning in DBN-MDPs will be a di-
rect generalization of the E3 algorithm of Kearns and Singh
— hereafter abbreviated KS — we begin with an overview of
that algorithm and its analysis. It is important to bear in mind
that the original algorithm is designed only for the case where
the total number of statesN is small, and the algorithm runs
in time polynomial inN .

E3 is what is commonly referred to as anindirector model-
basedalgorithm: rather than maintaining only a current pol-
icy or value function, the algorithm maintains a model for
the transition probabilities and the rewards for somesubset
of the states of the unknown MDPM . Although the algo-
rithm maintains a partial model ofM , it may choose tonever
build acompletemodel ofM , if doing so is not necessary to
achieve high return.

The algorithm starts off by doingbalanced wandering. By
this we mean that the algorithm, upon arriving in a state, takes



the action it has tried the fewest times from that state (break-
ing ties randomly). Ateach state it visits, the algorithm main-
tains the obvious statistics: the reward received at that state,
and for each action, the empirical distribution of next states
reached (that is, the estimated transition probabilities).

A crucial notion is that of aknown state— a state that
the algorithm has visited “so many” times that the transition
probabilities for that state are “very close” to their true val-
ues inM . This definition is carefully balanced so that “so
many” times is still polynomially bounded, yet “very close”
suffices to meet the simulation requirements below. An im-
portant observation is that we cannot do balanced wandering
indefinitely before at least one state becomes known: by the
Pigeonhole Principle, we will soon start toaccumulate accu-
rate statistics at some state.

The most important construction of the analysis is the
known-state MDP. If S is the set of currently known states,
the known-state MDP is simply an MDPMS that is naturally
inducedonS by the full MDPM . Briefly, all transitions inM
between states inS are preserved inMS , while all other tran-
sitions inM are “redirected” inMS to lead to a single new,
absorbing state that intuitively represents all of the unknown
and unvisited states. Although E3 does not have direct access
toMS , by virtue of the definition of the known states, it does
have a goodapproximationM̂S . The KS analysis hinges on
two central technical lemmas. The first is called the Simula-
tion Lemma, and it establishes that̂MS has goodsimulation
accuracy: that is, the expectedT -step return of any policy in
M̂S is close to its expectedT -step return inMS . Thus, at any
time,M̂S is a usefulpartial model ofM , for that part ofM
that the algorithm “knows” very well.

The second central technical lemma is the “Exploit or Ex-
plore” Lemma. It states that either the optimal (T -step) policy
in M achieves its high return by staying (with high probabil-
ity) in the setS of currently known states — which, most
importantly, the algorithm can detect and replicate by finding
a high-returnexploitationpolicy in the partial modelM̂S —
or the optimal policy has significant probability ofleavingS
within T steps — which again the algorithm can detect and
replicate by finding anexplorationpolicy that quickly reaches
the additional absorbing state of the partial modelM̂S . Thus,
by performing two off-line computations on̂MS , the algo-
rithm is guaranteed to find either a way to get near-optimal
return for the nextT steps, or a way to improve the statistics
at an unknown or unvisited state within the nextT steps. KS
show that this algorithm ensures near-optimal return in time
polynomial inN .

Our goal is to derive a generalization of E3 for DBN-
MDPs, and to prove for it a result analogous to that of KS
— but with a polynomial dependence not on the number of
statesN , but on the number of CPT parameters` in the DBN
model. Our analysis closely mirrors the original, but requires
a significant generalization of the Simulation Lemma that ex-
ploits the structure of a DBN-MDP, a modified construction
of M̂S that can be represented as a DBN-MDP, and a number
of alterations of the details.

4 The DBN-E3 Algorithm
Like the original E3 algorithm, DBN-E3 will build a model of
the unknown DNB-MDP on the basis of its experience, but
now the model will be represented in a compact, factorized
form. More precisely, suppose that our algorithm is in state
x, executes actiona, and arrives in statex0. This experience
will be used to update all the appropriate CPT entries of our
model — namely, all the estimateŝPa(x0i j ui) are updated in
the obvious way, where as usualui is the setting of Paa(X0

i)
in x. We will also maintain countsCa(x

0
i;ui) of the number

of timesP̂a(x0i j ui) has been updated.
Recall that a crucial element of the original E3 analysis was

the notion of aknown state. In the original analysis, it was ob-
served that ifN is the total number of states, then afterO(N )
experiences some state must become known by the Pigeon-
hole Principle. We cannot hope to use the same logic here,
as we are now in a DBN-MDP with an exponentially large
number of states. Rather, we must “pigeonhole” not on the
number of states, but on the number of parameters required
to specify the DBN-MDP. Towards this goal, we will say that
the CPT entryP̂a(x0i j ui) is known if it has been visited
“enough” times to ensure that, with high probability

jP̂a(x0i j ui) � P̂a(x
0
i j ui)j � �:

We now would like to establish that if, for an appropriate
choice of�, all CPT entries are known, then our approximate
DBN-MDP can be used to accurately estimate the expected
return of any policy in the true DBN-MDP. This is the de-
sired generalization of the original Simulation Lemma. As in
the original analysis, we will eventually apply it to a general-
ization ofMS , in which we deliberately restrict attention to
only the known CPT entries.

4.1 The DBN-MDP Simulation Lemma
Let M andM̂ be two DBN-MDPs over the same state space
with the same transition graphs for every actiona, and with
the same reward functions. Then we say thatM̂ is an�-
approximationof M if for every actiona and nodeX 0

i in
the transition graphs, for every settingu of Paa(X0

i), and for
every possible valuex0i of X 0

i, jPa(X 0
i = x0i j u)� P̂a(X0

i =

x0i j u)j � �, wherePa(� j �) andP̂a(� j �) are the CPTs ofM
andM̂ , respectively.

Lemma 4.1: Let M be any DBN-MDP overn state vari-
ables, and letM̂ be an�-approximation ofM , where� =
O((�=(T 2nRmax))2). Then for any policy�, and for any
statex, jU�

M (x; T )� U�

M̂
(x; T )j � �:

Proof: (Sketch) Let us fix a policy� and statex. Recall that
for any next statex0 and any actiona, the transition probabil-
ity factorizes via the CPTs asPa(x0 j x) =

Q
i Pa(x

0
i j ui).

whereui is the setting of Paa(X0
i) in x. Let us say that

P (x0 j x; a) contains a�-small factorif any of its CPT fac-
torsPa(x0i j ui) is smaller than�. Note that a transition
probability may actually be quite small itself (exponentially
small inn) without necessarily containing a�-small factor.

Consider a random trajectory ofT steps inM from statex
following policy �. Let v be the maximum number of values



of any variableXi. We first prove that the probability that
such a trajectory will cross at least one transitionP (x0 j x; a)
that contains a�-small factor is at mostTnv�. Essentially,
the probability that at any step, a particular�-small transi-
tion will be taken by a particular variableXi is at most�. A
simple union argument over variablesXi, their values, and
time steps gives the desired bound. Therefore, the total con-
tribution to the differencejU�

M (x; T ) � U�

M̂
(x; T )j by these

trajectories can be shown to be at mostT 2Rmaxvn(� + �).
We will thus ignore such trajectories for now.

The key advantage of eliminating�-small factors is that
we can convert additive approximation guarantees into mul-
tiplicative ones. Letp be any path of lengthT . If all the
relevant CPT factors are greater than�, and we let� = �=�,
it can be shown that

(1��)TnP �
M [p] � P̂ �

M [p] � (1 +�)TnP �
M [p]:

In other words, ignoring�-small CPT factors, the distribu-
tions on paths induced by� in M and M̂ are quite simi-
lar. From this it follows that, for the upper bound (the lower
bound argument is entirely symmetric)

U�

M̂
(x; T ) � (1 +�)TnU�

M (x; T ) + T 2Rmaxnv(� + 2�):

For the choices� =
p
�, � = O((�=(T 2nvRmax))2) the

lemma is obtained.

Returning to the main development, we can now give a
precise definition of a known CPT entry. It is a simple ap-
plication of Chernoff bounds to show that provided the count
Ca(x

0
i;ui) exceedsO(1=�2 log(1=�)), P̂a(x0i j ui) has addi-

tive error at most� with probability at least1 � �. We thus
say that this CPT entry is known if its count exceeds the given
bound for the choice� = O((�=(T 2nvRmax))2) specified by
the DBN-MDP Simulation Lemma. The DBN-MDP Simula-
tion Lemma shows that ifall CPT entries are known, then
our approximate model̂M can be used to find a near-optimal
policy in the true DBN-MDPM .

Note that we canidentify which CPT entries are known
via the countsCa(x0i;ui). Thus, if we are at a statex for
which at least one of the associated CPT entriesP̂a(x

0
i j ui)

is unknown, by taking actiona we then obtain an experience
that will increase the corresponding countCa(x0i;ui). Thus,
in analogy with the original E3, as long as we are encoun-
tering unknown CPT entries, we can continue taking actions
that increase the quality of our model — but now rather than
increasing counts on a per-state basis, the DBN-MDP Simu-
lation Lemma shows why it suffices to increase the counts on
a per-CPT entry basis, which is crucial for obtaining the run-
ning time we desire. We can thus show that if we encounter
unknown CPT entries for a number of steps that is polyno-
mial in the total number̀ of CPT entriesand1=�, there can
no longer be any unknown CPT entries, and we know the true
DBN-MDP well enough to solve for a near-optimal policy.

However, similar to the original algorithm, the real diffi-
culty arises when we are in a state with no unknown CPT
entries, yet there do remain unknown CPT entries elsewhere.
Then we have no guarantee that we can improve our model

at the next step. In the original algorithm, this was solved by
defining the known-state MDPMS , and proving the afore-
mentioned “Exploit or Explore” Lemma. Duplicating this
step for DBN-MDPs will require another new idea.

4.2 The DBN-E3 “Exploit or Explore” Lemma
In our context, when we construct a known-state MDP, we
must satisfy the additional requirement that the known-state
MDP preserve the DBN structure of the original problem, so
that if we have a planning algorithm for DBN-MDPs that ex-
ploits the structure, we can apply it to the known-state MDP.
Therefore, we cannot just introduce a new “sink state” to rep-
resent that part ofM that is unknown to us; we must also
show how this “sink state” can be represented as a setting of
the state variables of a DBN-MDP.

We present a new construction, which extends the idea of
“known states” to the idea of “known transitions”. We say
that a transition componentPa(X0

i j u) is known if all of
its CPT entries are known. The basic idea is that, while it is
impossible to check locally whether a state is known, it is easy
to check locally whether a transition component is known.

Let T be the set of known transition components. We de-
fine the known-transition DBN-MDPMT as follows. The
model behaves identically toM as long as only known transi-
tions are taken. As soon as an unknown transition is taken for
some variableX 0

i, the variableX 0
i takes on a newwandering

valuew, which we introduce into the model. The transition
model is defined so that, once a variable takes on the value
w, its value never changes. The reward function is defined so
that, once at least one variable takes on the wandering value,
the total reward is nonpositive. These two properties give us
the same overall behavior that KS got by making a sink state
for the set of unknown states.
Definition 4.2:Let M be a DBN-MDP and letT be any sub-
set of the transition components in the model. Theinduced
DBN-MDP onT , denotedMT , is defined as follows:
� MT has the same set of state variables asM ; however,

inMT , each variableXi has an additional possible value
w. We useValM(Xi) to denote the set of original values
of Xi, andValMT (Xi) to denote the expanded set.

� MT has the same transition graphs asM . For eacha,
i, andu 2 ValM (Paa(X0

i)), we have thatPMT

a (X0
i j

u) = PM
a (X0

i j u) if the corresponding transition com-
ponent is inT ; in all other cases,PMT

a (w j u) = 1, and
PMT

a (xi j u) = 0 for all xi 2 ValM (Xi).
� MT as the same setR asM . For eachi = 1; : : : ; k and
c 2 ValM (Ci), we have thatRMT

i (c) = RM
i (c). For

other vectorsc, we have thatRMT

i (c) = �Rmax .
With this definition, we can prove the analogue to the “Ex-

ploit or Explore” Lemma.
Lemma 4.3:LetM be any DBN-MDP, letT be any subset of
the transition components ofM , and letMT be the induced
MDP onM . For anyx 2 S, anyT , and any1 > � > 0,
either there exists a policy� in MT such thatU�

MT
(x; T ) �

U�
M (x; T ) � � , or there exists a policy� in MT such that

the probability that a walk ofT steps following� will take at
least one transition not inT exceeds�=((k + 1)TRmax).



4.3 Putting It All Together

We now have all the pieces to finish the description and analy-
sis of the DBN-E3 algorithm. The algorithm initially executes
balanced wandering for some period of time. After some
number of steps, by the Pigeonhole Principle one or more
transition components become known. When the algorithm
reaches a known statex — one where all the transition com-
ponents are known — it can no longer perform balanced wan-
dering. At that point, the algorithm performs approximate
off-line policy computations for two different DBN-MDPs.
The first corresponds to attempted exploitation, and the sec-
ond to attempted exploration.

Let T be the set of known transitions at this step. In the
attempted exploitation computation, the DBN-E3 algorithm
would like to find the optimal policy on the induced DBN-
MDP MT . Clearly, this DBN-MDP is not known to the al-
gorithm. Thus, we use its approximation̂MT , where the true
transition probabilities are replaced with their current approx-
imation in the model. The definition ofMT uses only the
CPT entries of known transition components. The Simula-
tion Lemma now tells us that, for an appropriate choice of�
— a choice that will result in a definition of known transition
that requires the corresponding count to be only polynomial
in 1=�, n, v, andT — the return of any policy� in M̂T is
within � of its return inMT . We will specify a choice for�
later (which in turn sets the choice of� and the definition of
known state).

Let us now consider the two cases in the “Exploit or Ex-
plore” Lemma. In the exploitation case, there exists a policy
� in MT such thatU�

MT
(x; T ) � U�

M (x; T ) � � . (Again,
we will discuss the choice of� below.) From the Simulation
Lemma, we have thatU�

M̂T

(x; T ) � U�
M (x; T )�(�+�). Our

approximate planning algorithm returns a policy�0 whose
value inM̂T is guaranteed to be a multiplicative factor of at
most1�� away from the optimal policy in̂MT . Thus, we are
guaranteed thatU�0

M̂T

(x; T ) � (1��)(U�
M (x; T )� (� + �)).

Therefore, in the exploitation case, our approximate planner
is guaranteed to return a policy whose value is close to the
optimal value.

In the exploration case, there exists a policy� in MT (and
therefore inM̂T ) that is guaranteed to take an unknown tran-
sition within T steps with some minimum probability. Our
goal now is to use our approximate planner to find such a pol-
icy. In order to do that, we need use a slightly different con-
structionM 0

T (M̂ 0
T ). The transition structure ofM 0

T is iden-
tical to that ofMT . However, the rewards are now different.
Here, for eachi = 1; : : : ; k andc 2 ValM (Ci), we have that

R
M 0

T

i (c) = 0; for other vectorsc, we have thatRMT

i (c) = 1.
Now let�0 be the policy returned by our approximate planner
on the DBN-MDPM̂ 0

T
. It can be shown that the probability

that aT -step walk following�0 will take at least one unknown
transition is at least(1� �)(�=((k + 1)TRmax)� �)=kT .

To summarize: our approximate planner either finds
an exploitation policy� in M̂T that enjoys actual return
U�
M (x; T ) � (1 � �)(U�

M (x; T ) � (� + �)) from our cur-
rent statex, or it finds an exploitation policy inM̂ 0

T that has

probability at leastp = (1��)(�=((k+1)TRmax)� �)=kT
of improving our statistics at an unknown transition in the
nextT steps. Appropriate choices for� and� yield our main
theorem, which we are now finally ready to describe.

Recall that for expository purposes we have concentrated
on the case ofT -step average return. However, as for the orig-
inal E3, our main result can be stated in terms of the asymp-
totic discounted and average return cases. We omit the details
of this translation, but it is a simple matter of arguing that it
suffices to setT to be either(1=(1�
)) log(1=�) (discounted)
or the mixing time of the optimal policy (average).
Theorem 4.4: (Main Theorem) LetM be a DBN-MDP with
` total entries in the CPTs.
� (Undiscounted case) LetT be the mixing time of the pol-

icy achieving the optimal average asymptotic returnU�

in M . There exists an algorithm DBN-E3 that, given ac-
cess to a�-approximation planning algorithm for DBN-
MDPs, and given inputs�; �; `; T andU�, takes a num-
ber of actions and computation time bounded by a poly-
nomial in1=(1��); 1=�, 1=�, `, T , andRmax , and with
probability at least1 � �, achieves total actual return
exceedingU� � �.

� (Discounted case) LetV � denote the value function for
the policy with the optimal expected discounted return
in M . There exists an algorithm DBN-E3 that, given
access to a�-approximation planning algorithm for
DBN-MDPs, and given inputs�, �, ` and V �, takes a
number of actions and computation time bounded by a
polynomial in1=(1 � �); 1=�; 1=�; `, the horizon time
T = 1=(1� 
), andRmax , and with probability at least
1� �, will halt in a statex, and output a policŷ�, such
thatV �̂

M (x) � V �(x) � �.
As with the original E3, we can eliminate knowledge of the
optimal returns in both cases via search techniques, and for
the average case can give an “anytime” algorithm that “com-
petes” against policies with longer and longer mixing times
the longer it is run (details omitted).

5 Conclusions
Structured probabilistic models, and particularly Bayesian
networks, have revolutionized the field of reasoning under
uncertainty by allowing compact representations of complex
domains. Their success is built on the fact that this structure
can be exploited effectively by inference and learning algo-
rithms. This success leads one tohope that similar structure
can be exploited in the context of planning and reinforce-
ment learning under uncertainty. This paper, together with
the recent work on representing and reasoning with factored
MDPs [Boutilier et al., 1999], demonstrate that substantial
computational gains can indeed be obtained from these com-
pact, structured representations.

This paper leaves many interesting problems unaddressed.
Of these, the most intriguing one is to allow the algorithm
to learn the model structure as well as the parameters. The
recentbody of work on learning Bayesian networks from
data [Heckerman, 1995] lays much of the foundation, but
the integration of these ideas with the problems of explo-
ration/exploitation is far from trivial.



References
[Boutilier et al., 1999] C. Boutilier, T. Dean, and S. Hanks. De-

cision theoretic planning: Structural assumptions and computa-
tional leverage.Journal of Artificial Intelligence Research, 1999.
To appear.

[Heckerman, 1995] D. Heckerman. A tutorial on learning with
Bayesian networks. Technical Report MSR-TR-95-06, Microsoft
Research, 1995.

[Kearns and Singh, 1998] M. Kearns and S.P. Singh. Near-optimal
performance for reinforcement learning in polynomial time. In
Proc. ICML, pages 260–268, 1998.


