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Abstract

We present a provably efficient and near-optimal al-
gorithm for reinforcement learning in Markov deci-
sion processes (MDPs) whose transition model can
befactoredas a dynamic Bayesian network (DBN).
Our algorithm generalizes the recent &gorithm

of Kearns and Singh, and assumes that we are given
both an algorithm for approximate planning and the
graphical structure (but not the parameters) of the
DBN. Unlike the original E algorithm, our new
algorithm exploits the DBN structure to achieve a
running time that scales polynomially in the num-
ber ofparameterof the DBN, which may be expo-
nentially smaller than the number of global states.
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assumes that the qualitative structure of the transition model
is known, i.e., the underlying graphical structure of the DBN.
This assumption is often reasonable, as the qualitative prop-
erties of a domain are often understood. Using the planning
procedure as a subroutine, DBN-&plores the space, learn-
ing the parameters it considers relevant. It achieves near-
optimal performance in a running time and a number of ac-
tions that are polynomial ifi' and thenumber of parameters

in the DBN-MDR which in general is exponentially smaller
than the number of global states. We further show that, under
very reasonable assumptions, the mixing tifef a policy

in a DBN-MDP is polynomial in the number of parameters of
the DBN-MDP, thereby eliminating the other potential source
of exponential dependence in our algorithm.

2 Preliminaries

We begin by introducing some of the basic concepts of MDPs
and factored MDPs. AMarkov Decision Process (MDR3
defined as a tuplés, A, R, T') where: S is a set of statesd

sented a new algorithm for reinforcement learning in Markovis a set of actionsR is areward functionR : S + [0, Rz,
decision processes (MDPs). Theit &gorithm (forExplicit
Exploit or Explorg achieves near-optimal performance in a states; 7' is atransition modell” : S x A — Ag, such that
running time and a number of actions which are polynomiall'(s’ | s, ) represents the probability of landing in statef

in the number of states and a paramétghich is the time

such thatR(s) represents the reward obtained by the agent in

the agent takes actianin states.

horizon in the case of discounted return, and the mixing time Most simply, MDPs are described explicitly, by writing
of the optimal policy in the case of infinite-horizon averagedown a set of transition matrices and reward vectors — one
return). The E algorithm makes no assumptions on the strucfor each actionz. However, this approach is impractical

ture of the unknown MDP, and the resulting polynomial de-for describing complex processes.
pendence on the number of states mak&snBpplicable to
the case of very large MDPs. In particular, it cannot be ap-{X;, ..

Here, the set of states
is typically described via a set of random variablés =
., Xn }, where eaclX; takes on values in some finite

plied to MDPs in which the transition probabilities are rep- domain?;. A state in this context is an assignment of a value
resented in the factored form ofdgnamic Bayesian network z; € D; to each variableX;; we usex to denote such a state.
(DBN). MDPs with very large state spaces, and sD&N-
MDPsin particular, are becoming increasingly important asthe number of variables. Thus, it is impractical to represent
reinforcement learning methods are attempted on problemthe transition model explicitly using transition matrices.

of growing difficulty and complexityBoutilier et al, 1999.
In this paper, we extend the®Ealgorithm to the case of lows us to describe a certain important class of such MDPs in
DBN-MDPs. The B algorithmrelies on the ability to find op- a compact way. Processes whose state is described via a set
timal strategies in MDPs. While this problem is intractable in of variables typically exhibit a weak form of decoupling —
large MDPs, significant progress has been made recently amot all of the variables at timedirectly influence the transi-
approximatesolution algorithms for DBN-MDP$Boutilier
et al, 1999. Our new DBN-E algorithm therefore assumes in a simple robotics domain, the location of the robot at time
the existence of a procedure for finding approximately op< + 1 may depend on its position, velocity, and orientation at

timal policies in anygiven DBN-MDP. Our algorithm also

In such an MDP, the set of statgsis exponentially large in

The framework oflynamic Bayesian networks (DBNs#)

tion of a variableX; from timet to timet + 1. For example,

timet¢, but not on what it is carrying.



Leta € A be an action. We first want to specify the timal 7-step average returfrom x in M by U}, (x,T) =
transition modell'(x’ | x,a). Let X; denote the variable max{U,(x,T)}.
X; at the current time and/ denote the variable at the  An important problem in MDPs iplanning finding the
next time step. The transition model for actierwill con-  policy 7* that achieves optimal return in a given MDP. In our
sist of two parts — an underlyinggansition graphassoci- case, we are interested in achieving the optiffiatep av-
ated witha, and parameters associated with that graph. Therage return. The complexity of all exact MDP planning al-
transition graph is a 2-layer directed acyclic graph whosegorithms depends polynomially on the number of states; this

nodes are{Xi,...,X,, X|,..., X, }. All edges in this property renders all of these algorithms impractical for DBN-
graph are directed from nodes {iX;, ..., X,,} to nodes in MDPs, where the number of states grows exponentially in
{X1,..., X/}, and we denote the parents®f in the graph  the size of the representation. However, there has been re-

by Pa (X/). Intuitively, the transition graph foz specifies  cent progress on algorithms for approximately solving MDPs
the qualitativenature of probabilistic dependencies in a sin-with large state spaces, and particularly on ones represented
gle time step — namely, the new setting¥f depends only in a factored way as an MDBoutilier et al, 1999. The

on the current setting of the variables in,P&/). To make focus of our work is on the reinforcement learning task, so
this dependencguantitative eachnodeX is associated with  we simply assume that we have access to a “baeK’ that

a conditional probability table (CPT)P, (X} | Pa,(X})). performs approximate planning for a DBN-MDP.

The transition probability”(x’ | x, a) is then defined to be  pefinition 2.1:A Cnati ;
: s . ) 1:A p-approximation 7'-step planning algo-
[I; Pa(2; [ ui), whereu; is the value inc of the variables in  riihm for a DBN-MDP is one that, given a DBN-MDP

Pa, (X7). M, produces a (compactly represented) policguch that
We also need to provide a compact representation of thg (F;( T) > (1 —(u)Uj{S(X )})Ip ) pokcy

reward function. As in the transition model, explicitly spec- ) ) ) i

ifying a reward for each of thexgonentially many states is Ve Will charge our learning algorithm a single step of comup-

impractical. Again, we use the idea of factoring the repre-ation for each call to the assumed approximate planning al-
sentation of the reward function into a setlotalizedre- ~ gorithm. .

ward functions, each of which only depends on a small set of ©OUr goal is to perform model-based reinforcement learn-
variables. In our robot example, our reward might be comi"d: Thus, we wish to learn an approximate model from ex-
posed of several subrewards: for example, one associat@frience, and then exploitit (or explore it) by planning given

with location (for getting too close to a wall), one associatedN® @pproximate model. In this paper, we focus on the prob-
with the printer status (for letting paper run out), and so on/em of learning the modglarametergthe CPTSs), assuming

More precisely, leR be a set of function&,, . . ., Rx; each that the modestructure(the transition graphs) is given to us.
function &; is associated with a cluster of var’iabI,@s c Itis therefore useful to consider the set of parameters that
{X1,..., X}, such thai; is a function fronVal(C;) to R. W€ Wish to estimate. As we assumed that the rewards are

Abusing notation, we will us&;(x) to denote the value that deterministic, we can focus on the probabilistic parameters.
R; takes for the part of the state vector corresponding o (Our re§ults easﬂy extend to the case of stochastic rewards.)
The reward function associated with the DBN-MDP at a state/Ve define dransition componenof the DBN-MDP to be a
x is then defined to b&(x) = Zle Ri(x) € [0, Rinasl. distribution 7, (X | u) for some actlort/z and some partic-
The following definitions for finite-length paths in MDPs Ular instantiationu to the parents R4.X;) in the transition
will be of repeated technical use in the analysis. Létbe model. Note that the/number of transition components is at
a Markov decision process, and letbe a policy inM. A~ MOStY_, ; [Val(Pa,(X}))[, but may be much lower when a
T-pathinM is a sequencg of 7'+ 1 states (that is]" transi- variable's behavior is identical for several actions.
tions)of M: p = x1,...,xp,x74+1. The probability thap is . .
traversed inV/ upon starting in state; and executing policy 3 Overview of the Original E®
 is denoted’f; [p] = 11 _ | P(xp 41 | x5, m(x1)). Since our algorithm for learning in DBN-MDPs will be a di-
There are three standard notions of the expednen-  rect generalization of theEalgorithm of Kearns and Singh
joyed by a policy in an MDP: the asymptotic discounted re-— hereafter abbreviated KS — we begin with an overview of
turn, the asymptotic average return, and the finite-time avthat algorithm and its analysis. It is important to bear in mind
erage return. Like & our new generalization will apply to that the original algorithm is designed only for the case where
all three cases, and to convey the main ideas it suffices fahe total number of state¥ is small, and the algorithm runs
the most part to concentrate on the finite-time average returin time polynomial inV'.
This is because our finite-time average return result can be E3 js what is commonly referred to as amlirect or model-
applied to the asymptotic returns through either ttioeizon  pasedalgorithm: rather than maintaining only a current pol-
time1/(1 — ) for the discounted case or thexing timeof icy or value function, the algorithm maintains a model for
the optimal policy in the average case. the transition probabilities and the rewards for scsnbset
Let M be a Markov decision process, letbe a policy of the states of the unknown MDP/. Although the algo-
in M, and letp be aT-path in M. The (expectedpv-  rithm maintains a partial model df, it may choose tmever
erage return alongp in M is Uy (p) = (1/T)(R(x1) +  build acompletemodel of M, if doing so is not necessary to
---+ R(xr41)). TheT-stepaverage return from stateis  achieve high return.
Ut (x,T) = >, Py [p]Un (p) where the sum is over all- The algorithm starts off by doinigalanced wanderingBy
pathsp in M that start ak. Furthermore, we define thap-  thiswe mean that the algorithm, upon arriving in a state, takes



the action it has tried the fewest times from that state (breakd The DBN-E’ Algorithm

ing ties randomly). Aeach state it visits, the algorithm main- | jxe the original B algorithm, DBN-E will build a model of
tains the obvious statistics: the reward received at that stat@ye ynknown DNB-MDP on the basis of its experience, but
and for each action, the empirical distribution of next states,qw the model will be represented in a compact, factorized
reached (that is, the estimated trdios probabilities). form. More precisely, suppose that our algorithm is in state

A crucial notion is that of &known state— a state that X, €xecutes action, and arrives in state’. This experience
the algorithm has visited “so many” times that the transitionWill be used to update all the appropriate CPT entries of our
probabilities for that state are “very close” to their true val- model — namely, all the estimaté} (z; | u;) are updated in
ues inM. This definition is carefully balanced so that “so the obvious way, where as ususlis the setting of Pg X})
many” times is still polynomially bounded, yet “very close” in x. We will also maintain count§’,(z}, u;) of the number
suffices to meet the simulation requirements below. An im-of times P, («} | u;) has been updated.
portant observation is that we cannot do balanced wandering Recall that a crucial element of the origindl &alysis was
indefinitely before at least one state becomes known: by thehe notion of &nown stateln the original analysis, it was ob-
Pigeonhole Principle, we will soon startascumulate accu-  served that ifV is the total number of states, then aftéfN)
rate statistics at some state. experiences some state must become known by the Pigeon-

The most important construction of the analysis is thehOIe Principle. We cannot hope to use the same logic here,

known-state MDPIf S is the set of currently known states, as we are now in a DBN-MDP with an exponentially large

the known-state MDP is simply an MDH s that is naturally number of states. Rather, we must “pigeonhole” not on the
inducedon by the full MDP 1. Briefly, all transitions i/ number of states, but on the number of parameters required

between states ifi are preserved /s, while all other tran-  © specify the DBN-MDP. Towards this goal, we will say that

sitions in M are “redirected” inMs to lead to a single new, the CPT entryP,(z; | u;) is knownif it has been visited
absorbing state that intuitively represents all of the unknown€nough” times to ensure that, with high probability

and unvisited states. AlthougH Boes not have direct access Poia lw) — P2 | ul <

to Mg, by virtue of the definition of the known states, it does | Pl [ 1) = Pafa; [ )] < o

have a goodipproximation/s. The KS analysis hinges on We now would like to establish that if, for an appropriate
two central technical lemmas. The first is called the Simulachoice of«, all CPT entries are known, then our approximate
tion Lemma, and it establishes thits has goodsimulation  DBN-MDP can be used to accurately estimate the expected
accuracy that is, the expected-step return of any policy in  return of any policy in the true DBN-MDP. This is the de-
Ms is close to its expectefi-step return in/s. Thus, atany sired generalization of the original Simulation Lemma. As in
time, My is a usefulpartial model of M, for that part ofA7  the original analysis, we will eventually apply it to a general-
that the algorithm “knows” very well. ization of Mg, in which we deliberately restrict attention to

i . ) only the known CPT entries.
The second central technical lemma is the “Exploit or Ex-

plore” Lemma. It states that either the optini&tgtep) policy 4.1 The DBN-MDP Simulation Lemma
in M achieves its high return by staying (with high probabil- et 77 and A/ be two DBN-MDPs over the same state space
ity) in the setS of currently known states — which, most with the same transition graphs for every actigrand with
importantly, the algorithm can detect and replicate by findinghe same reward functions. Then we say thatis an a-
a high-returrexploitationpolicy in the partial modelMs —  approximationof M if for every actiona and nodeX! in
or the optimal policy has significant probability llavingS  the transition graphs, for every settingf Pa, (X!), and for
within 7" steps — which again the algorithm can detect andevery possible value! of X, |Py(X! = z! | u) — Po(X! =
replicate by finding aexplorationpolicy that quickly reaches 2 |0)| < a wherePZ(~ | ~)Zr;1nd15 (f B allre the CPTs ZoM
the additional absorbing state of the partial matigl. Thus, sl = “ “

. . . - and M, respectively.
by performing two off-line computations ol/s, the algo-
rithm is guaranteed to find either a way to get near-optimalemma4.1: Let M/ be any DBN-MDP over. state vari-
return for the next” steps, or a way to improve the statistics ables, and letM be an«-approximation ofM/, wherea =
at an unknown or unvisited state within the néxsteps. KS  O((¢/(1%nRn4z))?). Then for any policyr, and for any
show that this algorithm ensures near-optimal return in timestatex, |Uf; (x,T) — UF (x,T)| < e.

olynomial in V.
i Proof: (Sketch) Let us fix a policy and statex. Recall that

Our goal is to derive a generalization of Bor DBN-  for any next state’ and any actiom, the transition probabil-
MDPs, and to prove for it a result analogous to that of KSity factorizes via the CPTs a&, (x’ | x) = [[; Pa(z} | w;).
— but with a polynomial dependence not on the number ofyhereu; is the setting of PaX!) in x. Let us say that
statesV, but on the number of CPT parametén's the DBN P(X/ | X, a) contains aﬁ-sma” factorif any of its CPT fac-
model. Our analysis closely mirrors the original, but requiresiors P,(x! | u;) is smaller thang. Note that a transition
a significant generalization of the Simulation Lemma that exX-probability may actually be quite small itself (exponentially
ploits the structure of a DBN-MDP, a modified constructionsmall inn) without necessarily containing a-small factor.
of Ms that can be represented as a DBN-MDP, and a number Consider a random trajectory 6fsteps inM/ from statex
of alterations of the details. following policy =. Let v be the maximum number of values



of any variableX;. We first prove that the probability that at the next step. In the original algorithm, this was solved by

such a trajectory will cross at least one transiti(x’ | x,«)  defining the known-state MDR/s, and proving the afore-

that contains a-small factor is at mosi'nv/. Essentially, mentioned “Exploit or Explore” Lemma. Duplicating this

the probability that at any step, a particufassmall transi-  step for DBN-MDPs will require another new idea.

tion will be taken by a particular variablg; is at most3. A “ . i

simple union argument over variablés, their values, and 42 The DBN-E’ “Exploit or Explore” Lemma

time steps gives the desired bound. Therefore, the total conl our context, when we construct a known-state MDP, we

tribution to the differencél/T, (x, 7') — U~ (x,T)| by these ~must satisfy the additional requirement that the known-state

M ’ M ’ ..

trajectories can be shown to be at MBSt ., vn(a + §) MDP preserve the DBN structure of the original problem, so

We will thus ignore such trajectories for now. tha't if we have a planning algonthm for DBN-MDPs that ex-
The key advantage of eliminatingrsmall factors is that ploits the structure, We can apply it to the Iﬁn_own-stat"e MDP.

we can convert additive approximation guarantees into mu|:rheretf%e,twe (:'[an&)ttfqustt.mtrodkuce a r:ew Slrvlvk s:rz;\te ttol rep-

tiplicative ones. Lefp be any path of lengtfi’. If all the resent that part o at IS unknown to us, we must aiso

how how this “sink state” can be represented as a setting of
relevant CPT factors are greater tharand we letA = o/, S .
it can be shown that the state variables of a DBN-MDP.

We present a new construction, which extends the idea of
1— AYInpT i) < PTip] < (14 A" PE ). “known states” to the idea of “known transitions”. We say
( VP < Pilp) < ( )Pl that a transition componerit, (X | u) is knownif all of
In other WordS, ignorin@-sma” CPT fac'[orS, the distribu- its CPT entries are known. The basic idea is that, while it is
tions on paths induced by in M and M are quite simi- impossibleto check locally whether a state is known, itis easy

lar. From this it follows that, for the upper bound (the lower © ¢heck locally whether a transition component is known.
bound argument is entirely symmetric) Let 7 be the set of known transition components. We de-

fine the known-transition DBN-MDR\/+ as follows. The
™ Tnrrm 2 model behaves identically t&f as long as only known transi-
Ui (1) < (1+ &) UG (36, T) 4 T7 Rnarnv(e + 26). tions are taken. As soon le an unkn%wn traxsition is taken for
i — _ 2 2 some variableX!, the variableX/ takes on a newandering
For the choices? = /a, a = O((¢/(T"nvfima))”) the valuew, which we introduce into the model. The transition
model is defined so that, once a variable takes on the value
Returning to the main development, we can now give aw, its value never changes. The reward function is defined so
precise definition of a known CPT entry. It is a simple ap-that, once at least one variable takes on the wandering value,
plication of Chernoff bounds to show that provided the countthe total reward is nonpositive. These two properties give us
Co(x}, u;) exceeds)(1/a*log(1/6)), Py (z | u;) has addi-  the same overall behavior that KS got by making a sink state
tive error at mostr with probability at leastt — 5. We thus ~ for the set of unknown states.
say that this CPT entry is known if its counto@eds the given  Definition 4.2:Let M be a DBN-MDP and lef” be any sub-
bound for the choicer = O((¢/(T?*nvRa4s))?) specified by — set of the transition components in the model. Tiduced
the DBN-MDP Simulation Lemma. The DBN-MDP Simula- DBN-MDP on7, denotedV/r, is defined as follows:
tion Lemma shows that i&ll CPT entries are known, then e A7 has the same set of state variablesiashowever,

lemma is obtainedl

our approximate model/ can be used to find a near-optimal in M+, each variable; has an additional possible value
policy in the true DBN-MDPM. w. We useVal™ (X;) to denote the set of original values
Note that we candentify which CPT entries are known of X;, andVal" (X;) to denote the expanded set.

via the counts’,(z;, u;). Thus, if we are at a state for
which at least one of the associated CPT entAgs! | u;)
is unknown, by taking action we then obtain an experience
that will increase the corresponding codnf(x;, u;). Thus,

e M+ has the same transition graphs/és For eacha,
i, andu € Val™ (Pa,(X!)), we have thatPM7 (X! |
u) = PM(X! | u) if the corresponding transition com-

L M —

in analogy with the original &£ as long as we are encoun- p?\?ent is i7" in all other cases% 7(w[u)=1,and
tering unknown CPT entries, we can continue taking actions ;"7 (x; | u) = 0 for all #; € Val™ (X;).

that increase the quality of our model — but now rather than e A7 as the same s@& asM . Foreach = 1, ...,k and

increasing counts on a per-state basis, the DBN-MDP Simu- ¢ ¢ val™ (C;), we have thaM” (c) = RM(c). For
lation Lemma shows why it suffices to increase the counts on other vectors: we have thaRMT(c) —_R I
a per-CPT entry basis, which is crucial for obtaining the run- . . - : e )
ning time we desire. We can thus show that if we encountel{)k;/i\t/';[)hr g‘)’(;%?g["ﬁg?{mv\(’f can prove the analogue to the “Ex-
unknown CPT entries for a number of steps that is polyno ‘
mial in the total numbef of CPT entriesand1 /¢, there can Lémma4.3LetM be any DBN-MDP, lef” be any subset of
no longer be any unknown CPT entries, and we know the tru#€ transition components éf, and letMy be the induced
DBN-MDP well enough to solve for a near-optimal policy. MDP onM. Foranyx € 5, any7', and anyl > 7 >0,
However, similar to the original algorithm, the real diffi- €ither there exists a policy in M7 such that/f, (x,T) >
culty arises when we are in a state with no unknown CPTUj; (%, T) — 7, or there exists a policy in M7 such that
entries, yet there do remain unknown CPT entries elsewheréhe probability that a walk of” steps followingr will take at
Then we have no guarantee that we can improve our modégast one transition not ifi exceeds/((k + 1)T'Rpaz)-



4.3 Putting It All Together probability at leasp = (1 — p)(7/((k + )T Rypas) — €) /KT
We now have all the pieces to finish the description and anal of improving our statistics at an unknown transition in the

) ; . o) next’!" steps. Appropriate choices foeandr yield our main
sis of the DBN-E algorithm. The algorithminitially executes theorem, which we are now finally ready to describe.

balanced wandering for some period of time. After some Recall that for gpository purposes we have concentrated

number of steps, by the Pigeonhole Principle one or mor ) g
transition components become known. When the algori'[hrr?)mhe case df'-step average return. However, as for the orig

reaches a known st one where all the transition com- inal E2, our main result can be stated in terms of the asymp-
€ totic discounted and average return cases. We omit the details

ponents are known —it can no longer perform balanced Wanst this translation, but it is a simple matter of arguing that it

suffices to sef" to be eithef1/(1—+)) log(1/¢) (discounted)
or the mixing time of the optimal policy (average).
Theorem 4.4: (Main Theorem) Lef/ be a DBN-MDP with
In the! total entries in the CPTs.

¢ (Undiscounted case) L&t be the mixing time of the pol-

dering. At that point, the algorithm performs approximate
off-line policy computations for two different DBN-MDPs.
The first corresponds to attempted exploitation, and the se
ond to attempted exploration.

Let 7 be the set of known transitions at this step.
attempted exploitation computation, the DBN-&gorithm
would like to find the optimal policy on the induced DBN-
MDP My. Clearly, this DBN-MDP is not known to the al-
gorithm. Thus, we use its approximatidfi-, where the true
transition probabilities are regted with their current approx-
imation in the model. The definition af/+ uses only the
CPT entries of known transition components. The Simula-
tion Lemma now tells us that, for an appropriate choice of
— a choice that will result in a definition of known transition
that requires the corresponding count to be only polynomial
in 1/¢, n, v, andT — the return of any policyr in My is
within ¢ of its return inA/+. We will specify a choice for
later (which in turn sets the choice afand the definition of
known state).

Let us now consider the two cases in the “Exploit or Ex-
plore” Lemma. In the exploitation case, there exists a policy
7 in M7 such thatUg, (x,T) > Uz (x,T) — 7. (Again,
we will discuss the choice aof below.) From the Simulation

icy achieving the optimal average asymptotic retirh

in M. There exists an algorithm DBNZEhat, given ac-
cess to ge-approximation planning algorithm for DBN-
MDPs, and given inputs 4, ¢, 7" andU™*, takes a num-
ber of actions and computation time bounded by a poly-
nomialinl/(1—u),1/¢,1/3,£, T, and R, 45, and with
probability at leastl — §, achieves total actual return
exceedind/* — e.

(Discounted case) Lét™* denote the value function for
the policy with the optimal expected discounted return
in M. There exists an algorithm DBN3Rhat, given
access to au-approximation planning algorithm for
DBN-MDPs, and given inputs ¢, £ and *, takes a
number of actions and computation time bounded by a
polynomial in1/(1 — p),1/€,1/4, £, the horizon time

T =1/(1-+), andR 4., and with probability at least

1 — 4, will halt in a statex, and output a policyr, such

that VT (x) > V*(x) —e.
As with the original E, we can eliminate knowledge of the
optimal returns in both cases via search techniques, and for
. L the average case can give an “anytime” algorithm that “com-
mostl —x away from the optimal policy id/7. Thus,we are  hatas against policies with longer and longer mixing times
guaranteed thdf ; (x,7T) > (1—p)(Us(x,T) = (r+¢)).  the longer itis run (details omitted).
Therefore, in the exploitation case, our approximate planner
is guaranteed to return a policy whose value is close to th® Conclusions

optimal value. . - Structured probabilistic models, and particularly Bayesian
In the exploration case, there exists a policyr M7 (and  networks, have revolutionized the field of reasoning under
therefore inM7) that is guaranteed to take an unknown tran-uncertainty by allowing compact representations of complex
sition within 7" steps with some minimum probability. Our domains. Their success is built on the fact that this structure
goal now is to use our approximate planner to find such a polean be exploited effectively by inference and learning algo-
icy. In order to do that, we need use a slightly different con-rithms. This success leads onehtope that similar structure
structionM - (M’T). The transition structure of/; is iden- ~ can be exploited in the context of planning and reinforce-
tical to that of M. However, the rewards are now different. ment learning under uncertainty. This paper, together with
Here, foreach = 1,..., k andc € ValM(Ci), we have that the recent work on representing and reasoning with factored
RMT(c) — 0: for other vectors, we have thaRf”T(c) -1 MDPs [Boutilier et al, 1999, demonstrate that substantial

Now let =’ be the policy returned by our approximate p|annercompu'tatlonal gains can |nd'eed be obtained from these com-
pact, structured representations.

on the DBN-MDP7. It cap b.e shown that the probability This paper leaves many interesting problems unaddressed.
that ar-step walk followingr” will take at least one unknown Of these, the most intriguing one is to allow the algorithm
transition s at leastl — ) (7/((k + 1)T'Rmas) = €)/kT. 4510310 the model structure as well as the parameters. The

To summarize: our approximate planner either finds.gcenthody of work on learning Bayesian networks from
an exploitation policyr in M7 that enjoys actual return data[Heckerman, 1995lays much of the foundation, but
Uy (x,T) > (1 = p)(Ug; (x,T) — (7 + €)) from our cur-  the integration of these ideas with the problems of explo-
rent statex, or it finds an exploitation policy in/4- that has  ration/exploitation is far from trivial.

Lemma, we have thélf;‘}T (x,T) > Ujs(x,T)—(7+€). Our
approximate planning algorithm returns a policy whose
value in M7 is guaranteed to be a multiplicative factor of at
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