
From “In” to “Over”: Behavioral Experiments on Whole-Network Computation

Lili Dworkin and Michael Kearns
University of Pennsylvania

ldworkin@seas.upenn.edu, mkearns@cis.upenn.edu

Abstract

We report on a series of behavioral experiments in human
computation on three different tasks over networks: graph
coloring, community detection (or graph clustering), and
competitive contagion. While these tasks share similar action
spaces and interfaces, they capture a diversity of computa-
tional challenges: graph coloring is a search problem, clus-
tering is an optimization problem, and competitive contagion
is a game-theoretic problem. In contrast with most of the
prior literature on human-subject experiments in networks, in
which collectives of subjects are embedded “in” the network,
and have only local information and interactions, here indi-
vidual subjects have a global (or “over”) view and must solve
“whole network” problems alone. Our primary findings are
that subject performance is impressive across all three prob-
lem types; that subjects find diverse and novel strategies for
solving each task; and that collective performance can often
be strongly correlated with known algorithms.

Introduction
There is a long line of behavioral experiments that examine
computation and strategic interaction in networks (see e.g.
Kearns, Suri, and Montfort 2006; Kearns 2012 and the refer-
ences therein; Suri and Watts 2011; Mao et al. 2011). These
studies investigate collective problem-solving in networks
when subjects are given control over a single vertex and only
allowed to observe and interact with immediate neighbors.
The experiments proceeded simultaneously, with subjects
working in parallel (often colocated in a computer labora-
tory) to solve some collective task. Overall, these studies
demonstrate that human subjects perform well on such de-
centralized network problems, and are able to solve chal-
lenging coordination and computational tasks.

Our setting is related but different. We provide each sub-
ject with a global view of the network, and allow control
of all vertices. Each individual must complete a series of
whole-network tasks on a web-based application. Our moti-
vation for shifting from local to global information and tasks
stems from the increased societal awareness of networks in
everyday life: individuals no longer simply act within net-
works, but have begun to reason about them as well (Giles
2010). A number of studies suggest that social networks

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

have significant effects on multiple aspects of well-being, in-
cluding health and happiness (Christakis and Fowler 2007;
Fowler et al. 2009; Centola 2010). Furthermore, there are
now a variety of online tools available that allow visualiza-
tion and interaction with one’s social networks.1 Given the
increasing ubiquity and awareness of this abstraction, there
is scientific value in discovering how people understand, rea-
son about, and perform computations on networks.

Although still a relatively new area of study, there is in-
teresting prior work on the extent and effects of such “net-
work cognition.” A study by Dessi et. al. (2012) tested the
ability of individuals to memorize information about the de-
gree distributions of social networks. Recent experiments
by Bannerjee et. al. (2014) asked subjects to identify the
individuals who are most “central” in their social networks.
Kilduff and Krackhardt have investigated the effects of net-
work perception within organizations (2008).

We study three rather different network tasks: graph col-
oring, graph clustering, and competitive contagion. The
goals, respectively, are: find a proper coloring as quickly
as possible; cluster vertices (using as many or as few clus-
ters as desired) to maximize a standard objective function
(the Q-score of Newman and Girvan 2004); and choose two
seed vertices to maximize the spread of infection (or “mar-
ket share”) at the expense of your opponents. This suite of
tasks has the nice property that while each can be presented
to subjects with similar interfaces and action spaces (the se-
lection of colors for vertices), they also capture a diversity of
computational challenges: graph coloring is a search prob-
lem, the graph clustering task an optimization problem, and
competitive contagion is a game-theoretic problem.

We note that many previous studies of human computa-
tion and crowdsourcing focus on tasks that are relatively
easy for humans, such as image labeling or document senti-
ment analysis (see Yuen, King, and Leung 2011 for a survey
of commonly studied tasks). In contrast, here we focus on
tasks known to be computationally challenging — all three
are formally intractable (NP-hard) for large worst-case in-
stances. We thus have no reason a priori to believe that
humans will be able perform well. While there is prece-

1See, for instance, the TouchGraph Facebook Browser
(http://www.touchgraph.com/facebook) or Mentionmapp for Twit-
ter (http://mentionmapp.com).



Graph Coloring Graph Clustering Competitive Contagion
Task Type search optimization game-theoretic
Task Objective minimize time to properly color maximize Q-score best response to population

distribution
Graphs Used generative models generative models,

real-world social networks
generative models,
theoretically-inspired networks

Algorithmic
Benchmarks

backtracking,
simulated annealing

Newman heuristics degree-greedy

Table 1: Summary of the three experiments.

dent for using human workers to perform challenging tasks,
such as drawing (Koblin 2009) or peer review in online
classes (Suen 2014), our emphasis is rather different. We
focus on computational problems with clear input and out-
put, rather than creative or subjective tasks. An example
of more relevant prior work is Foldit, an online multiplayer
game in which participants solved complex algorithmic pro-
tein structure problems (Cooper et al. 2010).

In each of our experiments, a set of about 30 graphs were
presented to a population of about 100 subjects, each of
whom was required to solve the task on every graph in the
set. In general, performance was impressive. Subjects found
proper colorings for complex graphs in only three minutes
on average, and the best players required less than one hun-
dred seconds. A large fraction of subjects were able to find
optimal clusterings on every graph presented to them. The
population as a whole came close to achieving equilibrium
on most graphs in the competitive contagion task.

In addition to reporting on the strong collective perfor-
mance, we study relations and correlations with known
heuristics, the diversity of individual strategies, and the ef-
fects of network structure. Key findings include:

• Coloring: A small number of players were notably bet-
ter at the given task than the average. Graphs with high-
degree vertices and many non-isomorphic solutions were
easier to solve. Players exhibited a diversity of greedy and
other strategies.

• Clustering: Many subjects consistently outperformed
known heuristic algorithms. The use of the web applica-
tion’s layout rearrangement feature was crucial, and play-
ers took advantage of this functionality in different ways.

• Contagion: The population came close to equilibrium on
graphs with dominant strategies, but had more difficulty
on graphs that require the coordination of diverse strate-
gies, such as those with multiple components.

In the remainder of the paper, we first describe the common
experimental design, and then consider each experiment in
turn. Taken together, the results suggest inspiring subject
aptitude for individual problem-solving on networks.

Experimental Design and Methodology
Our primary subject population was 104 students taking an
undergraduate course on the science of social networks at
the University of Pennsylvania. Being a survey course, the

population included a healthy mixture of majors (both quan-
titative and non-quantitative) and significant representation
of all four graduating classes.2 Each student was required,
as a class assignment for credit, to solve the task on every
graph in a collection. Students were clearly told to work
alone, and that their grade on the assignment would be deter-
mined exclusively by their actual performance on the task;
they thus had strong incentives to perform each task well. In
our analyses, we discard any subjects who failed to submit a
solution for every graph, and therefore the effective popula-
tion sizes range from 91 to 104. Some of the tasks were also
performed by a population of AAAI conference attendees,
as well as a class of students taking a MOOC version of the
class on Coursera. For our numerical analyses, we use data
from our academic institution subjects only (though we em-
phasize that numerical results are very consistent across all
populations). In some cases, we draw on the secondary pop-
ulations for anecdotal subject-level findings and strategies.

Each experiment was conducted over the course of about
1-2 weeks. Subjects were given access to a web application
to which they could log on at their convenience (see Figure
1 for screenshots). The landing page described the task and
incentives or objective, but provided no guidance on how
to approach the task. Upon log in, subjects chose a graph
to work on from a drop-down menu. Each task could be
accomplished by using the application to change the color of
vertices: e.g. in the clustering task, choosing a vertex’s color
corresponded to assigning its cluster, and in the contagion
task, choosing a vertex’s color corresponded to selecting it
as a seed. The application also allowed subjects to drag-and-
drop vertices to rearrange the layout.

Although all graphs had to be completed by the end of the
allowed period, the subjects were not required to complete
all graphs in a single session. For clustering and competi-
tive contagion, subjects were also allowed to resubmit solu-
tions as often as desired in an attempt to improve their score,
which was based on their last submission. At the end of each
task, subjects filled out a survey asking them to discuss the
strategies they used to solve the problem.

2In particular, the class consisted of 19% freshmen, 11% sopho-
mores, 28% juniors, and 42% seniors. The three most popular
majors were Systems Science and Engineering (21%), Computer
Science (13%), and Networked and Social Systems Engineering
(12%). The class was 70% male and 30% female.



Figure 1: Sample screenshots of the web applications for the coloring, clustering, and competitive contagion tasks, respectively. While some
auxiliary application features varied between the experiments, the main functionality — which allowed vertices to be rearranged and colored
— remained the same.

Graph Coloring
In this task, subjects were required to find proper graph col-
orings; that is, to assign colors to the vertices of a graph so
that no two adjacent vertices share the same color. The sub-
jects were given a number of colors equal to the chromatic
number of the graph, and therefore were not required to per-
form any optimization, only search. The goal was to find a
solution as fast as possible, and the assignment was graded
to incentivize this. While the subjects were given unlimited
attempts to solve the graph, once a successful coloring was
submitted, no further attempts were considered. This was
done to prevent students from memorizing a solution and
then improving their speed in a subsequent trial. In the fol-
lowing sections, we use the term “solution time” to refer to
the elapsed time of a subject’s first successful coloring at-
tempt on a graph.

We generated ten of the 30 graphs used in the experiment
from an Erdős-Rényi model (Gilbert 1959); another ten from
the Watts and Strogatz small-world model (Watts and Stro-
gatz 1998); and the last ten from the Barabási-Albert pref-
erential attachment model (Barabási and Albert 1999). The
parameters of each generative model were chosen (and addi-
tional modifications made) so that each graph contained 20
nodes and 40 edges.

Collective Performance
In general, subjects found proper colorings quickly. The av-
erage solution time across all subjects and all graphs was
182.75 seconds, and all but two subjects had average solu-
tion times below five minutes. There were also a small num-
ber of players who performed significantly better than the
average. The three fastest players had average solution times
of 74.65, 77.75, and 95.63 seconds. Furthermore, these three
players actually solved each of the 30 graphs faster than the
average solution time on that graph. The coloring task is in
fact the only task in which we can clearly distinguish con-
sistently superior players. We note that a key difference be-
tween this task and the others is that subjects had no oppor-
tunity to improve their performance. Once a player solved a
graph, any subsequent faster attempts were ignored. Thus,
while the clustering and contagion tasks rewarded practice

and effort, the coloring task rewarded some innate aptitude.

Effects of Network Structure
While performance was impressive overall, there was dis-
parity of difficulty across the different types of graphs. The
small-world graphs were the hardest for subjects to solve,
with an average solution time of 208.27 seconds; Erdős-
Rényi graphs ranked next, with an average solution time
of 172.89 seconds; and preferential attachment graphs were
the easiest, at 163.55 seconds. (All 6 pairwise compar-
isons between graph families pass t-tests for differences of
means with p < 0.03.) Additionally, the correlation between
the average degree of the five highest degree vertices in a
graph and the average solution time for that graph is -0.37
(p ≈ 0.04), suggesting that graphs with vertices of high de-
gree are easier to solve. This observation is consistent with
the graph family difficulty rankings, as preferential attach-
ment graphs contain the vertices of highest degree, followed
by Erdős-Rényi, and then small-world. One hypothesis is
that graphs with high-degree vertices suggest a natural col-
oring algorithm; namely, begin by coloring all “hub” nodes,
and then fill in the gaps. Indeed, as we see shortly, many
subjects did use some variant of this strategy.

We also observe that graphs with more possible solutions
(i.e. non-isomorphic proper colorings) were easier for the
subjects. Because it is computationally intractable to com-
pute this number even on small instances, we use as a proxy
the number of different solutions found by the population.
The correlation between the number of solutions found for
a graph and average solution time for that graph is -0.49
(p ≈ 0.006). Indeed, the population was able to find only
one solution for the graph with the highest average solu-
tion time (497.19 seconds compared to the average over all
graphs of 182.75).

Comparisons to Algorithmic Benchmarks
It is interesting to investigate whether subjects collectively
behave in ways that reflect standard heuristic algorithms for
a given task. We implemented a backtracking algorithm that
colors nodes greedily in decreasing order of degree, and
counted the number of steps required to find a solution on



each graph. We also implemented a simulated annealing
algorithm (Kirkpatrick, Gelatt, and Vecchi 1983) for graph
coloring, where the state space is the set of possible color-
ings and the cost function is the number of edges colored
incorrectly, and again counted the number of steps required
to find a solution (averaged over 100 trials, since simulated
annealing is a randomized algorithm). The correlations be-
tween these counts and average population solution time are
0.58 and 0.65 respectively (p < 0.001). These results indi-
cate that graphs that are easier for heuristics to solve are also
easier for the players, perhaps due to the structural proper-
ties (discussed above) that affect the difficulty of the task for
both algorithms and humans. Of course, these correlations
do not suggest that the human subjects are necessarily us-
ing one of these two heuristics to color the graphs. Yet as
we see later, there is reason to believe that subjects adopted
strategies with a backtracking “style”, in the sense that they
colored greedily and preferred high-degree vertices.

Individual Strategies
We find evidence that many subjects converged on one of
two broad strategies for coloring a graph: “color-greedy”,
i.e. choose a color swatch and then color as many nodes
as possible with that color before switching; or “neighbor-
greedy”, i.e. choose a swatch, color a node, choose a new
swatch, color a neighboring node, etc. To measure the ex-
tent to which a given player aligned with one of these strate-
gies, we computed the following two quantities (averaged
over all graphs). First, we counted the number of times the
subject chose a new color swatch, and then divided by the
total number of coloring steps, to obtain a “color-changes-
per-step” value. Second, we counted the number of times
a subject colored two neighboring vertices one immediately
after the other, and then divided by the total number of col-
oring steps, to obtain a “neighbor-colorings-per-step” value.
Subjects adopting a color-greedy strategy will tend to have
relatively low color-changes-per-step; subjects adopting a
neighbor-greedy strategy will have relatively high neighbor-
colorings-per-step.

Table 2 illustrates these two styles of play. We identify
the players with the highest and lowest color-changes-per-
step values and compare screenshots of their play on a par-
ticular graph. Both of these players are among the top ten
performers in the population, but consistently use distinctly
different strategies. To quantify their styles by the metrics
above, we note that the color-greedy player has a color-
changes-per step value of 0.31, whereas the neighbor-greedy
player’s value is 0.82. The color-greedy player’s neighbor-
colorings-per-step value is the lowest of all players, at 0.17.
The neighbor-greedy player’s value is the third highest, at
0.56. While these two players are canonical examples of
each style of play, we emphasize that neither is alone in his
adoption of a particular strategy. Indeed, many subjects con-
sistently used one or the other on all graphs.

Regardless of preferred strategy, most players gave pref-
erence to high-degree vertices when choosing which vertices
to color first. For each player and each graph, we divided the
degree of the first vertex colored by the highest degree in the
graph. The average of this value over all players and graphs

is 0.73. Furthermore, on 37% of all coloring attempts, the
player colored the highest degree vertex first.

We further note that there are two variants of the neighbor-
greedy strategy. Many players primarily identified triangles
in the graph, and colored each of the three nodes using a
different swatch. Other players primarily identified nodes of
high degree, and colored these hub nodes first, followed by
their neighbors. There is anecdotal evidence from the survey
responses that many players began by using a degree-greedy
approach, and then switched to a triangle-greedy approach.
One subject commented: “First I was starting with the ver-
tex of the highest degree and alternating the colors of its
neighbors. I realized that wasn’t working at a certain point
and then started using the triangle strategy.” Another re-
marked: “I tried coloring the vertices with the largest de-
grees first and then coloring the rest of the vertices from the
inside out. This was also not ideal. ... Lastly, I tried the
triangle method ... While it wasn’t a fool-proof strategy, it
worked on the first try many times and was more effective.”

We identified at least one player who successfully adopted
a coloring strategy radically different from those above.
Whereas most players made little use of the drag-and-drop
feature of the application, and rearranged the layout only
to remove occlusions, this player’s strategy relied entirely
on manipulation of the layout. The subject would first rear-
range the vertices into columns in which there were no edges
within each column — in other words, a k-partite graph,
where k is the chromatic number. After rearranging the lay-
out, she generated the coloring in batches columnwise. See
Table 3 for an illustration. We find it interesting that the
strategies used by the subjects generally fall into identifiable
classes, suggesting that there are a few distinct ways that
humans solve each problem.

Graph Clustering
The next task required subjects to solve the problem of com-
munity detection in networks. The objective was to organize
vertices into “clusters,” with many edges connecting vertices
within each cluster, and few edges between vertices in dif-
ferent clusters. Subjects were responsible for both deciding
the number of clusters to use, and determining the assign-
ment from vertices to clusters. While there are many ways
to measure the quality of a clustering, we score the subjects
according to the well-known modularity metric proposed by
Newman and Girvan (2004). The modularity of a graph is
defined by Q =

∑k
i=1(eii − a2i ), where i ranges over all k

clusters, eii is the fraction of edges with both end vertices in
the same cluster i, and ai is the fraction of edges that are at-
tached to cluster i. Intuitively, this metric favors a clustering
in which inter-cluster edge densities are high compared to
between-cluster edge densities. The best possible Q-score
varies depending on the graph, as those with more “com-
munity structure” will have higher possible values. A value
of 0 indicates that the clustering is no better than random,
and can be trivially achieved by assigning all vertices to one
cluster. Typical values for real-world networks tend to fall
between 0.3 and 0.7 (Newman and Girvan 2004).

The web application allowed subjects to try out different



Color-Greedy

Neighbor-
Greedy

Table 2: Illustration of the color-greedy and neighbor-greedy coloring strategies. We identify the two players with the highest and lowest
color-changes-per-step values (0.82 and 0.31, respectively) and compare temporal snapshots on their play on a particular graph. The color-
greedy player first colored as many vertices as possible with the blue swatch, then switched to green, and completed the coloring with red.
The neighbor-greedy player began coloring on the left side of the graph, then moved gradually and locally to the upper right, and finished the
coloring on the bottom right.

Table 3: Illustration of a column playing style. This player first rearranged the graph into columns corresponding to independent sets, and
then colored in batch. We show temporal snapshots of the subject’s play on three different graphs.



clusterings and see the corresponding Q-scores. Subjects
were allowed to resubmit clusterings as often as desired over
the course of the experiment. The application also displayed
the highest Q-score achieved by any subject so far on each
graph. Thus, unlike graph coloring, the objective function
here was the quality of the solution found (optimization),
rather than the time to find a solution (search).

There were 28 graphs in total, of which 23 were gen-
erated so as to have a “ground truth” clustering. Each
of these graphs was composed of 2-4 Erdős-Rényi com-
ponents, where the within-component edge densities were
chosen in [0.5, 0.7] and between-component edge densities
were chosen in [0.05, 0.07]. Each graph contained 30 ver-
tices. The remaining six graphs were subgraphs of “real-
world” networks from the KONECT and UCINET datasets
(Kunegis 2013; Borgatti, Everett, and Freeman 1999).

We note that, for the other two tasks, we used a standard
force-directed layout algorithm to display the graphs. But
because this algorithm often makes clustering structure visu-
ally obvious, for this task we chose instead to display every
graph in a random circular layout. Thus, the drag-and-drop
functionality of the application proved to be a crucial asset,
and most players took advantage of the feature to rearrange
vertices into clusters. We provide further discussion of the
use of this feature in a subsequent section.

Collective Performance
To quantify performance, we might compare the Q-scores
achieved by the subjects to the maximum possible Q-score
on each graph. However, it is an NP-hard problem to find
the Q-maximizing clustering, and intractable even on small
instances. For measuring relative performance, however,
we can use the best score achieved by any member of the
population on each graph as a proxy. More formally, if
Qij is the Q-score achieved by player i on graph j, we let
Q∗j = maxi Qij . One might expect that a better approxi-
mation could be achieved by a known heuristic, but as we
see in the next section, this is not the case; the best players
consistently outperformed two different heuristics.

Let Sij = Qij/Q
∗
j denote the relative performance of

player i on graph j, and let Si = avgj(Sij) denote player i’s
average relative performance over all graphs. There were 22
players who achieved the maximum Q-score on every graph
and therefore have Si = 1. The average Si value over all
players is 0.96, and over 80% of players have values above
0.95. These results suggest that not only do the best play-
ers perform consistently well, but in fact almost all players
found nearly-best solutions on the majority of graphs.

Comparison to Algorithmic Benchmarks
We compare subject performance to that of two algorithms
for finding approximately optimal Q-maximizing parti-
tions, which we denote “Newman-fast” (Newman 2004)
and “Newman-eigenvector” (Newman 2006). On 10 of the
graphs, the algorithms found the same clustering and there-
fore achieved the same Q-score. On 12 of the graphs,
Newman-fast found a better clustering than Newman-
eigenvector, and on the remaining six, the opposite occurred.

As might be expected, the scores of the two algorithms
across graphs are highly correlated (0.93, p < 10−12).

On 11 of the graphs, the maximum Q-score achieved by
any player (Q∗j ) exceeded the maximum score found by the
heuristics. On all remaining graphs, the maximum player
score matched the maximum heuristic score. As noted pre-
viously, there are 22 players who achieved the maximum
Q-score on every graph, and therefore each of these subjects
consistently outperformed the heuristics. We note that on 10
of the 11 graphs on which the best player’s score exceeds
the best heuristic’s score, the two heuristics also disagree on
the optimal clustering. Thus, it seems there is something in-
trinsically difficult for the heuristics about these graphs, but
which does not pose a problem for the best human subjects.

To determine whether population and heuristics agreed on
the relative difficulty of the graphs, we first calculated aver-
age population performance on each graph, namely Gj =
avgj(Sij). We then divided each heuristic’s Q-score by the
approximately optimal score Q∗ to determine the heuristic’s
performance on each graph. When we correlate these vec-
tors, we obtain coefficients of 0.62 and 0.61 for Newman-
fast and Newman-eigenvector, respectively (p < 0.001).
Thus, the population as a whole performed better on graphs
for which the heuristics were able to find better clusterings.
This finding echoes those for coloring with backtracking and
simulated annealing.

Individual Strategies
As in the coloring experiments, we can identify diverse in-
dividual styles of play. In particular, we observed the most
striking variability in the use of the application’s drag-and-
drop functionality. As previously mentioned, many of the
players rearranged vertices (which were by default displayed
in a circle) in order to expose the clusters. Yet while some
players made all of their display changes before coloring
vertices (i.e. assigning clusters), others interleaved display
changes and color changes, and others rearranged the ver-
tices only after settling on a clustering. To quantify this for a
particular player on a particular graph, we compute the mean
index of the player’s coloring moves, subtract the mean in-
dex of display change moves, and divide by total number of
moves. So for example, if a player first rearranged all ver-
tices, and then clustered all vertices, this value is 0.75 - 0.25
= 0.5. If a player alternated between display changes and
cluster changes, the value is 0.5 - 0.5 = 0. There is a great
deal of variety in the average “style” value for each player,
which ranges from -0.44 to 0.44. Players with strongly pos-
itive or negative values use a distinct two-phase strategy, in
which they either first rearrange the vertices into a visual
partitioning and then assign clusters, or the reverse. There
are also some players who often made no changes to the dis-
play, and for whom this value is undefined.

Table 4 illustrates these three styles of play, which we de-
note “layout-first”, “color-first,” and “color-only.” We iden-
tify the two players with the highest and lowest style values,
and also one for whom the value is undefined, and compare
screenshots of their play. All of these players are high per-
formers, with Si > 0.98, but they take notably different ap-
proaches to the problem. For confirmation from the player



themselves, we turn to the survey responses. The layout-
first player commented: “It was impossible to tell what was
clustered without moving items around. I bunched nodes
by clusters.” The color-first player disagreed about this im-
possibility, and remarked: “Once I had identified clusters I
usually moved vertices to their respective cluster groups to
make it easier to visualize.” The color-only player said “I
just tried to use the list of adjacent vertices to choose how
to group a set of vertices”, and answered that she only used
the drag-and-drop feature occasionally.

The majority of players preferred to use the layout-first
style. While only four players have a style value of less than
-0.2, 39 players have a value greater than 0.2. Although nei-
ther strategy consistently outperformed the other, we do find
that use of the drag-and-drop feature (regardless of when) is
correlated with a player’s performance. In particular, the
correlation between the number of vertex rearrangements
that a player made and the player’s Si performance value
is 0.24 (p ≈ 0.02).

Competitive Contagion
Our last task is based on the model of networked competi-
tive contagion developed in (Goyal and Kearns 2012), which
built upon the work of (Bharathi, Kempe, and Salek 2007;
Borodin, Filmus, and Oren 2010; Chasparis and Shamma
2010). In this model, there are two competing players, de-
noted “Red” and “Blue.” Each player is allowed to choose
two “seed” vertices, which are then infected with his color.
(If a vertex is chosen by both players, its color is chosen
at random.) After the initial seeding, stochastic adoption
dynamics determine the spread of each infection. We use
a discrete time model. On each step, we consider all unin-
fected vertices that are adjacent to an infected vertex. If such
a vertex has more Red neighbors than Blue neighbors, it be-
comes Red, and similarly for Blue. If a vertex’s neighbors
are evenly split, the color of the vertex is chosen at random.
At the end of the process, every vertex in the connected com-
ponent of a seed will be infected. The goal of each player is
to choose seeds to maximize eventual adoption throughout
the graph at the expense of its competitor.

Rather than having pairs of players compete directly, we
use a design in which each subject competes against the cur-
rent population distribution. Each subject was required to
choose the Red seeds for a set of 42 networks. The applica-
tion provided the subjects with a simulator that allowed ex-
perimentation with different choices of Red and Blue seeds,
see randomized outcomes, and compute average adoptions
over many trials. Importantly, the application also allowed a
subject to play against the seed choices already submitted by
other members of the population (in the Blue role). Thus by
pressing a “Play Random Opponent” button, a player could
(repeatedly) sample a Blue seed pair from the current dis-
tribution of submissions, and then run simulations to deter-
mine which Red seeds compete favorably. This permitted
a player to optimize his strategy against the current popula-
tion of opponents. The subjects were also allowed to update
their choices for the Red seeds as often as desired. Thus, the
population evolved over time, as subjects returned to change
their choices in response to the updates made by others.

We designed our scoring rules to emphasize that, from an
individual player’s perspective, this is a game in which the
opponent is the distribution over all other players’ choices.
Let G = (V,E) be a graph on which the game is played, and
let IG(x, y) denote the expected fraction of Red infections
when x = (x1, x2), y = (y1, y2) are the initial seed pairs
chosen by the Red and Blue player, respectively.3 Let PG

denote the population distribution over seed pairs, and let
UG be the support of PG. The score of seed pair x on G is
then defined as SG(x) =

∑
y∈UG

PG(y)IG(x, y). In other
words, the score of x is the expected fraction of infections
that x wins against the population distribution PG.

We generated 36 of the 42 graphs by composing 2-3 com-
ponents, each of which comes from the Erdős-Rényi or pref-
erential attachment model. The components are then con-
nected by some variable number of edges. The remaining 6
graphs are instances of constructions in (Goyal and Kearns
2012) designed to elicit interesting strategic tensions. The
number of vertices in each graph ranges from 16 to 60.

Collective Performance
Given the incentives described above, the right measure
of collective performance is the population’s distance from
equilibrium, the state in which no player can unilaterally im-
prove his score by changing his seed choice.4 To quantify
this distance, we introduce the concept of regret, which mea-
sures how close each player’s score is to the best player’s
score. More formally, the regret RG of the population PG

on graph G is
∑

x∈UG
PG(x)(maxy∈UG

SG(y) − SG(x)).
It is easily verified that equilibrium is reached if and only
if 1) RG = 0, and 2) there exists no seed pair z such that
SG(z) > maxy∈UG

SG(y). Checking the satisfaction of
condition 2 is intractable in general, so we use RG as a one-
sided measure of how far the population is from equilibrium.

The average regret across all 42 graphs is 0.0129, less than
3% of the average player score of 0.4911, indicating strong
collective performance by this measure. Yet if we analyze
the graphs individually, we find significant variation. Be-
haviorally speaking, there seem to be two types of graphs.
The first type of graph has a dominant strategy, i.e. a seed
pair that always infects at least as many vertices as the seed
pair it plays against. In this case, the distribution over oppo-
nents’ choices is irrelevant, and the game becomes a single-
player optimization problem in which the goal is to identify
the dominant choice. Note that equilibrium can be achieved
on this type of graph only when everyone plays the dominant
strategy. Although it is again intractable to decide whether
a graph has such a strategy, we can check whether the most
popular seed choice is a dominant strategy. By this calcula-
tion, at least 17 of the 42 graphs do have a dominant strategy.
Figure 2 illustrates such a graph.

Graphs of the second type have no dominant strategy,
and so the best seed choices depend strongly on the popu-
lation distribution. Here a coordination problem arises: in

3We estimate IG(x, y) using 1000 offline simulations.
4Since players are scored against the population distribution,

the equilibrium concept here is actually that of an Evolutionary
Stable Strategy (ESS)(Maynard Smith 1982).



Layout-First

Color-First

Color-Only

Table 4: Illustration of the layout-first, color-first, and color-only clustering styles. We identify the two players with the highest and lowest
style values (0.44 and -0.44, respectively) and also a player for whom this value is undefined, and show snapshots on their play on a particular
graph. The layout-first player rearranged the vertices into clusters before assigning colors, whereas the color-first player first completed the
assignment and then verified visually. The color-only player made no layout changes.

Figure 2: A graph with a dominant strategy, i.e. a seed pair that
always infects at least as many vertices as its opponent. The regret
on this graph is low (0.0053), because most players converged on
the dominant seed choice (shown in red).

order to reach equilibrium, different portions of the popu-
lation must choose different seeds. The task therefore now
involves game-theoretic strategizing rather than pure opti-
mization. See Figure 3 for an example.

In general, the population performed much better (i.e.
came closer to reaching equilibrium) on graphs with a dom-
inant strategy. The average regret on the subset of 17 graphs
for which we know a dominant strategy exists is 0.0068,
only about half of the overall average of 0.0129. Further-
more, the correlation the existence of a dominant strategy
and the regret of the population across all graphs is -0.48
(p ≈ 0.001). Both results indicate a strong inverse relation-
ship between the existence of a dominant strategy and per-
formance. Essentially, individual optimization is easy for
the subjects, but coordination with other players is difficult.

As a further example, note that all three-component
graphs lack a dominant strategy because a player is only al-

Figure 3: This graph lacks a dominant strategy, and as a result, the
population suffered high regret (0.0554). We plot the most popular
seed choice in red, and a less popular but higher-scoring alternative
in blue.

lowed two seeds, and so the choice of which components in
which to play depends on the population distribution. For
instance, if all opponents are playing in components 1 and
2, a player is better off placing one seed in component 3, and
therefore infecting that entire component. In order to reach
equilibrium, certain fractions of the population have to play
in each component pair, but we did not observe such strate-
gic coordination in our experiment. Usually the majority of
the population played in two components, and a minority
in the third, with the latter subjects enjoying higher scores.
As a result, the average regret on three-component graphs is
0.0297, more than twice the overall average.

The discrepancy in performance on graphs of each type
suggests that when equilibrium requires diversity among
strategies, subjects perform more poorly. To quantify this
further, we calculate the entropy of the population distribu-



(a) Regret: 0.0207
Entropy: 2.3953

(b) Regret: 0.0180
Entropy: 2.7181

(c) Regret: 0.0269
Entropy: 3.3467

(d) Regret: 0.0162
Entropy: 4.2272

(e) Regret: 0.0306
Entropy: 2.8857

(f) Regret: 0.0135
Entropy: 3.1386

Figure 4: The graphs shown above all have high population entropy as well as regret. The color saturation of a vertex indicates whether it
was chosen as a seed choice by any member of the population, and if so, how popular of a choice it was.

tion on each graph. Note that on graphs with a dominant
strategy, equilibrium is reached when everyone makes the
same seed choice, and therefore the entropy of the distribu-
tion is zero at equilibrium (a pure strategy equilibrium). But
on all other graphs, equilibrium requires a distribution with
non-zero entropy (a mixed strategy equilibrium). Thus, it is
necessary for the population to have higher entropy on these
graphs in order to minimize regret. We found that although
the population did have higher entropy on these graphs, the
population also had higher regret. In particular, the correla-
tion between the entropy of the population distribution and
the regret on a graph is 0.67 (p < 10−6). In other words, the
greater the diversity of seed submissions made by the pop-
ulation, the worse the average performance. Thus, it seems
that although the population “tried” to achieve equilibrium
(as indicated by the high entropy), the players struggled with
the coordination of diverse strategies. See Figure 4 for an il-
lustration of the population distribution on a set of graphs
that have both high entropy and regret.

Comparisons to Algorithmic Benchmarks
The heuristic against which we compare subject perfor-
mance is a simple degree-greedy strategy. On a connected
graph, this heuristic first chooses the node of highest de-
gree, excludes all of this node’s neighbors from considera-
tion, and then chooses the node of next highest degree. If the
graph consists of multiple components, the heuristic chooses
the highest degree vertex in each of two (randomly selected)
components. Ties in degree are broken arbitrarily.

We compare the score achieved by the heuristic’s seed
choice with the maximum score achieved by any member

of the population on each graph. In general, the heuristic
makes quite reasonable choices. Thus, it is impressive that
on 31 of the 42 graphs, the best seeds found by the popula-
tion outperform those chosen by heuristic. On the remain-
ing 11 graphs, the two seed choices (and therefore scores)
are the same. To explain this discrepancy, we first note that
there are a few graphs on which the heuristic makes clearly
suboptimal choices (such as near-regular graphs). On some
other graphs, the heuristic is handicapped by its inability to
choose two adjacent nodes. Most of the time, the heuristic’s
underperformance is due to the fact that it cannot observe
or respond to the population distribution. For instance, on a
three component graph, the heuristic has no way of knowing
which components the majority of opponents are playing in,
and therefore cannot determine a best response.

Individual Strategies

The best performing players were those who observed and
understood the strategic tensions outlined above. The third
best player commented: “The first goal is to determine
whether or not there are any pure strategy Nash equilibria
... The next step is to determine / gain a sense of what are
the current seed choices that are popular ... Lastly for mixed
Nash equilibria, based on my understanding of the current
popular seed choice, I will select my seed strategy to specif-
ically counter that.” Another in the top five remarked on
the difficulty of mixed strategy equilibria: “In graphs that
had connected components ... I saw the most diversity in
terms of seed choice ... I also saw that many of these strate-
gies won against some and lost against others, in a kind
of cyclical pattern similar to rock-paper-scissors.” In gen-



eral, players who performed more game-theoretic reasoning
achieved higher scores, as evidenced by the positive corre-
lations between both the score of a player and his average
number of simulations and “play random opponent” clicks
(0.22, p ≈ 0.025 for the number of simulations, and 0.34,
p < 0.001 for uses of the play random opponent feature).

Conclusions and Future Work
The results presented here suggest that human subjects are
capable of solving many different graph problems of global
information. In our experiments, subjects adopted a variety
of playing styles, many with a high degree of success. Our
findings span three different problem types — search, opti-
mization, and strategy — and are consistent across several
different populations. Our work adds to a sparse literature
on human subject experiments on whole-network computa-
tion and cognition.

Between earlier experiments on collective problem-
solving by locally embedded subjects, and our work on indi-
vidual, whole-network computation, the groundwork is laid
for experiments that mix the “in” and “over” approaches.
Depending on the task, the optimal organization for a group
of subjects or workers might involve the assignment of some
parts of a graph to individuals and other parts to groups. We
leave the investigation of such richer hybrid decompositions
as an intriguing direction for future work.

References
Banerjee, A.; Chandrasekhar, A. G.; Duflo, E.; and Jackson, M. O.
2014. Gossip: Identifying Central Individuals in a Social Network.
ArXiv e-prints.

Barabási, A.-L., and Albert, R. 1999. Emergence of scaling in
random networks. Science 286(5439):509–512.

Bharathi, S.; Kempe, D.; and Salek, M. 2007. Competitive in-
fluence maximization in social networks. In Proceedings of the
3rd International Conference on Internet and Network Economics,
WINE ’07, 306–311. Springer-Verlag.

Borgatti, S.; Everett, M.; and Freeman, L. 1999. UCINET 6.0
Version 1.00. Natick: Analytic Technologies.

Borodin, A.; Filmus, Y.; and Oren, J. 2010. Threshold models
for competitive influence in social networks. In Proceedings of the
6th International Conference on Internet and Network Economics,
WINE ’10, 539–550. Springer-Verlag.

Centola, D. 2010. The spread of behavior in an online social net-
work experiment. Science 329(5996):1194–1197.

Chasparis, G. C., and Shamma, J. 2010. Control of preferences in
social networks. In Proceedings of the 49th IEEE Conference on
Decision and Control, 6651–6656.

Christakis, N. A., and Fowler, J. H. 2007. The spread of obesity
in a large social network over 32 years. New England journal of
medicine 357(4):370–379.

Cooper, S.; Khatib, F.; Treuille, A.; Barbero, J.; Lee, J.; Beenen,
M.; Leaver-Fay, A.; Baker, D.; and Popović, Z. 2010. Predicting
protein structures with a multiplayer online game. Nature 466:756–
760.

Dessi, R.; Gallo, E.; and Goyal, S. 2012. Network cognition.
CEPR Discussion Paper No. DP8732.

Fowler, J. H.; Christakis, N. A.; Steptoe; and Roux, D. 2009. Dy-
namic spread of happiness in a large social network: Longitudi-
nal analysis of the framingham heart study social network. British
Medical Journal 338(7685):23–27.
Gilbert, E. N. 1959. Random graphs. The Annals of Mathematical
Statistics 30(4):1141–1144.
Giles, M. 2010. A world of connections. The Economist.
Goyal, S., and Kearns, M. 2012. Competitive contagion in net-
works. In Proceedings of the 44th Annual ACM Symposium on
Theory of Computing, STOC ’12, 759–774. ACM.
Kearns, M.; Suri, S.; and Montfort, N. 2006. An experimental
study of the coloring problem on human subject networks. Science
313(5788).
Kearns, M. 2012. Experiments in social computation. Communi-
cations of the ACM 55(10):56–67.
Kilduff, M., and Krackhardt, D. 2008. Interpersonal Networks in
Organizations. Cambridge University Press.
Kirkpatrick, S.; Gelatt, C. D.; and Vecchi, M. P. 1983. Optimiza-
tion by simulated annealing. Science 220(4598):671–680.
Koblin, A. M. 2009. The sheep market. In Proceedings of the 7th
ACM Conference on Creativity and Cognition, 451–452.
Kunegis, J. 2013. Konect – the Koblenz network collection. In Pro-
ceedings of the International Web Observatory Workshop, 1343–
1350.
Mao, A.; Parkes, D. C.; Procaccia, A. D.; and Zhang, H. 2011.
Human computation and multiagent systems: an algorithmic per-
spective. In Proceedings of the 25th AAAI conference on artificial
intelligence.
Maynard Smith, J. 1982. Evolution and the Theory of Games.
Cambridge University Press.
Newman, M. E. J., and Girvan, M. 2004. Finding and eval-
uating community structure in networks. Physical Review E
69(2):026113.
Newman, M. E. J. 2004. Fast algorithm for detecting community
structure in networks. Physical Review E 69(6):066133.
Newman, M. E. J. 2006. Finding community structure in networks
using the eigenvectors of matrices. Physical Review E 74:036104.
Suen, H. 2014. Peer assessment for massive open online courses
(moocs). The International Review of Research in Open and Dis-
tributed Learning 15(3).
Suri, S., and Watts, D. J. 2011. Cooperation and contagion
in web-based, networked public goods experiments. PLoS ONE
6(3):e16836.
Watts, D., and Strogatz, S. 1998. Collective dynamics of ‘small-
world’ networks. Nature 393:440–442.
Yuen, M.-C.; King, I.; and Leung, K.-S. 2011. A survey of crowd-
sourcing systems. In Proceedings of the 3rd International IEEE
Conference on Social Computing, 766–773.


