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In this paper we investigate an average-case model of concept learning, and 
give results that place the popular statistical physics and VC dimension 
theories of learning curve behavior in a common framework. 

1 INTRODUCTION 

In this paper we study a simple concept learning model in which the learner attempts 
to infer an unknown target concept I, chosen from a known concept class:F of {O, 1}­
valued functions over an input space X. At each trial i, the learner is given a point 
Xi E X and asked to predict the value of I(xi) . If the learner predicts I(xi) 
incorrectly, we say the learner makes a mistake. After making its prediction, the 
learner is told the correct value. 

This simple theoretical paradigm applies to many areas of machine learning, includ­
ing much of the research in neural networks. The quantity of fundamental interest 
in this setting is the learning curve, which is the function of m defined as the prob-
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ability the learning algorithm makes a mistake predicting f(xm+I}, having already 
seen the examples (Xl, I(x!)), ... , (xm, f(xm)). 

In this paper we study learning curves in an average-case setting that admits a prior 
distribution over the concepts in F. We examine learning curve behavior for the 
optimal Bayes algorithm and for the related Gibbs algorithm that has been studied 
in statistical physics analyses of learning curve behavior. For both algorithms we 
give new upper and lower bounds on the learning curve in terms of the Shannon 
information gain. 

The main contribution of this research is in showing that the average-case or 
Bayesian model provides a unifying framework for the popular statistical physics 
and VC dimension theories of learning curves. By beginning in an average-case set­
ting and deriving bounds in information-theoretic terms, we can gradually recover 
a worst-case theory by removing the averaging in favor of combinatorial parameters 
that upper bound certain expectations. 

Due to space limitations, the paper is technically dense and almost all derivations 
and proofs have been omitted. We strongly encourage the reader to refer to our 
longer and more complete versions [4, 6] for additional motivation and technical 
detail. 

2 NOTATIONAL CONVENTIONS 

Let X be a set called the instance space. A concept class F over X is a (possibly 
infinite) collection of subsets of X. We will find it convenient to view a concept 
f E F as a function I : X - {O, I}, where we interpret I(x) = 1 to mean that 
x E X is a positive example of f, and f(x) = 0 to mean x is a negative example. 

The symbols P and V are used to denote probability distributions. The distribution 
P is over F, and V is over X. When F and X are countable we assume that these 
distributions are defined as probability mass functions. For uncountable F and X 
they are assumed to be probability measures over some appropriate IT-algebra. All 
of our results hold for both countable and uncountable F and X. 

We use the notation E I E'P [x (f)] for the expectation of the random variable X with 
respect to the distribution P, and Pr/E'P[cond(f)] for the probability with respect 
to the distribution P of the set of all I satisfying the predicate cond(f). Everything 
that needs to be measurable is assumed to be measurable. 

3 INFORMATION GAIN AND LEARNING 

Let F be a concept class over the instance space X. Fix a target concept I E F and 
an infinite sequence of instances x = Xl, .. . , X m , Xm+l, ... with Xm E X for all m. 
For now we assume that the fixed instance sequence x is known in advance to the 
learner, but that the target concept I is not. Let P be a probability distribution 
over the concept class F. We think of P in the Bayesian sense as representing the 
prior beliefs of the learner about which target concept it will be learning. 

In our setting, the learner receives information about I incrementally via the label 
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sequence I(xd, ... , I(xm), I(xm+d, .... At time m, the learner receives the label 
I(xm). For any m ~ 1 we define (with respect to x, I) the mth version space 

Fm(x, I) = {j E F: j(xd = I(XI), . .. , j(Xm) = I(xm)} 

and the mth volume V!(x, I) = P[Fm(x, I)]. We define Fo(x, I) = F for all 
x and I, so Vl(x, I) = 1. The version space at time m is simply the class of 
all concepts in F consistent with the first m labels of I (with respect to x), and 
the mth volume is the measure of this class under P. For the first part of the 
paper, the infinite instance sequence x and the prior P are fixed; thus we simply 
write Fm(f) and Vm(f). Later, when the sequence x is chosen randomly, we will 
reintroduce this dependence explicitly. We adopt this notational practice of omitting 
any dependence on a fixed x in many other places as well. 

For each m ~ 0 let us define the mth posterior distribution Pm(x, I) = Pm by 
restricting P to the mth version space Fm(f); that is, for all (measurable) S C F, 
Pm[S] = P[S n Fm(I))/P[Fm(l)] = P[S n Fm(I)]/Vm(f). 

Having already seen I(xd, ... , I(xm), how much information (assuming the prior 
P) does the learner expect to gain by seeing I(xm+d? If we let Im+l(x, I) (ab­
breviated Im+l (I) since x is fixed for now) be a random variable whose value is 
the (Shannon) information gained from I(xm+d, then it can be shown that the 
expected information is 

E/E'P[Im +1(f)] = E/E'P [-log v~:(j~) 1 = E/E'P[-logXm+1 (I)] (1) 

where we define the (m + 1 )st volume ratio by X!:+l (x, I) = Xm+l (f) = 
Vm +l (f)/Vm(f). 

We now return to our learning problem, which we define to be that of predicting the 
label I(xm+d given only the previous labels I(XI), . .. , I(xm). The first learning 
algorithm we consider is called the Bayes optimal classification algorithm, or the 
Bayes algorithm for short. For any m and bE {O, I}, define F:n(x,!) = F:n(1) = 
{j E Fm(x,!) : j(xm+d = b}. Then the Bayes algorithm is: 

If Pm[F~(f)] > Pm[F~(I)], predict I(xm+d = 1. 

If Pm[F~(f)] < Pm[F~(I)], predict I(xm+d = O. 

If Pm[F~(f)] = Pm[F~(f)], flip a fair coin to predict I(xm+d· 

It is well known that if the target concept I is drawn at random according to 
the prior distribution P, then the Bayes algorithm is optimal in the sense that it 
minimizes the probability that f(xm+d is predicted incorrectly. Furthermore, if we 
let Bayes:+1 (x, I) (abbreviated Bayes:+l (I) since x is fixed for now) be a random 
variable whose value is 1 if the Bayes algorithm predicts I(xm+d correctly and 0 
otherwise, then it can be shown that the probability of a mistake for a random I is 

(2) 

Despite the optimality of the Bayes algorithm, it suffers the drawback that its 
hypothesis at any time m may not be a member of the target class F. (Here we 
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define the hypothesis of an algorithm at time m to be the (possibly probabilistic) 
mapping j : X -+ {O, 1} obtained by letting j(x) be the prediction of the algorithm 
when Xm+l = x.) This drawback is absent in our second learning algorithm, which 
we call the Gibbs algorithm [6]: 

Given I(x!), ... , f(x m), choose a hypothesis concept j randomly from Pm. 

Given Xm+l, predict I(xm+d = j(xm+!). 

The Gibbs algorithm is the "zero-temperature" limit of the learning algorithm stud­
ied in several recent papers [2, 3, 8, 9]. If we let Gibbs~+l (x, I) (abbreviated 
Gibbs~+l (f) since x is fixed for now) be a random variable whose value is 1 if the 
Gibbs algorithm predicts f(xm+d correctly and 0 otherwise, then it can be shown 
that the probability of a mistake for a random f is 

(3) 

Note that by the definition of the Gibbs algorithm, Equation (3) is exactly the 
average probability of mistake of a consistent hypothesis, using the distribution on 
:F defined by the prior. Thus bounds on this expectation provide an interesting 
contrast to those obtained via VC dimension analysis, which always gives bounds 
on the probability of mistake of the worst consistent hypothesis. 

4 THE MAIN INEQUALITY 

In this section we state one of our main results: a chain of inequalities that upper 
and lower bounds the expected error for both the Bayes and Gibbs ,algorithms 
by simple functions of the expected information gain. More precisely, using the 
characterizations of the expectations in terms of the volume ratio Xm+l (I) given 
by Equations (1), (2) and (3), we can prove the following, which we refer to as the 
main inequality: 

1l- 1(E/E'P[Im+1(1))) < E/E'P [Bayes m+1 (I)] 

< E/E'P[Gibbsm+1 (f)] ~ ~E/E'P[Im+l(I)]. (4) 

Here we have defined an inverse to the binary entropy function ll(p) = -p log p -
(1 - p) log(1 - p) by letting 1l-1(q), for q E [0,1]' be the unique p E [0,1/2] such 
that ll(p) = q. Note that the bounds given depend on properties of the particular 
prior P, and on properties of the particular fixed sequence x . These upper and 
lower bounds are equal (and therefore tight) at both extremes E /E'P [Im+l (I)] = 1 
(maximal information gain) and E/E'P [Im +1(f)] = 0 (minimal information gain) . 
To obtain a weaker but perhaps more convenient lower bound, it can also be shown 
that there is a constant Co > 0 such that for all p > 0, 1l-1(p) 2:: cop/log(2/p). 

Finally, if all that is wanted is a direct comparison of the performances of the Gibbs 
and Bayes algorithms, we can also show: 
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5 THE MAIN INEQUALITY: CUMULATIVE VERSION 

In this section we state a cumulative version of the main inequality: namely, bounds 
on the expected cumulative number of mistakes made in the first m trials (rather 
than just the instantaneous expectations). 

First, for the cumulative information gain, it can be shown that EfE'P [L~l Li(f)] = 
EfE'P[-log Vm(f)]. This expression has a natural interpretation. The first m in­
stances Xl, . .. , xm of x induce a partition II!:(x) of the concept class :F defined 
by II~(x) = II~ = {:Fm(x, f) : f E :F}. Note that III~I is always at most 2m , 

but may be considerably smaller, depending on the interaction between :F and 
Xl,· ·· ,Xm· It is clear that EfE'P[-logVm(f)] = - L:7rEIF P[1I']1ogP[71']. Thus the 
expected cumulative information gained from the labels of Xl, .. . , Xm is simply the 
entropy of the partition II~ under the distribution P. We shall denote this entropy 
by 1i'P(II~(x)) = 1i'f;.(x) = 1i'f;.. Now analogous to the main inequality for the 
instantaneous case (Inequality (4)), we can show: 

log(2m/1i~) < mW' (~ 1l::') :'0 E/E1' [t. BayeSi(f)] 

< E/E'P [t, GibbSi(f)] :'0 ~1l::' (6) 

Here we have applied the inequality 1i-l(p) ~ cop/log(2/p) in order to give the 
lower bound in more convenient form. As in the instantaneous case, the upper 
and lower bounds here depend on properties of the particular P and x. When the 
cumulative information gain is maximum (1i'f;. = m), the upper and lower bounds 
are tight. 

These bounds on learning performance in terms of a partition entropy are of special 
importance to us, since they will form the crucial link between the Bayesian setting 
and the Vapnik-Chervonenkis dimension theory. 

6 MOVING TO A WORST-CASE THEORY: BOUNDING 
THE INFORMATION GAIN BY THE VC DIMENSION 

Although we have given upper bounds on the expected cumulative number of mis­
takes for the Bayes and Gibbs algorithms in terms of 1i'f;.(x) , we are still left with the 
problem of evaluating this entropy, or at least obtaining reasonable upper bounds 
on it. We can intuitively see that the "worst case" for learning occurs when the 
partition entropy 1i'f;. (x) is as large as possible. In our context, the entropy is qual­
itatively maximized when two conditions hold: (1) the instance sequence x induces 
a partition of :F that is the largest possible, and (2) the prior P gives equal weight 
to each element of this partition. 

In this section, we move away from our Bayesian average-case setting to obtain 
worst-case bounds by formalizing these two conditions in terms of combinatorial 
parameters depending only on the concept class:F. In doing so, we form the link 
between the theory developed so far and the VC dimension theory. 
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The second of the two conditions above is easily quantified. Since the entropy of 
a partition is at most the logarithm of the number of classes in it, a trivial upper 
bound on the entropy which holds for all priors P is 1l!(x) ~ log III~(x)l. VC 
dimension theory provides an upper bound on log III~(x)1 as follows. 

For any sequence x = Xl, X2, .•. of instances and for m ~ 1, let dimm(F, x) denote 
the largest d ~ 0 such that there exists a subsequence XiI' ... , Xiii of Xl, ... ,Xm with 
1II~((Xill ... ,xili))1 = 2d; that is, for every possible labeling of XiII ... ,Xili there is 
some target concept in F that gives this labeling. The Vapnik-Chervonenkis (VC) 
dimension of F is defined by dim(F) = max{ dimm(F, x) : m ~ 1 and Xl, X2, .•• E 
X}. It can be shown [7, 10] that for all x and m ~ d ~ 1, 

log III~(x)1 ~ (1 + 0(1)) dimm(F, x) log d· 7) (7) 
lmm F,x 

where 0(1) is a quantity that goes to zero as Cl' = m/dimm(F, x) goes to infinity. 

In all of our discussions so far, we have assumed that the instance sequence x is 
fixed in advance, but that the target concept f is drawn randomly according to P. 
We now move to the completely probabilistic model, in which f is drawn according 
to P, and each instance Xm in the sequence x is drawn randomly and independently 
according to a distribution V over the instance space X (this infinite sequence of 
draws from V will be denoted x E V*). Under these assumptions, it follows from 
Inequalities (6) and (7), and the observation above that 1l~(x) ~ log III~(x)1 that 
for any P and any V, 

EfEP,XE"· [t. Bayes,(x, f)] < EfEP,XE"· [t. Gibbs,(x, f)] 

< ~EXE'V. [log III~(x)1l 

< (1 + o(I))ExE'V. [diffim~F, x) log dimm7F, x)] 

dim(F) m 
< (1 + 0(1)) 2 log dim(F) (8) 

The expectation EXE'V. [log In~(x)1l is the VC entropy defined by Vapnik and Cher­
vonenkis in their seminal paper on uniform convergence [11] . 

In terms of instantaneous mistake bounds, using more sophisticated techniques [4], 
we can show that for any P and any V, 

[ dimm(F, X)] dim(F) 
E/E1',XE'V· [Bayesm(x, I)] ~ EXE'V· m ~ m (9) 

E [G ·bb (f)] E [2 dimm(F, x)] 2 dim(F) IE1',XE'V· I Sm x, ~ XE'V· ~ 
m m 

(10) 

Haussler, Littlestone and Warmuth [5] construct specific V, P and F for which the 
last bound given by Inequality (8) is tight to within a factor of 1/ In\2) ~ 1.44; thus 
this bound cannot be improved by more than this factor in general. Similarly, the 

1 It follows that the expected total number of mistakes of the Bayes and the Gibbs 
algorithms differ by a factor of at most about 1.44 in each of these cases; this was not 
previously known. 
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bound given by Inequality (9) cannot be improved by more than a factor of 2 in 
general. 

For specific V, P and F, however, it is possible to improve the general bounds 
given in Inequalities (8), (9) and (10) by more than the factors indicated above. 
We calculate the instantaneous mistake bounds for the Bayes and Gibbs algorithms 
in the natural case that F is the set of homogeneous linear threshold functions 
on R d and both the distribution V and the prior P on possible target concepts 
(represented also by vectors in Rd) are uniform on the unit sphere in Rd. This 
class has VC dimension d. In this case, under certain reasonable assumptions used 
in statistical mechanics, it can be shown that for m ~ d ~ I, 

0.44d 
m 

(compared with the upper bound of dim given by Inequality (9) for any class of 
VC dimension d) and 

0.62d 
m 

(compared with the upper bound of 2dlm in Inequality (10)). The ratio of these 
asymptotic bounds is J2. We can also show that this performance advantage of 
Bayes over Gibbs is quite robust even when P and V vary, and there is noise in the 
examples [6]. 

7 OTHER RESULTS AND CONCLUSIONS 

We have a number of other results, and briefly describe here one that may be of 
particular interest to neural network researchers. In the case that the class F has 
infinite VC dimension (for instance, if F is the class of all multi-layer perceptrons 
of finite size), we can still obtain bounds on the number of cumulative mistakes by 
decomposing F into F 1 , F2, ... , F" ... , where each F, has finite VC dimension, and 
by decomposing the prior P over F as a linear sum P = 2::1 aiP" where each Pi 
is an arbitrary prior over Fi, and 2::1 a, = 1. A typical decomposition might let 
Fi be all multi-layer perceptrons of a given architecture with at most i weights, in 
which case di = O( i log i) [1]. Here we can show an upper bound on the cumulative 
mistakes during the first m examples of roughly 11 {ai} + [2::1 aidi] log m for both 
the Bayes and Gibbs algorithms, where 11{ad = - 2::1 ai log a,. The quantity 
2::1 aid, plays the role of an "effective VC dimension" relative to the prior weights 
{a,}. In the case that x is also chosen randomly, we can bound the probability of 
mistake on the mth trial by roughly ~(11{ad + [2:~1 a,di)logm). 

In our current research we are working on extending the basic theory presented 
here to the problems of learning with noise (see Opper and Haussler [6]), learning 
multi-valued functions, and learning with other loss functions. 

Perhaps the most important general conclusion to be drawn from the work pre­
sented here is that the various theories of learning curves based on diverse ideas 
from information theory, statistical physics and the VC dimension are all in fact 
closely related, and can be naturally and beneficially placed in a common Bayesian 
framework. 
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