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Abstract

We consider settings in which we wish to incentivize myopic agents (such as Airbnb land-
lords, who may emphasize short-term profits and property safety) to treat arriving clients
fairly, in order to prevent overall discrimination against individuals or groups. We model such
settings in both classical and contextual bandit models in which the myopic agents maximize
rewards according to current empirical averages, but are also amenable to exogenous payments
that may cause them to alter their choices. Our notion of fairness asks that more qualified in-
dividuals are never (probabilistically) preferred over less qualified ones [Joseph et al., 2016b].

We investigate whether it is possible to design inexpensive subsidy or payment schemes
for a principal to motivate myopic agents to play fairly in all or almost all rounds. When
the principal has full information about the state of the myopic agents, we show it is possible
to induce fair play on every round with a subsidy scheme of total cost o(T ) (for the classic
setting with k arms, Õ(

√
k3T ), and for the d-dimensional linear contextual setting Õ(d

√
k3T )).

If the principal has much more limited information (as might often be the case for an external
regulator or watchdog), and only observes the number of rounds in which members from each
of the k groups were selected, but not the empirical estimates maintained by the myopic agent,
the design of such a scheme becomes more complex. We show both positive and negative
results in the classic and linear bandit settings by upper and lower bounding the cost of fair
subsidy schemes.
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1 Introduction

Recent uses of machine learning to make decisions of consequence for individual citizens (such
as credit, employment and criminal sentencing) have led to concerns about the potential for these
techniques to be discriminatory or unfair (Barocas and Selbst [2016], Coglianese and Lehr [2016],
Brill [2015]). Existing research has emphasized discriminatory outcomes originating from biases
encoded into the data sets on which algorithms are trained.1 In this paper, we consider a different
source of unfairness in a stochastic bandit setting. The key friction we examine is when a forward-
looking principal concerned with fairness (such as a regulator or technology platform) is not the
one directly making the choices. Instead, a sequence of myopic agents are making the choices.
To prevent unfair choices by these agents, the principal may offer targeted monetary rewards to
agents to incentivize them to make different choices than they would have in the absence of such
payments. Our concern in this paper is how much the principal needs to be prepared to pay in
order to incentivize fair decisions by myopic agents.

To help fix ideas and motivate our problem, consider a challenge faced by peer-to-peer (P2P)
platforms such as Prosper (P2P lending) or Airbnb (P2P short-stay housing). The platform can-
not dictate to their users who to extend loans or rent to. Nevertheless, it may wish to ensure the
choices its users make are fair, either to avoid criticism,2 or to comply with existing regulations.
P2P lending, for example, is subject to the Equal Credit Opportunity Act (ECOA). One provision
of the Act is a requirement that lenders furnish reasons for adverse lending decisions. This obli-
gation falls on the shoulders of the platform, and is challenging to discharge because the platform
aggregates the decisions of many different lenders.3

In our model, an agent arrives at each period and must choose amongst a set of available
alternatives. (For instance, the agent might be a lender on Prosper choosing to whom they will
grant a loan, or an Airbnb host choosing which guest to accept.) We model this as a choice of which
arm to pull in a stochastic bandit setting. We consider both the classic and contextual bandit
cases. In the classic setting, each arm represents an individual, who will over time repeatedly
be considered for service. In the contextual setting, each arm represents a group, and individual
members of that group are represented by contexts (i.e. sets of individual features) which change
at each round. A stochastic reward from the pull of an arm models the uncertain payoff associated
with serving an individual (i.e. extending a loan, or having the individual rent). Each agent is
myopic in the sense that they are occasional users of this platform, and thus care only about their
current expected payoff. Because of myopia, the agent chooses the arm with the highest empirical
mean in the classical case, and the context with the highest predicted reward according to a fixed
one-shot learning procedure known to the principal (e.g. ordinary least squares regression, or
ridge regression). Each agent is limited to pulling a single arm to model their limited resources
(e.g., they may only have the funds to grant one loan, or host one guest on any particular night),
and of course this simplifies our analysis.

The platform, motivated by a need for “accountability,” would like to be fair. Our formal

1 For example, Boston’s Street Bump program, which uses smartphones to determine where road repairs are needed,
results in certain areas being underserved because of the sparsity of smartphones traversing them (O’Leary [2013]).

2 Airbnb has very recently received scrutiny over both anecdotal reports and systematic studies of racist behav-
ior by landlords on their platform (Edelman et al. [2017]). This study also suggests that myopia may play a role in
discrimination, in the sense that landlords with no prior exposure to minority renters were more likely to discriminate.

3Lenders on Prosper must agree to comply with the relevant provisions of the ECOA, but there is still evidence of
discrimination; see Pope and Snyder [2011].
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Full Information Partial Information
Classical Õ(

√
k3T ) cost O(

√
T ) cost for k = 2

Ω(T ) cost for k ≥ 3
Õ(
√
k3T ) cost allowing Õ(k2) unfair rounds

Linear Contextual Õ(d
√
k3T ) cost o(T ) unfair rounds→Ω(T ) cost

o(T ) cost→Ω(T ) unfair rounds

Table 1: Summary of cost to incentivize perfect fairness and fairness in all but a limited number
of rounds.

definition of fairness (Joseph et al. [2016b]) may be found in Section 2, and can be informally
described as follows: Suppose an auditor knew the expected reward of each arm (or more gener-
ally, in the contextual case, of each context), and looked back at the platform’s decisions. Fairness
requires that a worse individual was never favored over a better individual. More precisely, if a
platform is fair, then on any day t, the probability px that the agent pulls arm x is such that if the
expected reward of x is at least that of x′, then px ≥ px′ . Fairness as defined in this paper does
not address inequities “outside the model.” For example, if one group has lower expected payoff
for every context than another, perhaps due to historical inequities, and there are no additional
features available to the learning algorithm, our notion of fairness permits the agent to favor the
higher expected group. In this sense our fairness notion is aligned with (apparent) meritocracy.

Intuitively, there are two impediments to fairness in this model. First, neither the platform nor
the agents know the distribution of rewards of each arm. If these were known, the problem would
be trivial: it would be both fair and agent-optimal to always pull the arm with highest expected
reward. Second, the agents are myopic — they have no incentive to directly invest in fairness or
learning.

We examine whether it is possible for the platform, hereafter called the principal, to incen-
tivize the agents to make fair choices by offering the agent payments for selecting particular arms.
These payments can be randomized. Because the agents behave identically in our model (they are
all myopic), we treat them as if they are a single myopic entity, whom we term the agent. We in-
vestigate how much information a principal needs to incentivize fair behavior. Characterizing the
information requirements is important, since sometimes the principal may be an external regula-
tor or other entity tasked with oversight without the full information available to the platform. At
one extreme, called partial information, we suppose the principal observes only which decisions
were made by the agent in each of the previous rounds but not the rewards. In the P2P context,
rewards might be unobservable because the reward an agent experiences is a function of both
observed characteristics of the borrower or renter and a private type of the agent. At the other
extreme of full information, the principal has the same information as the agent.

We ask each of these questions in both the classic and linear contextual bandits settings. In the
classic case, individual i is better than individual j if the mean of distribution i is higher than that
of distribution j. In the contextual case, individual i on day t is represented by a set of features,
or a context xti , and that individual’s expected reward is defined as fi(x

t
i ) for some fi ∈ C.
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1.1 Our Results

Table 1 summarizes our results for characterizing the cost of incentivizing fair play in myopic
agents. Informally, we show a stark separation: in the partial information model, any fair payment
scheme must cost Ω(T ); while in the full information model there are payment schemes which
cost Õ(d

√
k3T ). In both the classic and contextual settings, the full information upper bounds

effectively incentivize the agent to play known fair algorithms. The lower bounds for the partial
information model look somewhat different. For the classic setting, our lower bound simply shows
that the first round at which the principal doesn’t offer a payment of 1 will be unfair with constant
probability; for the contextual setting, every round must either be unfair or offer Ω(1) payment.

We additionally show that in partial information model, the classic problem is somewhat eas-
ier in two cases. When there are only 2 arms, we give a simple payment scheme that only incurs
a cost of O(

√
T ) and guarantees with high probability that the agent is fair at every round. Even

when k ≥ 3, a principal who is allowed Õ(k2) unfair rounds can design a payment scheme which
costs only Õ(

√
k3T ).4 In the full information model, we exhibit a payment scheme for the principal

which, with high probability, is fair in every round, and has cost Õ(
√
k3T ).

It is interesting to observe that all our payment schemes that guarantee fairness (either in each
period, or except at a constant number of periods) and achieve sublinear costs also induce the
agent to play so as to experience sublinear regret. If we think of sub-linear regret as a proxy
for efficiency, our full information results say we can achieve both efficiency and fairness with
subsides that grow slowly over time. Under certain conditions, this is also possible in the partial
information setting, which does not require the principal to “open the books” of the agent.

1.2 Related Work

Our work is closely related to the literature on incentivizing experimentation in bandit settings.
In these papers, a sequence of agents arrives one at a time and each is allowed to select an arm to
pull. Each agent “lives” for one period and therefore pulls the arm that has the highest current
estimated payoff given the history. The agents’ myopia means that they do not explore sufficiently
and the patient principal must encourage it.

In this context, Frazier et al. [2014] explore the achievable set between the monetary rewards
the principal must pay to incentivize exploration and the time discounted expected reward to the
principal. In this paper the history of actions and outcomes is observed by the principal and there
is, therefore, no examination of what happens with limited information. More importantly, there
is no consideration of fairness, which is our primary interest.

A different string of papers does not explicitly allow for monetary payments, but instead the
principal discloses information about past agents’ realized rewards to the future agents, see e.g.
Kremer et al. [2014], a more general exploration in Mansour et al. [2015, 2016], or an analytical
solution in a continous time Poisson bandit setting by Che and Horner [2015] and the same in a
discrete time setting in Papanastasiou et al. [2017]. The key point of departure for our work is
that for us, the principal is not explicitly interested in the long term reward of the agent, but is
instead interested in promoting “fairness” (although this will incidentally have the property of
increasing long-term reward of the agent by encouraging experimentation).

4In other words, we show that by allowing a constant number of unfair rounds, independent of T , one can achieve
sublinear costs.
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Joseph et al. [2016b] originally proposed our definition of contextual fairness. They consider
the tradeoffs between requiring this form of fairness and achieving no-regret in both classic and
contextual bandit settings. This notion was also employed in Joseph et al. [2016a], when special-
ized to the linear contextual bandits case.

2 Preliminaries

A principal faces a sequence of homogeneous myopic agents, each operating in a contextual bandit
setting. For simplicity, we view the agents as a single agent repeatedly making myopic choices.

2.1 Contextual Bandits

Let {k} refer to a set of arms. In each round t ∈ [T ], an adversary reveals to the agent a context
xtj ∈ X , where X is the common domain of contexts, for each arm j ∈ [k].

Fix some class C of functions of the form f : X → [0,1]. Associated with each arm j is a
function fj ∈ C, unknown to both the agent and the principal.5. An agent who chooses an arm j

in period t with context is xtj receives a stochastic reward rtj ∼ F
xtj
j , where E[rtj ] = fj(x

t
j ), for some

distribution F
xtj
j over [0,1].

Remark 2.1 (Linear Contextual Bandits). The results in this paper which involve contexts are for the
case where the set of contexts X = {x ∈ [0,1]d : ||x|| ≤ 1} for some number d > 0, and

C =
{
fj : there exists some θj ∈ [0,1]d , ||θj || ≤ 1, s.t. fj(xj ) = 〈θj ,xj〉, ∀xj ∈ X

}
.

Remark 2.2 (Classic Bandits). The classic bandits problem is a special case of the contextual bandits
problem where the set of possible contexts is a singleton. Then F ·j = Fj and rtj ∼ Fj .

In the running example of P2P lending, X represents possible profiles of attributes that a
lender can observe about a potential borrower. The exact relationship between a profile of at-
tributes at time t, denoted xtj , and the expected reward earned from extending a loan to a bor-
rower with this profile is fj(x

t
j ); this functional form is unknown to the lender, the platform, and

the agent.

2.2 The Myopic Agent and the Principal

In each period t, the principal can offer a vector of payments pt ∈ Rk+ to the agent. Here pti is to
be interpreted as the monetary incentive the agent receives from the principal if they selects arm
i on top of any reward that would accrue from the arm itself.

We assume the agent makes myopic choices facing empirical estimates of the reward from
each arm (we describe how these empirical estimates are constructed momentarily). We use µ̂ti to
denote the empirical estimated reward for selecting arm i in round t. When the agent receives a
proposed subsidy vector pt ∼ γ t(·), they choose the arm which maximizes the sum of empirical
expected reward and payment, i.e. chooses it ∈ argmaxi(µ̂

t
i + pti ). This is the sense in which the

5Often, the contextual bandit problem is defined so that there is a single function f associated with all of the arms.
Our model is only more general.
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agent is myopic—they maximize (their estimate of) today’s net reward plus payment, with no
concern for the future. Note that we assume that rewards are expressed in monetary terms, i.e.
that they are directly comparable to offered payments.

For concreteness and without loss of generality, we fix a tie-breaking rule—ifM = argmaxi(µ̂
t
i+

pti ) contains multiple elements, the agent chooses uniformly at random amongst the members of
M that also maximize payment, i.e. from the set argmaxi∈M p

t
i .

6 The principal experiences cost
ptit at round t, and total cost

∑T
t=1p

t
it over the course of T rounds. The payments offered by the

principal, and the empirical estimates of the agent, depend on what they know about past choices
and outcomes. We define these next.

2.3 Information and Histories

The agent will, in any period t, recall history ht ∈
(
X k ×Rk+ × [k]× [0,1]

)t−1
=Ht . This is a record of

the previous t − 1 rounds experienced by the agent: t − 1 4-tuples encoding the realization of the
contexts for each arm in a given period, the payments the principal offered, the arm chosen, and
the realized reward observed.

In the linear contextual case, let θ̂ti represent an estimate of the linear model θi based on the
history ht (this could, for example, be the ordinary least-squares or regularized ridge regression
estimator — the important thing is that whichever method is used is known to the principal).
The myopic decision maker, at day t, when facing contexts xt1, . . . ,x

t
k will have empirical estimated

reward µ̂ti = 〈θ̂ti ,x
t
i 〉. In the classic setting,

µ̂ti =

∑
t′<t r

t′
i

|{t′ < t : i played in round t′}|

that is, it represents the empirical average for the set of previous rewards observed from arm i in
previous rounds.

Note that during the first several rounds, the myopic reward estimates µ̂ti are not necessarily
defined, e.g. if in the classic setting, the agent has not yet observed any rewards from arm i, or if
in the linear contextual case, the agent has not observed sufficiently many reward/context pairs
to uniquely define the OLS estimator. To get around this issue, we assume that the agent has
previously observed sufficiently many observations from each arm to make these estimates well
defined — i.e. at least one observation per arm in the classic case, and observations corresponding
to contexts that combined form a full rank matrix in the linear case.

We consider two information models for the principal. In the full information model, the
principal observes everything the agent observes, i.e. there is no information asymmetry be-
tween the two. In the partial information model, the principal observes neither the contexts
faced by the agents, nor the realized reward of the arm the agent pulled. We will denote this

by ht ∈
(
R
k
+ × [k]

)t−1
= Ht. The principal’s information scheme is a function of the information

they have.
In what follows, we define various notions of performance of algorithm. This is without loss:

the payments that the principal offers, and the resulting choices made by the agents choices, taken
together, can be thought of as an algorithm making choices in a stochastic bandit setting.

6Our results do not depend in any important way on the particulars of the tie-breaking rule—we chose this one to
simplify parts of the lower bound proof.
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2.4 Fairness and Regret

A standard method for measuring the performance of a bandit algorithm is to measure its regret.
If one knew {fj}j∈[k], selecting the arm with highest expected reward in each period would be
optimal. Fix an algorithm A and let πt be the distribution over arms at round t of the algorithm:
the regret of A is the difference between the reward of the optimal policy, and the reward of the
agent:

Regret(x1, . . . ,xT ) =
∑
t

max
j

(
fj(x

t
j )
)
−Eit∼πt

∑
t

fit (x
t
it )

 .
We say that A satisfies regret bound R(T ), if maxx1,...,xT Regret(x1, . . . ,xT ) ≤ R(T ).

We denote by πtj |ht the probability that A chooses arm j after observing contexts xt in period
t, given ht. For economy, we will often drop the superscript t on the history when referring to the
distribution over arms: πtj |h B πtj |ht .

We now define what it means for an algorithm A to be fair in a particular round t. Informally,
this will mean that A will play arm i with higher probability than arm j in round t only if i has
higher true expected reward than j in round t.

Definition 2.3 (Round Fairness). Fix some history ht. Recall πtj |ht is the probability that A plays arm
j in round t given the history ht. We will say A is fair in round t if, for any context xt, for all pairs of
arms j, j ′ ∈ [k],

πtj |h > π
t
j ′ |h only if fj(x

t
j ) > fj ′ (x

t
j ′ ).

Similarly, a payment scheme is fair in round t if the selection by the myopic agent under the payment
distribution is fair.

Remark 2.4. When this definition is specialized to the classic (noncontextual) case, the reward dis-
tributions do not vary with time, i.e. F tj = Fj for all t. Thus, “noncontextual” fairness reduces to
guaranteeing that if arm i is played with higher probability than arm j, it must be that the average
reward drawn from distribution Fi is higher than the average reward drawn from distribution Fj .

Remark 2.5. To be clear about this definition in the partial information model, and what we mean by
probabilities: note that the “algorithm” has access to ht at the beginning of time t. By this we mean that,
the principal has access to ht. The principal then offers payments to the agent, possibly randomizing.
The agent sees the full history ht, and the realized payments drawn from a distribution, and makes a
choice. The principal’s randomization, and then, if there are ties, the agent’s randomization in period t,
can be amalgamated into a net probability of each arm being selected in period t after history ht. These
are the π’s that the definition refers to.

We now introduce a notion of fairness which holds at every round with high probability over
the history of observed rewards.

Definition 2.6 (Contextual Fairness). A(·) is fair if, for any input δ ∈ (0,1), for all sequences of con-
texts, x1, . . . ,xt and all reward distributions F t1 , . . . ,F

t
k , with probability at least 1−δ over the realization

of the history h, for all rounds t ∈ [T ], A(δ) is fair in round t.

Contextual fairness, introduced in Joseph et al. [2016b], formalizes the idea that highly qual-
ified individuals should be treated at least as well as less qualified individuals. Here, an indi-
vidual’s qualification is measured in terms of their expected reward for A. If two individuals
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have different profiles (or contexts) but generate the same expected reward to the learner, this
definition enforces that both be played with equal probability every round. We also introduce a
relaxation of contextual fairness, which allows for an algorithm to have some number of unfair
rounds.

Definition 2.7 (g-Contextual Fairness). A(δ) is g-fair if, for any input δ ∈ (0,1), for all sequences of
contexts, and all reward distributions, with probability at least 1 − δ over the realization of the history
h, for all but g rounds t ∈ [T ], A(δ) is fair in round t.

Our principal is willing to incentivize the agent’s behavior to ensure contextual fairness (and,
incidentally, low regret). We investigate what subsidy schemes incentivize fair choices by a myopic
agent, and the cumulative cost of such subsidies. We show this answer depends upon the kind
of information the principal has access to: incentivizing fair play with partial information is in
general very expensive, while incentivizing fair play under full information need not be so.

3 A Principal with Partial Information Cannot Ensure T Fair Rounds

In this section, we give a lower bound on the total payments needed in the partial information
setting to ensure contextual fairness in every round. In fact, we don’t even need to move to the
contextual case: this section focuses on the classic bandit setting (where the context xtj is invariant
with respect to t for each arm j). We show that in the partial information setting, any principal
who incentivizes a myopic agent to satisfy contextual fairness in each round must incentivize
uniformly random play in each of the T rounds, which has cumulative cost Ω(T ).

Theorem 3.1. Suppose k ≥ 3. There is an instance such that any fair payment scheme in the partial
information model must, with probability 1−δ, (where δ is the fairness parameter passed to the principal)
spend Ω(T ) in payments over T rounds and incur regret Ω(T ).

The lower bound proceeds from the following idea: at the first round, the principal has no
information about what the instance is. Hence, in order to guarantee fairness against all instances,
they must proceed cautiously and use a payment scheme that is able to induce uniformly random
play (the only distribution that is fair for all instances) for every possible realization of empirical
means. Because empirical means can range between 0 and 1, this will cost 1. However, because
this payment distribution (by design) induces identical behavior on every possible instance, it
does not allow the principal to learn anything about the instance. Thus, in every round before
which fair play has been guaranteed, the principal has the same informational disadvantage. By
induction, therefore, they must induce uniformly random play at every round, at a cost of 1 per
round.

We show that fairness at every round, against all instances is equivalent to the payment scheme
in each round being what we term peaked. A peaked payment rule is one that can always incen-
tivize the play of some arm regardless of the empirical means the myopic agent currently has.
This is equivalent to saying that there is some arm i ∈ [k] for which pi ≥ pi′ + 1 for all i′ , i. This
will imply the payment scheme must spend Ω(1) in each round to incentivize fair play, or Ω(T )
in total.

Definition 3.2 (Peaked). Let p ∈Rk . If for some i ∈ [k], pi ≥maxi′,i pi′ + 1, we say p is peaked. If

Pp∼D [p is peaked] = 1
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then we call distribution D peaked.

Observation 1. If a principal uses a peaked distribution D in a round, they learn nothing about the
instance the agent faces from the agent’s play in that round.

Proof. By Definition 3.2, every payment scheme drawn from D is peaked. In other words, for
every p` ∼ D: there is some i` such that pi` ≥maxi′,i` pi′ + 1. Thus, the myopic agent will choose i`
when presented with p` regardless of the instance the agent faces.

The main idea behind Theorem 3.1 is in proving that any fair payment scheme must be peaked
in every round. Technically, we use the fact that the principal learns nothing about the instance
from a peaked distribution to allow us freedom to design a lower bound instance as a function of
the first distributionDt deployed by the principal that is not peaked. Because this distribution, by
virtue of being the first non-peaked distribution, cannot be a function of the underlying instance,
we are unconstrained in our ability to tailor the instance as a function of Dt. We then show this
instance forces an unfair round for Dt; we can conclude that with probability 1− δ, the principal
must never deploy any distribution over payments that is not peaked.

Lemma 3.3. For any fairness parameter δ, a fair payment scheme must with probability 1− δ generate
a sequence of payment distributions D1, . . . ,DT such that each Dt is peaked.

We now conclude the proof of Theorem 3.1 before presenting the proof of Lemma 3.3.

Proof. Lemma 3.3 implies that a fair payment scheme must with probability 1 − δ generate T
peaked payment distributions. Since maxi pi ≥maxj,i pj + 1, and µ̂ti ∈ [0,1] for all i, the payment
scheme’s largest payment is always at least 1, and is always accepted. Thus, the myopic agent will
receive a payment of at least 1 in every round, for a total cost of Ω(T ).

To prove the regret of this payment scheme may be Ω(T ) on some instances, consider each
of the k instances in which one arm has mean 1 and the remaining k − 1 arms have mean 0.
By Observation 1, the principal has no information about which of these instances is realized.
Therefore to be to be fair with respect to all of these instances, each arm must be assigned the
largest payment with equal probability, which induces uniformly random play amongst all k arms,
Ω(1) regret per round, and cumulative regret Ω(T ).

We now present the proof of the main lemma for this section: that in order for a payment dis-
tribution to be fair, it must be peaked. Informally, we first show that any fair payment distribution
must be “invariant under permutation”: any coordinate i should have have an equal probability of
having the largest payment, and have an equal probability of j being the second-largest payment
with margin c, for each value of j and c. We then show in the first round t at which the payment
distribution is unpeaked, Dt is unfair for some instance I constructed as a function of Dt.

Proof of Lemma 3.3. We consider some round t. Suppose that for every round t′ < t, the payment
distribution Dt′ was peaked. If the payment distribution Dt = D at round t is fair, we show that
it too must be peaked. Observe that by Observation 1, D must be defined independently of the
underlying instance I , and because fairness is defined in the worst case over instances, we continue
to have complete freedom in choosing I .

We first claim that in round t, if D is fair, for any two distinct i, i′ ,∈ [k] and any c ∈ [0,1], that

Pp∼D

[
pi ≥ max

`∈[k],`,i
p` + c

]
= Pp∼D

[
p′i ≥ max

`∈[k],`,i′
p` + c

]
. (1)
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Suppose Equation 1 does not hold. We construct an instance for which D will not be fair, a
contradiction. Suppose the left-hand side is larger than the right-hand side. Consider an instance
where µi = µi′ = 1− c, and all other arms (of which there is at least 1) have means µj = 1. Suppose
further that the distribution over i’s reward is deterministic point mass at 1−c, whereas i′’s reward
distribution yields reward 1− c+ ε with probability 1

2 and 1− c − ε with probability 1
2 . Then, with

probability at least 1
4 , µ̂i′ < µ̂i .7 Thus, with probability 1

4 over the history of rewards observed, i
wins with higher probability than i′, since i wins whenever i’s payment is the largest by c, and i′

can only win when i′’s payment is the largest by at least c for any history for which µ̂i′ < µi′ . This
is a violation to fairness for δ < 1

4 .
Notice that Equation 1 implies that each arm receives the highest payment with probability 1

k ,
and that this also holds conditioning on any gap c between highest and second-highest payments.

Now, since D is not peaked,

Pp∼D

[
∃i : pi ≥max

i′,i
pi′ + 1

]
< 1.

Define c as follows:
c = sup

y≥0
s.t. Pp∼D

[
∃i : pi ≥max

i′,i
pi′ + y

]
= 1.

Notice, this implies that:

∀ε > 0,∃η > 0 s.t. Pp∼D
[
∃i : pi ≥max

i′,i
pi′ + c+ ε

]
≤ 1− η. (2)

We now construct an instance as a function of c. There are two cases – either c > 0 or c = 0.

Case 1: c > 0 Consider the following instance, defined in terms of c and a constant 0 < ε < c:
arm 1 has mean 1− c with deterministic rewards, arm 2 has mean 1− c with reward 1− c − ε with
probability 1

2 and reward 1−c+ε with probability 1
2 , and arms 3, . . . , k have a deterministic reward

of 1. Note that by definition of c, and the deterministic nature of arm 1’s distribution, we have
that for every history h, πt1|h ≥ 1/k. By the fairness constraint, we must therefore also have that for
every other arm i > 1, πti|h ≥ 1/k, since no other arm has lower mean. This implies that for every
arm i, it must be that πti|h = 1/k.

Note, as we argued in footnote 7, that with probability at least 1
4 , for any t, µ̂2 < µ̂1 = 1 − c,

by construction. In this case, there is some ε′ > 0 such that arm 2 is not played unless p2 >
maxi,2pi + c + ε′. However, by definition of c, this occurs with probability strictly less than 1/k,
contradicting the assertion that D is a fair distribution.

Case 2: c = 0 Consider the instance in which arms 1, . . . , k − 1 have mean 1
2 and deterministic

reward distributions, while arm k has mean 1/2, and stochastic rewards that are 1
2 − ε with prob-

ability 1
2 and 1

2 + ε with probability 1
2 . Note that in this case, fairness requires that all arms be

played with identical probabilities. With probability at least 1
4 , arm k has empirical mean lower

than its true mean. Condition on µ̂k < µk . In this case, since c = 0, with arm k must be selected
with probability less than 1

k since the payment to arm k will be strictly less than µk − µ̂k with
strictly positive probability (2), and therefore unfair.

7For t odd it is 1
2 , for even t it is 1

2

(
1− ·

( t
t/2

))
· 1

2t ≥
1
4 , achieved at t = 2 and increasing in t.
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3.1 A Fair Payment Scheme for Two Arms

We now show that having at least three arms is necessary for our lower bound result. Indeed,
in the classic stochastic partial information setting with two arms there exists a simple payment
scheme that can ensure fairness in every round while achieving sublinear regret and payment.

The key idea in this payment scheme is to maintain confidence intervals around empirical re-
ward means for the two arms. The following lemma tells us how to construct confidence intervals.

Lemma 3.4 (Lemma 1, [Joseph et al., 2016b]). Suppose arm i has been pulled nti times before round

t. Let `ti = µ̂ti −
√

ln (π(t+1))2
3δ

2nti
, and uti = µ̂ti +

√
ln (π(t+1))2

3δ
2nti

. Then, with probability at least 1 − δ, for every

i ∈ [k], t ∈ [T ], `ti ≤ µi ≤ u
t
i .

In the light of this result, we will define the function ConfidenceWidth as follows, which will
also be useful for describing our payment scheme in the following section.

ConfidenceWidth(δ, t,n) = 2

√
ln

( (π·(t+1))2

3δ

)
n

(3)

Given this confidence width function, our payment scheme is the following: in each round t,
choose an arm at uniformly at random, and offer payment p(δ, t,nt1,n

t
2) for playing arm at and

offer 0 for playing the other arm, where

p(δ, t,nt1,n
t
2) = ConfidenceWidth(δ, t,nt1) +ConfidenceWidth(δ, t,nt2)

and nt1,n
t
2 denote the number of times that the two arms are played before round t. Whenever the

agent selects the arm associated with zero payment, the principal will then offer zero payment for
both arms in all future rounds.

Theorem 3.5. Consider the classic case with k = 2 arms in the partial information setting. Then the
payment scheme above instantiated with parameter δ is fair in every round with probability at least
1− δ. Moreover, the incurred total cost and expected regret are at most Õ(

√
T ).

4 Classic Setting: Sublinear Payments with Only Õ(k2) Unfair Rounds

The necessity of linear growth in subsidies (Theorem 3.1) was driven by the requirement that the
agent satisfy contextual fairness in each period. It is natural to ask what would happen if one
relaxed this requirement. In this section, we describe how to design a payment scheme which will
satisfy contextual fairness in all but Õ(k2) rounds. We show that it is possible to achieve payments
and regret which grow sub-linearly with T .

The rough idea behind this upper bound is inspired by Joseph et al. [2016b] who show that
fairness can be achieved by maintaining confidence intervals around empirical arm means, and
enforcing the constraint that any pair of arms with overlapping confidence intervals are played
with equal probability: in particular, a fair no-regret algorithm can play uniformly at random
amongst the set of arms “chained” to the arm with highest upper confidence bound by the confi-
dence intervals, called the chained set X.

Denote the confidence interval associated with arm i at round t by [`ti ,u
t
i ]. Fix a set of confi-

dence intervals at round t, [`t1,u
t
1], . . . , [`tk ,u

t
k]. We say i is linked to j if [`ti ,u

t
i ]∩ [`tj ,u

t
j ] , ∅, and i is
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chained to j if i and j are in the same component of the transitive closure of the linked relation.
We refer to the set of arms chained to the arm with highest upper confidence bound as the chained
set X. We say the sequence of confidence intervals are valid if, with probability 1− δ, they contain
the true and empirical averages of every arm in every round.

In the absence of explicit knowledge of the sample means, the principal does not have suffi-
cient information to incentivize uniformly random play amongst exactly the set of arms chained
to the arm with highest upper confidence bound X8. The principal does not know the empirical
means of the arms, and therefore cannot compute the arms contained in X directly.

The principal can, however, incentivize the myopic agent to play an arm j with a payment
vector pt such that ptj ≥maxi p

t
i + |maxi µ̂

t
i − µ̂

t
j |. Unfortunately, the principal neither knows which

arms belong to X, nor how many arms are in X, nor how far apart the empirical means are in X.
Instead, the principal can maintain upper bounds on all of these quantities. Namely, the principal
tracks a superset of the chained set X, called the active set X̂. |X̂ | will then act as an upper bound
on the size of the chained set, and |X̂ | ·xX̂ will upper bound the difference between the highest arm
mean and the lowest chained arm’s means, where xX̂ is the width of the largest confidence interval
of any arm in X̂. By offering a payment of |X̂ | · xX̂ to an arm selected uniformly from X̂ (and zero
for all other arms), the principal will cause uniformly random play amongst X̂ if all arms in X̂
have empirical means within |X̂ | · xX̂ of the best empirical mean.

This is fair if in every round X̂ = X: all means will then be within |X̂ | · xX̂ by the definition of
chaining and xX̂ , and so this will induce uniformly random play amongst the chained set, exactly
the behavior shown to be fair in Joseph et al. [2016b]. On the other hand, if X̂ \X , ∅, this behavior
could be unfair, either because not all arms within X̂ have empirical means within |X̂ | · xX̂ of one
another (i.e., not all arms in the set are chained together), or because some arms in X̂ chain to other
arms outside of X̂, or because some arms in X̂ are “below” arms outside of X̂. We will guarantee
the latter issues do not occur, by always ensuring X̂ contains any arms “above” or chained to any
arm in X̂. The former issue (that some arms in X̂ may not be chained to others in X̂, and their
empirical means may then not be close enough for the payment to change the myopic agent’s
behavior in all cases) cannot be entirely avoided. However, we can quickly discover if any arm in
X̂ has empirical mean less than |X̂ | ·xX̂ below the best empirical mean: inO(X̂) = Õ(k) rounds, that
arm will be offered the subsidy and it won’t change the agent’s decision. Those Õ(k) rounds will
be unfair, as are several rounds which follow this discovery and update the set X̂.

The following lemma, a generalization of the analysis of Joseph et al. [2016b], can be inter-
preted to mean the following. Fix a definiton of confidence intervals which are all valid over all
rounds for all arms with probability 1 − δ. Consider any set of arms S which (a) contains the
“upper chain” (all arms chained to the arm with highest upper confidence bound), (b) contains
any arms “above” the confidence intervals of any arm in the set, and (c) is closed under chaining.
Then, playing uniformly at random amongst S will satisfy contextual fairness.

Lemma 4.1. Suppose, with probability 1−δ, at every round t and for every arm i, µti ∈ [`ti ,u
t
i ]. Consider

a set S of arms with the k′ highest upper confidence bounds for some k′ < k. Then, it is fair to play
uniformly at random over S ∪ {i chained to an arm in S}.

The pseudo-code in Figure 1 describes the payment scheme, which we analyze thereafter.
The performance of this payment scheme is summarized in the following theorem.

8Indeed, the ability to do so would contradict Theorem 3.1 by acheiving sublinear regret with zero unfair rounds.
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ALGORITHM 1: O(k2 ln k
δ )-fair Payment Scheme

Function PlayAll (δ,T )
x← 1;
X̂← {1, . . . , k};
while t ≤ T do

(x, X̂)← ChainedFair(δ,x, X̂);
end

Function ChainedFair (δ,x, X̂)
Choose jt ∈UAR X̂ ; // Pick arm to incentivize

x←min(x,ConfidenceWidth(δ, t,minj∈X̂ n
t
j ));

Offer pt : ptjt = 4x · |X |,pti′,jt = 0;

it← the myopic player’s choice;
if it , jt then

X̂← FindChained(x, X̂, t);
end
return (x, X̂)

Function FindChained (x, X̂, t)
Offer pt = ~0;
it← the myopic player’s choice;
R← {it};
Offer pt = pt−1 + 2 · x ·

∑
i∈X̂\R ei ;

while it ← the myopic player’s choice
and it < R do

R = R∪ {it};
t← t + 1;
Offer pt = pt−1 + 2 · x ·

∑
i∈X̂\R ei

; // add 2 · x to payments of

arms in X̂ not yet chosen

end
return R

Theorem 4.2. For any δ, PlayAll is O(k2 ln(k/δ))-fair, and has expected cost and regret

O

k ·∑
t

ConfidenceWidth(δ, t,
t
k

)

 =O


√
k3T ln

T
δ

 .
We present the proof to this theorem after stating several lemmas describing the behavior of

PlayAll. Observation 2 states that using x as a confidence interval width for all arms in X̂ yields
valid confidence intervals. Hereafter, we use [`ti ,u

t
i ] = [µ̂ti − x, µ̂

t
i + x] as valid confidence intervals

for all i ∈ X̂, t ∈ [T ]. Lemma 4.3 shows that FindChained outputs a set which contains the upper
confidence chain in its output round. Lemma 4.4 states that FindChained’s output is closed under
chaining (e.g., that every arm in its output is only chained to arms also belonging to the output set)
and contains all arms “above” any arms in its output. Lemma 4.5 argues that the empirical means
of every arm in the set output by FindChained are within 4 confidence interval widths of some
other arm in the set. Lemma 4.6 shows that when this is the case (that the empirical means are
within 4x of each other, as is the case right after a call to FindChained), that ChainedFair induces
uniformly random play amongst X̂. Lemma 4.7 upper-bounds the number of rounds before which
ChainedFair will discover when it is inducing unfair play. All proofs of these lemmas can be
found in Section A.

Observation 2. With probability 1− δ, for all t ∈ [T ], i ∈ X̂t, µi ∈ [µ̂ti − x, µ̂
t
i + x].

Lemma 4.3. FindChained(x, X̂, t) contains all arms chained to the arm with highest upper confidence
bound in its output round t′.

Lemma 4.4. Any arm chained to the set R = FindChained(x, X̂, t) belongs to R. Moreover, any arm
i < R must have uti <mini′∈R `

t
i′ .

Lemma 4.5. Let t′ be the round in which R = FindChained(x, X̂, t′) outputs R. Then, for any j ∈ R =
FindChained(x, X̂, t′),

µ̂t
′

j ≥ min
j ′∈R\{j}

µ̂t
′

j ′ − 4 · x.
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Moreover, maxj∈R µ̂
t′
j −minj∈R µ̂

′t
j ≤ (2|R|+ 2) · x.

Lemma 4.6. Suppose maxi,j∈X̂ |µ̂ti − µ̂
t
j | ≤ 4|X̂ | · x. Then ChainedFair(δ, X̂) induces uniformly random

play amongst X̂.

Lemma 4.7. Whenever there is an arm i such that maxj∈X̂ |µ̂tj − µ̂
t
i | > 4|X̂ | · x, with probability 1 − δ,

FindChained will be called within O(k · ln(1/δ)) many rounds.

Proof of Theorem 4.2. We first upper-bound the number of rounds in which PlayAll might violate
the fairness condition.

We argue iteratively about the set X̂: that (a) all arms chained to the top arm belong to X̂, and
(b) all arms chained to any arm in X̂ belong to X̂. This is trivially true initially as X̂ = {1, . . . , k}. X̂
is only updated as the result of a call to FindChained. By Lemma 4.3, any arm chained to the top
arm will remain in X̂. Furthermore, by Lemma 4.4, any arm chained to an arm in its output also
belongs to its output. Thus, (a) and (b) hold for X̂ for all rounds.

So, in rounds in which ChainedFair induces uniformly random play amongst X̂, (a) and (b)
imply ChainedFair satisfies the fairness condition. For any round in which maxi,j∈X̂ |µ̂ti−µ̂

t
j | ≤ 2|X̂ |·

x, Lemma 4.6 implies ChainedFair induces uniformly random play amongst X̂. By Lemma 4.4,
X̂ contains any arms either above or chained to arms in X̂. Thus, Lemma 4.1 applies, and these
rounds are fair.

We now upper-bound the number of rounds for which ChainedFair does not induce uniformly
random play amongst X̂. For any particular i and round t such that maxj∈X̂ |µ̂tj − µ̂

t
i | > 4|X̂ | · x,

Lemma 4.7 implies that this will be found inO(k ln(1/δ)) rounds, and FindChained will be called.
In any future round t′ ≥ t, since the confidence intervals are valid, we know that maxj∈X̂ |µ̂t

′

j −µ̂
t′
i | >

4(|X̂ |−2) ·x, since either of the two means can change but by at most x each. Lemma 4.5 will return
X̂ such that maxi,j∈X̂ |µ̂ti − µ̂

t
j | ≤ (2|X̂ |+ 2) ·x. Thus, as |X̂ | ≥ 2, then arm i will be removed at the first

round in which it was the impetus for FindChained to be called as maxi,j∈X̂ |µ̂t
′

j −µ̂
t′
i | ≤ 2(|X̂ |+2)·x ≤

4(|X̂ | − 2) · x <maxj∈X̂ |µ̂tj − µ̂
t
i |, a contradiction if i ∈ X̂.

Since x is non-increasing, so is X̂: thus, at most k calls to FindChained are made. Thus,
the total number of unfair rounds is equal to the number of rounds in which maxi,j∈X̂ |µ̂ti − µ̂

t
j | >

4|X̂ | · x plus the number of rounds in FindChained. The former is bounded by O(k2 ln(k/δ)) (With
probability 1 − δ/k it will take at most O(k ln(k/δ)) rounds of unfair play before FindChained is
called when this is the case, and each call will reduce the size of X̂ so it can be called at most k
times. In total, this bound holds for all k rounds with probability 1− δ.); the latter by O(k2) (each
call of FindChained uses O(k) rounds, and there are at most O(k) calls to FindChained).

We now upper-bound the cost of this payment scheme and the regret of the agent. In the
O(k2 ln(k/δ)) unfair rounds, the payments might be Ω(1); similarly, the regret of the algorithm in
those rounds might be Ω(1). In all other rounds, the myopic agent is playing uniformly at random
amongst a set of arms whose true means are within 2k · x of the best true mean, so 2k · x in each
fair round is an upper-bound on per-round regret. The maximum payment offered in any round
is 4k · x as well, so that also upper bounds the cost. The overall upper bound follows from some
basic algebra and the fact that each arm in X̂ will have been played Ω̃

(
t
k

)
times in round t.
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5 Contextual Setting with Partial Information:
Linear Payments or Unfair Rounds

In this section, we argue that the partial information model is much harder in the linear contex-
tual case — in every round that the principal does not pay Ω(1), an adversary can force the myopic
agent to behave unfairly. This implies that on an adversarially chosen instance, every round is ei-
ther unfair or has constant cost: thus, either the sum of the payments must be Ω(T ), or the number
of unfair rounds must be Ω(T ), or both. This rules out positive results in the partial information
model of the sort we were able to obtain in the classic bandits setting. In the following, we assume
that the myopic agent is using an ordinary least squares estimator, for simplicity. Identical results
can also be proven for other natural estimators, like ridge regression estimators.

Theorem 5.1. Suppose k ≥ 3. Consider any payment scheme in the partial information model in the
linear contextual bandit setting. For any η ∈ (0,1), there is an instance for which with probability 1−δ,
in every round, either the round is unfair, or the expected cost for the principal is k−1

k · (1− η).

The proof of the theorem relies on the fact that the principal cannot observe the adversarially
chosen contexts; the expected rewards in any round then can be (almost) arbitrary. In the classic
case, it was only in the first unpeaked round that we had the freedom to design our lower bound
instance arbitrarily – after that, the principal would have learned some information about the
instance, and hence the payment distribution could be a function of the instance. In the linear
contextual case, we have sufficient freedom to design a lower bound instance at -every- round.
Although the principal may have learned a great deal about the underlying linear functions, she
by definition has no information about the realized contexts at the current round, which we use to
our advantage. As in the classic setting, in any round where the payment scheme is not peaked, the
largest payment is strictly less than 1 larger than the other payments with probability more than
zero. We will use this to construct an instance over which there is constant probability (over the
history) that the myopic agent chooses an unfair distribution over arms. Additional complications
arise from the fact that the principal learns about the instance from the set of previous unfair
rounds (which, in the classic case, we did not have, since we only argued there had to be a single
unfair round if the payment scheme was not peaked). We circumvent this problem by arguing that
the principal must deploy a peaked distribution to be fair, even if the principal knows everything
about the instance I and even if the principal knows the empirical estimates θ̂ti for all t ∈ [T ], i ∈
[k].

Proof. Consider the one-dimensional case, where θi ∈ R≥0. We construct an instance I such that
even for a principal who has full information about I , and θ̂ti for all t′ ≤ t, i, in order to guarantee
that the payment distribution in round t is fair for any set of arriving contexts xt, the largest
payment must be at least 1 − η with probability k−1

k . This clearly holds for any round in which a
peaked payment distribution is used, and so for the remainder, we assume that the distribution
in round t is not peaked.

Let θi = 1−η ∈ (0,1) for all i, and let arm 1 have deterministic rewards equal to their mean, so
that θ1x

t
1 = xt1 for all t. Because the rewards are deterministic and the agent is using an ordinary

least squares estimator, the myopic agent’s prediction θ̂t1 = θt1 as well for all t. For all i , 1, let
Dt
i,xti

= U [θix
t
i − ε,θix

t
i + ε] for some very small ε. Prti∼D

t
i,xti

[
rti > θix

t
i

]
= 1

2 = Prti∼D
t
i,xti

[
rti < θix

t
i

]
: the

rewards drawn from these distributions have the right expectation but are always larger or smaller
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than their expectation, and each with equal probability. Then, again by properties of the ordinary
least squares estimator, this will imply that with probability 1

2 over observations, in any round t
and for any i ∈ [k] \ {1}, θ̂ti > θ

t
i , and with probability 1

2 , θ̂ti < θ
t
i , for any round t. Furthermore,

with probability 1, in every round t, every empirical estimate of the coefficients is distinct: θ̂ti , θ̂
t
j

for all i , j ∈ [k].
We begin by arguing that every coordinate i must have equal probability of receiving the

largest payment in any round t if the round is to be fair (with probability 1− δ over the history).
Precisely, fix some history ht, and let

di = Pp∼γ t(ht)
[
i wins with payment vector p,xti = ~0,∀i|ht

]
.

Since for all i ∈ [k] and any ht, θi · xti = 0, it must be that di = 1
k for all i if round t is fair for this ht.

We have assumed the payment scheme is not peaked in round t, conditioned on some partic-
ular history ht. Thus,

Pp∼γ t(ht)

[
max
i
pi −max

j,i
pj ≥ 1

]
< 1.

We argue that round tmust be unfair conditioned on ht or that with probability k−1
k , maxi pi ≥ 1−η.

Let

c = sup
c

: Pp∼γ t(ht)

[
max
i
pi −max

j,i
pj ≥ c

]
= 1;

we again know that some such c ≥ 0 must exist, and that c < 1 because the payment scheme is
unpeaked. Let arm i have the largest empirical coefficient: θ̂t

i
> maxi′,i θ̂

t
i′ in round t and arm i

have the smallest empirical coefficient, θ̂ti <mini′,i θ̂
t
i′ . Further define

ci′ = sup
c

: Pp∼γ t(·)
[
pi′ − pi ≥ c|pi′ ≥max

i′′,i′
pi′′

]
= 1,

e.g. that ci′ is the margin by which i′ has payment larger than arm i when i′ has largest payment.
Note ci′ ∈ [0,1] for all i′. Let imax ∈ argmaxi′ ci′ be an arm with largest payment margin over i and
imin = argmini′ci′ be the arm with the smallest payment margin over i. We consider three cases:
when cimax

> 1 − η, when 1 − η ≥ cimax
> cimin

, and when 1 − η ≥ cimax
= cimin

. In each case, we show
that either the largest payment is at least 1−η with probability at least k−1

k , or the round is unfair.

Case 1: cimax
> 1− η We claim here that either cimin

> 1− η or the round is unfair: this will imply

that with probability k−1
k , maxi pi ≥ 1−η. Suppose the round is fair. Consider the context xt

i
= 1−η

θ̂t
i

and xti′ = 0 for all i′ , i. Then, θ̂t
i
xt
i

= 1− η, and θ̂tix
t
i = 0 = θix

t
i for all other i. Fairness will imply

that all i , 1 should be played with equal probability. Notice that imax is played with probability
1
k : precisely when imax has the largest payment (which must be largest by cimax

> 1− η). imin wins
only when her payment is largest (which happens with probability 1

k ) and larger than i’s by at
least 1− η. So, if πtimin|ht

= πtimax|ht
= 1
k , it must be that cimin

≥ 1− η.
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Case 2: 1− η ≥ cimax
> cimin

We argue that the round must be unfair if cimax
> cimin

.
Choose contexts xti such that θ̂t

i
xt
i

= cimax
≤ 1−η and xti′ = 0 for all other i′. Then, since θix

t
i = 0

for all i , i, if this round is to be fair, all arms i , i must be played with equal probability. Arm
imax wins whenever it has the largest payment, since pimax

≥ pi + cimax
whenever imax has the largest

payment. Therefore imax wins with probability 1
k .

imin, on the other hand, wins only when they have the largest payment and beat i’s payment by
cimax

> cimin
, which happens with strictly less probability than imin having largest payment (proba-

bility 1
k ) by the definition of cimin

. So, imin wins with probability strictly less than that of imax; this
round must be unfair.

Case 3: 1−η ≥ cimax
= cimin

In this case, ca = cb = β for all a,b ∈ [k]\{i}. If β ≥ 1−η, the claim holds
(the largest payment is at least 1− η with probability at least k−1

k , so assume β < 1− η.
Suppose β > 0. We exhibit a set of contexts for which this payment scheme combined with the

agent is unfair. Fix some D ∈ (β,1− η); define the contexts

• xt
i

: θ̂t
i
xt
i

=D > β

• xtj : θ̂tjx
t
j =D − β > 0 for j the arm with second-largest empirical coefficient,

• xti′ = xtj for all i′ < {i, j}.

Then, θ̂ti′x
t
i′ < θ̂

t
jx
t
j , and so arm j is played whenever j has the largest payment, since j (and all

other arms) has margin over i of at least β when they have the largest payment; thus j is played
with probability 1

k . Since θjx
t
j = θi′x

t
i′ for all i′ , i, if this round is fair, each i′ must also be played

with probability 1
k , in particular for i′ with smallest θ̂ti′ . However, θ̂ti′x

t
i′ < D − β; i′ can only win if

her payment is the largest and it beats the payment of i by strictly more than β, which happens
with probability strictly less than 1

k by definition of β. Thus i′ cannot win with probability as large
as j and so round t is unfair if ca = cb = β > 0 for all a,b , i.

Finally, we consider the case where β = 0 and separately argue that this round cannot be fair.
The contexts xti′ = 1 for all i′ should prove this: arm i will be played with probability 1

k (precisely
the probability that i gets the weakly largest payment), but arms with smaller empirical means
will need to have the largest payment by some margin, which happens with strictly less probabil-
ity than them having the largest payment by the definition of β, so they win with probability less
than 1

k , meaning fairness is violated in this round, since θix
t
i

= 1− η = θi′x
t
i′ .

6 Full Information: Perfect Fairness with Sublinear Payments

In this section, we show that a principal with full information about the state of a myopic agent can
design a payment scheme which is fair in every round and has sublinear cost for both the classic
and linear contextual bandits problems. This contrasts with the partial information model, where
for k ≥ 3 arms, in both the classic and linear contextual settings, in which there must be unfair
rounds for any payment scheme with total cost o(T ).

Roughly, the fair payment scheme operates as follows. In each round, the scheme knows the
empirical estimates of rewards used by the myopic agent. Moreover, the scheme can compute
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confidence intervals around these estimates (the scheme knows how many times each arm was
pulled, and, in a contextual setting, the contexts for each previous choice). In such a round, the
payment scheme then will choose an arm i uniformly at random from the set of arms chained to
the arm with highest upper confidence bound, and offer a payment for choosing i equal to the
difference between the empirical estimate of i’s reward and the empirical estimate of the highest
reward in that round. This induces uniformly random play amongst the top set of arms, and by
Lemma 4.1, this will be a fair distribution.

We now present the pseudocode in Figure 2 a parametrized family of payment schemes de-
scribed informally above. A payment scheme in this family is instantiated by giving a method of
constructing valid confidence intervals around myopic predictions.

ALGORITHM 2: A Fair Full Information Payment Scheme

Function Fair-Payments(δ,T )
X̂← {1, . . . , k};
while t ≤ T do

it = argmaxi µ̂
t
it ;

Let X̂t = {i chained to it by δ-valid confidence intervals from round t};
Choose jt ∈UAR X̂;
; // Pick an arm in the upper chain to incentivize

Offer pt : ptjt = µ̂tit − µ̂
t
jt ,p

t
i′,jt = 0;

end

Theorem 6.1. Consider an instance of Fair-Payments(δ,T ) instantiated with confidence intervals [`ti ,u
t
i ]

such that µ̂ti = uti−`
t
i

2 , and with probability 1−δ, for all i ∈ [k], t ∈ [T ], µti ∈ [`ti ,u
t
i ]. Then, Fair-Payments(δ,T )

is fair at every round, and has cost and regret O(k
∑
tw(t) + δT ), where w(t) is the maximum width of

any confidence interval in the top chained set.

Before proving Theorem 6.1, we mention that this theorem, when combined with standard
methods of constructing confidence intervals, implies the existence of fair payment schemes with
sublinear cost and regret, both in the classic and linear contextual settings.

Corollary 6.2. Consider the classic bandits problem. Then, Fair-Payments(δ,T ) using the confidence in-

terval for arm i introduced by ConfidenceWidth(δ,T ,nti ) is fair and has cost and regretO(
√
k3T ln kT

δ ).

Proof. By Lemma 3.4, with probability 1 − δ, these confidence intervals are all valid for all t ∈
[T ], i ∈ [k]. So, Theorem 6.1 applies, and states that this payment scheme is fair, and has regret
O(k ·

∑
tw(t)), where w(t) is the maximum width of any arm in the active set at round t. Since the

chained set is monotone, at round t every arm in the chained set has been chained for t rounds.
Therefore, in expectation each arm in the chain has been pulled t

k times. An additive Chernoff
bound implies that any particular arm has, with probability at least 1− δ

2kt2 , been pulled in round

t at least t
k −

√
t ln

(
2t2k
δ

)
2 times, and so this bound holds for all rounds and all arms with probability

at lest 1− δ2 summing up over all k arms and all t. Then, by Lemma 3 in Joseph et al. [2016b], we

know that w(t) ≤ 2
√

ln((πt)2/3δ)

2 t
k−

√
t ln

(
2kt2
δ

)
2

. Summing over all t we have the desired result.
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Corollary 6.3. Consider the linear contextual bandits problem. Suppose the myopic agent uses a ridge

regression estimator: θ̂ti =
(
XTi Xi +λI

)−1
XTi Yi , where Xi ,Yi are the design matrices and observations

before round t. Then, define

wti = ||xti ||(XTi Xi+λI)
−1(m

√
d ln

1 + t/λ
δ

+
√
λ,

and
`ti = 〈θ̂ti ,x

t
i 〉 −w

t
i , uti = 〈θ̂ti ,x

t
i 〉+w

t
i .

Then, Fair-Payments(δ,T ) is fair and has cost and regret O
(
md
√
k3T ln2 T 2k

dλδ

)
.

Proof. The analysis in the proof of Theorem 2 of Joseph et al. [2016a] shows that these confidence
intervals are valid with probability 1− δ. Their analysis upper-bounds k

∑
tw(t) where w(t) is the

largest width of any confidence interval in the chained set in round t, by

O

(
md
√
k3T ln2 T

2k
dλδ

)
.

Thus, the resulting algorithm is fair, and the bounds on cost and regret follow from Theorem 6.1.

We now proceed with the proof of Theorem 6.1.

Proof. We begin by proving that Fair-Payments(δ,T ) is fair in every round. By assumption, with
probability 1− δ, for all i ∈ [k], t ∈ [T ], µti ∈ [`ti ,u

t
i ]. Thus it follows from Lemma 4.1 that it suffices

to show that these payments suffice to induce uniformly random play amongst the set of arms
chained to the arm with upper confidence bound. By definition, the top chain in round t is exactly
X̂t. The distribution over payments in round t chooses each jt ∈ X̂t with probability 1

|X̂t | and

accordingly a pt such that ptjt = µ̂tit − µ̂
t
jt and pti′ = 0. This induces the myopic agent to choose

jt in all such cases. Thus, each jt ∈ X̂t is chosen by the myopic agent with probability 1
|X̂t | . So,

Fair-Payments(δ,T ) is fair.
Condition on all confidence intervals being valid. The myopic agent under this payment

scheme chooses uniformly at random from the top chain, which has regret in round t bounded
by

∑
i∈X̂t u

t
i − `

t
i ≤ kw(t), where w(t) = maxi∈X̂t u

t
i − `

t
i . Thus, in total, the regret is upper bounded

by k
∑
tw(t). Moreover, the payment in round t is µ̂tit − µ̂

t
jt ≤ u

t
it − `

t
jt ≤

∑
i∈X̂t u

t
i − `

t
i ≤ kw(t), and

so the same bound holds for the cost of the payment scheme. With probability δ, the widths of
the confidence intervals could be arbitrary, as could the inaccuracy of the sampled means. An
additive δT bounds the additional expected regret.

7 Conclusion and Open Questions

Our interest in this paper is the information that a principal needs to have about the environment
before he can cost-effectively incentivize a short-sighted agent to behave “fairly.” We focus on
two information models: the partial information model—when the principal can only observe the
decisions the agent made, but not their rewards (or, in the contextual case, the contexts informing
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those actions), and the full information model, where the principal observes everything the agent
does. In the full information model, it is possible to have it all—the principal can with sub-linear
total cost incentivize the agent to play fairly at every round, and obtain no regret. In the partial
information model, things are more difficult. However, despite showing the impossibility of non-
trivially guaranteeing fairness at every round in the classic setting, we show that with sub-linear
payments, the principal can incentivize that all but a constant number of rounds are fair, and that
the agent obtains a no-regret guarantee. In the linear contextual bandit setting, our results in the
partial information model are strongly negative—it is not possible to obtain a sub-linear number
of unfair rounds with sub-linear payments. There are many open questions, but here we mention
two that we find particularly interesting:

1. Our bounds (both upper and lower) in the linear contextual bandit setting are for adversar-
ially selected contexts. In the natural case in which contexts are drawn from an (unknown)
probability distribution, it may still be possible to obtain positive results in the partial infor-
mation setting, analogous to the results we obtain for the classic bandits problem. However,
our upper bound technique from the classic case does not directly extend to the linear con-
textual case even when there is a distribution over contexts.

2. The friction to fairness here is that the agent in question has a short horizon for which he is
optimizing. We study the extreme case in which he is entirely myopic. How do our results
extend in the case in which the agent is not completely myopic, but is instead optimizing
with respect to some fixed discount factor bounded away from 1?
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A Missing Proofs

Proof of Theorem 3.5. First, we will show that the payment scheme will incentivize the agent to
select the arms fairly over all rounds with probability (1−δ) over the realization of the history. By
Lemma 3.4, we know that with probability at least 1 − δ over the realizations of the rewards, for
all rounds t and both arms i,

|µ̂ti −µi | <
ConfidenceWidth(δ, t,nti )

2
. (4)

We will condition on this event for the remainder of the argument. Note that in each round t,
there are two cases. In the first case, the empirical mean rewards of the two arms satisfy |µ̂t1− µ̂

t
2| <

p(δ, t,nt1,n
t
2). Then the arm will be selected uniformly at random, so the algorithm is fair.

In the second case, the empirical mean rewards satisfy |µ̂t1 − µ̂
t
2| ≥ p(δ, t,nt1,n

t
2). Without loss

of generality, let us assume µ̂t1 > µ̂
t
2, so the algorithm will deterministically always play arm 1.

Then it follows from (4) and the definition of p(δ, t,nt1,n
t
2) that the true mean rewards µ1 > µ2.

Therefore, the algorithm is fair in this case (and also in all future rounds).
Next, we will bound the total expected payment made by the principal. As a first step, we can

show that with probability at least (1−1/T ) that, no arm is played for more than 2logT consecutive
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times. Then we can bound the total payment as follows:

E

 T∑
t=1

p(δ, t,nt1,n
t
2)

 = E

 T∑
t=1

(
ConfidenceWidth(δ, t,nt1) +ConfidenceWidth(δ, t,nt2)

)
≤ (1− 1/T )

4log(T )
T∑
t=1

ConfidenceWidth(δ, t, t)

+ (1/T )T O(log(T /δ))

=O
(√
T ln2(T /δ)

)
Finally, we will bound the expected cumulative regret incurred by the algorithm. Without

loss of generality, we will assume µ1 > µ2 and let ∆ = µ1 − µ2 be the difference between the mean
expected rewards. The algorithm incurs an expected regret of ∆ whenever it plays the arm 2. It
suffices to bound the number of times arm 2 is played.

Note that the algorithm will stop playing arm 2 if at some round t,

ConfidenceWidth(δ, t,nt1)
2

,
ConfidenceWidth(δ, t,nt2)

2
≤ ∆/3

This will require the algorithm to play both arms S = O
( ln(T /δ)

∆2

)
number of times. By applying

Chernoff bounds, we know that with probability at least (1−1/T ), it suffices to have t ≥O(S). This
will allow us to upper bound the expected regret by

(1− 1/T )∆O
(

ln(T /δ)
∆2

)
+ T (1/T ) =O

(
ln(T /δ)

∆

)
Also note that the expected regret is also trivially upper bounded by ∆T , so the expected regret is
no more than

min{O
(

ln(T /δ)
∆

,∆T

)
} ≤O

(√
T ln(T /δ)

)
,

where the inequality follows from the fact that min{a,b} ≤
√
ab for any a,b > 0.

Proof of Observation 2. By Lemma 4.1, the width of the confidence intervals produce by Confi-

denceWidth have this property in all rounds. Since x is defined to be the either an “old” value of
the output of ConfidenceWidth (in which case the validity of the definition of ConfidenceWidth’s
confidence widths gives us this guarantee), or the largest output of ConfidenceWidth for some
i ∈ X̂t, this property continues to hold.

Proof of Lemma 4.3. We prove this iteratively over all inputs and outputs of FindChained. The
input to the first call to FindChained is X̂ = [k], so this is trivially true. Now, suppose the upper
chain is included in the input X̂ to FindChained: we will argue that it continues to be included in
the output R = FindChained(x, X̂, t). We actually prove something stronger: any arm in the input
X̂ will be in R if its empirical mean in the output round t′ is within 2x of anything in R’s empirical
mean in round t′, and that the arm with highest upper confidence bound in round t′ is in R. These
two together imply R contains the upper chain. Let Rt = ∅,Rt+` = the set R in round t + ` before R
is output by FindChained, so Rt

′
= R.

Note that Rt+1 = {i0} where i0 is the arm with highest empirical mean in X̂ with highest em-
pirical mean at round t. Then, either Rt+2 = {i0} and no arm has empirical mean within 2x of
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i0 in round t + 1 or Rt+2 = {i0, i1} for i1 ∈ X̂ such that µ̂t+1
i1
≥ µ̂t+1

i0
− 2x. More generally, in round

t + ` < t′, an arm was added in round t + ` − 1, and another arm will be added in round t + ` if if
some empirical mean in X̂ is within 2x of any arm already belonging to R = {i0, i1, . . . , it+`−1}, since
the payments for any arm in X̂ but not R increases by 2x in this round. Thus, every arm which is
not in the output R must be more than 2x away from any arm in the output R in round t′.

We argue now that the arm with highest upper confidence bound in round t′ belongs to R.
Since X̂ contained the upper chain in round t by assumption, it in particular contains the arm
with the highest upper confidence in round t′. Thus, it suffices to argue that R contains the arm
in X̂ with highest upper confidence bound in round t′. Either arm i0 or some arm with empirical
mean within 2x of i0 at round t′ must be the arm with highest upper confidence bound in round
t′ amongst those arms in X̂, since x is an upper bound on the width of the confidence intervals of
the set of arms in X̂, and by the previous argument, R contains every arm whose empirical mean
in round t′ is within 2x of i0’s mean.

Proof of Lemma 4.4. We first prove the first claim. This is true for the first input to FindChained:
we argue that for any input X̂ which contains every arm chained to an arm in X̂, R = FindChained(x, X̂, t)
contains any arm chained to an arm in R. So, suppose X̂ contains every arm chained to an arm in
X̂. By the argument used in the proof of Lemma 4.3, any arm with an empirical mean within 2x
of any arm in R’s empirical mean in round t′ belongs to R. So, any arm linked to an arm in R must
belong to R and therefore so must any arm chained to R.

Now, we argue that for any arm i < R must have uti <mini′∈R `
t
i′ . This is true for the first input

to FindChained (the entire set [k] is the initial input). We argue that conditioned on this holding
for a particular input to FindChained, the output from FindChained will also satisfy this claim.
Notice that every arm in i′ ∈ R was incentivized to be played during this call to FindChained,
and those arms no longer in R were not, which means their empirical means were more than 2x
away from any arm ultimately in R; that for i < R, µ̂ti + 2x <mini′∈R µ̂

t
i′ . Thus, since `tj = µ̂tj − x and

utj = µ̂tj + x for all j ∈ X̂, the claim follows.

Proof of Lemma 4.5. The empirical mean of any arm in the output of FindChained had to be within
2x of some arm in R when it was input. Those empirical means might change (each mean by at
most x, since the confidence intervals are valid, by Observation 2), so the empirical differences
might change by 2 ·x, but the total difference between these two arms is then increased by at most
2x. Thus, summing up these distances gives the second claim.

Proof of Lemma 4.6. Offering payment of 4x|X̂ | for arm i′ and payment 0 for all other arms j in
round t will cause a myopic agent to choose i if maxi∈{k} µ̂

t
i−µ̂

t
i′ ≤ 4|X̂ |·x. Thus, if argmaxi∈{k} µ̂

t
i ∈ X̂,

each i′ ∈ X̂ will be played with equal probability by construction of the payment vectors used in
ChainedFair. Lemma 4.3 implies the top chain and therefore the top arm are contained in X̂,
thus, the claim holds.

Proof of Lemma 4.7. With probability 1
|X̂ | ≥

1
k , arm it selected by ChainedFair for payment 4x · |X̂ |.

Since maxj∈X̂ |µ̂tj − µ̂
t
i | > 4|X̂ | · x, the myopic agent will prefer the arm with highest mean, and his

choice will therefore cause FindChained to be called. The probability that such an arm it is not
called for k log(1/δ) consecutive rounds is at most δ.
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