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Abstract
We consider the problem of selecting a pool of
individuals from several populations with incom-
parable skills (e.g. soccer players, mathemati-
cians, and singers) in a fair manner. The quality
of an individual is defined to be their relative rank
(by cumulative distribution value) within their
own population, which permits cross-population
comparisons. We study algorithms which at-
tempt to select the highest quality subset despite
the fact that true CDF values are not known, and
can only be estimated from the finite pool of
candidates. Specifically, we quantify the regret
in quality imposed by “meritocratic” notions of
fairness, which require that individuals are se-
lected with probability that is monotonically in-
creasing in their true quality. We give algorithms
with provable fairness and regret guarantees, as
well as lower bounds, and provide empirical re-
sults which suggest that our algorithms perform
better than the theory suggests.

1. Introduction
Consider the following common academic (or similar) hir-
ing scenario: The dean has promised your department 3
faculty slots, in any areas. Your goal is to hire the best
candidates possible — but how should you identify them?
An immediate problem is that candidates are incomparable
across subfields, because, among other things, standards of
publication, citation counts, and letter-writing styles can
vary considerably across subfields. An attractive way to
rank candidates is according to how strong they are rela-
tive to others working in the same field, to whom they are
directly comparable. If we model each subfield as corre-
sponding to a different distribution over metrics that are
monotonically increasing in candidate quality, this is the
value we get when we evaluate the CDF function of the
distribution on a candidate’s realized value. But because

1University of Pennsylvania, Philadelphia, USA. Correspon-
dence to: Zhiwei Steven Wu <steven7woo@gmail.com>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

the number of candidates each year is small, simply com-
paring each candidate to their direct competitors this year
— i.e. taking their empirical CDF values as truth — would
lead to a noisy ranking: it could be that due to chance, the
best candidate this year in subfield A would be a mediocre
candidate in a typical year, and the top two candidates in
subfield B would each be the top candidate in a typical year.
We would prefer to evaluate our success by considering the
unknown true CDF value of each candidate.1 Similar situ-
ations, in which we must select a high quality set of candi-
dates from multiple, mutually incomparable groups, arise
frequently. Some affirmative action policies are premised
on the assertion that SAT scores and other measures may
not be directly comparable across different groups (e.g. due
to only advantaged groups having the financial resources
for test preparation courses and multiple retakes).

For various reasons, in these settings we may also be con-
cerned with the fairness of our choices.2 But what should
fairness mean? In this paper, we take inspiration from
(Dwork et al., 2012) who propose that fairness should mean
that “similar individuals are treated similarly”, where “sim-
ilarity” is measured with respect to some task specific met-
ric. In our setting, the natural task-specific metric is the true
within-group CDF value for each individual. On its own,
this is compatible with the goal of selecting the best candi-
dates, but in our work, the main obstacle is that we do not
know the true CDF value of each individual, and can only
approximate this from data. We study the degree to which
fairness and optimality are compatible with one another in
this setting.

1.1. Our Results

We study a setting in which we wish to select k individu-
als out of a pool of n for some task. The individuals are
drawn from d populations, each represented by a different

1Letters of recommendation often seek to communicate this
information, with statements like “This candidate is among the
top 5 students I have seen in my 16 years as a professor.”

2With respect to men’s and women’s sports, equal opportunity
is legislated in Title IX. With respect to faculty hiring, fairness
concerns can arise because the proportion of women can vary sub-
stantially across subfields. For example, as reported in (Cohoon
et al., 2011), the percentage of female authors varies from 10%
to 44% across ACM conferences, when averaged over the 10 year
period from 1998-2008.
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distribution over real numbers.3 The number of draws from
each distribution may differ. The “quality” of an individual
is defined to be their (true) CDF value, as evaluated on the
distribution from which they were drawn. An algorithm is
evaluated based on the (expected) quality of the k individ-
uals it selects.

The meritocratic fairness definition we propose informally
asks that lower quality individuals are never (probabilisti-
cally) favored over higher quality individuals. When for-
mulating this definition, we have a choice as to how to in-
corporate randomness. The strongest formulation possible
(ex-post fairness) does not involve randomness, and simply
requires that every individual actually selected has quality
at least that of every individual not selected. The weak-
est formulation (ex-ante fairness) incorporates the random-
ness of the selection of the population from the underly-
ing distribution, and informally requires that for any pair
of individuals, the higher quality individual is selected with
weakly higher probability than the lower quality individual,
where the randomness is over the realization of the popula-
tion from the underlying distributions, as well as any inter-
nal randomness of the mechanism. An intermediate formu-
lation (ex-interim fairness) requires informally that higher
quality individuals be selected with weakly higher proba-
bility than lower quality individuals, where the probability
is computed over the randomness of the mechanism, but
not over the selection of the population. Roughly speaking,
these choices correspond to what an individual may know
and still be satisfied by a promise of “fairness”. Individu-
als should be satisfied with ex-post fairness even after the
choices of the mechanism are made, with full knowledge
of the applicant pool — that is, they should be satisfied
with the actual outcome, regardless of the algorithm used
to reach it. In contrast, individuals with full knowledge of
the applicant pool should still be satisfied with ex-interim
fairness before the mechanism makes its decisions — that
is, they should feel satisfied that the algorithm used is fair.
An individual should only be satisfied by ex-ante fairness
if she has no knowledge of the applicant pool (and so can
consider it a random variable) before the choices are made.

Given such a spectrum of fairness constraints, we observe
that the strongest ex-post fairness is impossible to achieve,
whereas the weakest ex-ante fairness is sometimes easy to
achieve: when the population sizes are the same, it is sat-
isfied by the mechanism that simply selects the k individ-
uals with highest empirical CDF values.4 Our main results

3We study the simple setting in which each individual is rep-
resented by a 1-dimensional “score” — e.g. a credit score, a time
in the 100m dash, etc. — which itself may encapsulate or summa-
rize many features into a single value. Generalizing this work to
richer representations is an interesting direction for future work.

4However, for the cases in which the populations are not the
same size, we do not know of better utility guarantees for ex-ante

therefore concern the cost (in terms of the expected quality
of the selected applicants) of asking for the stronger notion
of ex-interim fairness. We show that satisfying an exact
variant of this constraint requires the selection algorithm
to select uniformly at random amongst all individuals, and
hence obtain only trivial utility guarantees, but that subject
to an approximate relaxation of this constraint, it is possi-
ble to recover asymptotically optimal utility bounds. We
show that when we further relax the problem, to allow the
algorithm to select approximately k individuals (rather than
exactly k), it is possible to recover asymptotically optimal
utility bounds while satisfying ex-post fairness guarantees
within each sub-population, and approximate ex-interim
fairness guarantees across populations. We summarize our
results in Table 1. We complement our theoretical results
with empirical simulations which emphasize that both the
utility and fairness guarantees of our algorithms are better
in practice than our theorems promise.

Finally, we remark on an interesting property of our upper
bounds: they are oblivious, in the sense that they do not
make use of the raw scores associated with each individual
— only their empirical CDF ranking. As such, our upper
bounds can be viewed as universal distributions over per-
mutations (of empirical CDF rankings) that satisfy a fair-
ness guarantee, rather than algorithms. Our lower bounds
apply not just to oblivious algorithms, but to any algorithm,
even those that can make use of raw scores (or indeed, even
knowledge of the family of distributions from which popu-
lations are drawn).

1.2. Related Work

This paper fits into a rapidly growing line of work study-
ing “fairness” in learning settings that is now too large to
summarize fully, and so we discuss only the most closely
related work. Our definition of fairness is in the spirit of
(Dwork et al., 2012), who propose that individual fairness
should mean that “similar individuals are treated similarly”
with respect to some underlying task-specific metric. As
with the work of (Joseph et al., 2016; Jabbari et al., 2016),
we define the metric to be a measure of quality already
present in the model (in our case, the CDF values of in-
dividuals) but unknown to the algorithm, except through
samples. It is this necessity to learn the underlying met-
ric that poses the tension between the fairness constraint
and the accuracy goal. Although in this line of work, we
adopt a definition that merely requires “better individuals
be treated better” according to the true unknown metric,
this necessarily requires that “similar individuals be treated
similarly” with respect to empirical estimates of the metric.

Technically, our work includes adaptations of techniques in

fairness than those we derive for the stronger notion of ex-interim
fairness.
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Exact Fairness Approximate Fairness
Ex-Ante Regret O(1/n)† (Lemma 2.8) Regret O(1/n)† (Lemma 2.8)

Ex-Interim Regret Ω(1) (Theorem 5.1). Regret Õ(
√
k/n) (Theorem 3.7)

Ex-Post Impossible Regret Õ(
√
k/n)* (Theorem 4.2)

Table 1. An informal summary of results. The bounds are stated in the case when the populations have sizes within a constant factor
of one another – see the theorem statements for the precise bounds. †When the population sizes are the same. *Exact ex-post fairness
within each population, approximate ex-interim fairness between populations, and selects approximately k individuals.

differential privacy (Dwork et al., 2006). Specifically, we
adopt variants of the “report noisy max” algorithm (Dwork
& Roth, 2014), and Raskhodnikova and Smith’s “expo-
nential mechanism for scores with varying sensitivities”
(Raskhodnikova & Smith, 2016), which is itself a variant of
the exponential mechanism (McSherry & Talwar, 2007).

2. Model and Preliminaries
There are d different populations, indexed by j. For
each population j, there is a pool of candidates with their
raw scores (and henceforth observations) drawn i.i.d. from
some unknown continuous distribution Fj over R. Let
F = F1 × · · · × Fd denote the product distribution. We
will slightly abuse notation and write xij to denote both
the individual i in the population j and her associated ob-
servation, and write X to denote the set of all candidates.
Let mj be the size of the candidate pool from population
j, n =

∑
jmj be the size of the total population, and

m = minjmj be the smallest population size. Each in-
dividual xij is associated with the following values.

• A cumulative distribution function (CDF) value
Fj(xij) = PrFj

[x < xij ],5 and an empirical CDF
value F̂j(xij) = 1

mj

∑mj

i′=1 1[x < xi′j ].

• A complementary cumulative distribution function
(CCDF) value: pij = 1 − Fj(xij) and an empirical
CCDF value p̂ij = 1

mj

∑mj

i′=1 1[x ≥ xi′j ].

A selection algorithm A takes all the n observations X
drawn from different distributions as input, and (randomly)
selects k individuals as outputs. We will write A(X,xij)
(or Aij for simplicity) to denote the selection probability
over the individual xij . The utility for selecting an individ-
ual xij is her true CDF value Fj(xij). Equivalently, the
loss for selecting an individual xij is the true CCDF value
pij . The loss for an algorithmA on input X is then defined
as

L(A, X) =
1

k

∑
xij∈X

A(X,xij)(1−Fj(xij))

5We adopt a slightly different definition from the standard one:
Fj(xij) = PrFj [x ≤ xij ].

and the expected loss of the algorithm is EX∼F [L(A, X)].

2.1. Fairness Formulation

Our goal is design selection algorithms subject to a merito-
cratic fairness notion that requires that less qualified can-
didates (in terms of CDF values) are never preferred over
more qualified ones. We will present three different for-
mulations of such notion based on the different forms of
randomness we are considering.

First, the weakest formulation is the following ex-ante fair-
ness, which guarantees fairness over the randomness of
both the random draws of the candidates and the coin flips
of the algorithm.

Definition 2.1 (Ex-Ante Fairness). An algorithm A satis-
fies ex-ante fairness if for any pair of candidates xij , xi′j′
with CDF values Fj(xij) > Fj′(xi′j′), their selection
probabilities (when they are in the pool) satisfy

E [A(X,xij)] ≥ E [A(X,xi′j′)]

where the expectations are taken over the (n − 2) random
draws of all the other candidates.

An intermediate formulation of fairness is the following ex-
interim fairness, which guarantees fairness over the ran-
domness of the algorithms (but not the realizations of X)
on almost all of inputs drawn from the distribution.

Definition 2.2 (Exact Ex-Interim Fairness). Let δ ∈ (0, 1).
An algorithm A satisfies δ-exact ex-interim fairness if with
probability at least 1− δ over the realized observations X ,
for any pair of individuals xij , xi′j′ ∈ X ,

A(X,xij) > A(X,xi′j′) only if Fj(xij) > Fj′(xi′j′)

We also consider the following relaxation:

Definition 2.3 (Approximate Ex-Interim Fairness). An al-
gorithm A satisfies (ε, δ)-approximate ex-interim fairness
if with probability at least 1− δ over the realized observa-
tions X , for any pair of individuals xij , xi′j′ ∈ X ,

A(X,xij) > eεA(X,xi′j′) only if Fj(xij) > Fj′(xi′j′)

Remark 2.4. We note that this relaxation of ex-interim
fairness bears a similarity to the definition of differential
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privacy (Dwork et al., 2006), and indeed, techniques from
the differential privacy literature will prove useful in de-
signing algorithms to satisfy it.

Perhaps the strongest formulation is the following ex-post
fairness condition, which requires that an individual is se-
lected only if a more qualified individual is also selected.
Definition 2.5 (Ex-post Fairness). An algorithmA satisfies
ex-post fairness if any pair of individuals xij and xi′j′ such
that Fj(xij) > Fj′(xi′j′), the individual xi′j′ is admitted
only if xij is also selected.

Note that any algorithm that satisfies ex-post fairness must
admit a prefix of individuals from each population, which is
also sufficient to guarantee within population ex-post fair-
ness, but that this is not sufficient to satisfy the constraint
between populations.

It is not hard to see that satisfying ex-post fairness in the
generality that we have defined it is impossible, since it
requires perfectly selecting the k true best CDF values from
only sample data. Thus, the primary focus of our paper is
on ex-interim fairness. Unless we specify differently, the
term “fair” and “fairness”refer to ex-interim fairness.

2.2. Oblivious Algorithms

A special class of selection algorithms is the class of obliv-
ious algorithms, which select candidates with probabilities
that only depend on their empirical CDF values, not on
their observations.
Definition 2.6 (Oblivious Algorithms). An algorithm A is
oblivious if for any pair of input observations X and X ′

that induce the same empirical CDF values over the candi-
dates, A(X) = A(X ′).

All of our algorithms presented in this paper are oblivious.
As a result, we need to make no assumption on the un-
derlying distributions to achieve both fairness and utility
guarantees. Moreover, the utility guarantee of an oblivious
algorithm can be characterized as follows.
Lemma 2.7. The expected loss achieved by any oblivious
algorithm A is the expected average empirical CCDF val-
ues among the selected candidates.

A very simple example of an oblivious algorithm is
GREEDY which selects the k individuals with the highest
empirical CDF values (breaking ties uniformly at random).
Lemma 2.8. Suppose that the populations sizes are the
same, that is, mj = m for each j. The algorithm
GREEDY satisfies ex-ante fairness and has an expected loss
at most k

2n + 1
m .

To simplify our bounds on the expected loss, we will use
k/2n as our benchmark and define the regret of an algo-
rithm A to beR(A) = EX∼F [L(A, X)]− k

2n .

3. An Approximately Fair Algorithm
In this section, we provide an algorithm that satisfies ap-
proximate fairness in the sense of Definition 2.3. We will
present our solution in three steps.

1. First, we provide confidence intervals for the can-
didates’ CCDF values pij based on their empirical
CCDF values p̂ij . As we show, our bound has a
tighter dependence on pij , which gives better utility
guarantee than using the standard DKW inequality
of Dvoretzky et al. (1956).

2. Next, we give a simple subroutine NOISYTOP that
randomly selects k individuals out of n based on their
“scores”. We show that individuals with similar scores
will have close selection probabilities under this sub-
routine. This subroutine is similar to the “Report
Noisy Max” algorithm (Dwork & Roth, 2014).

3. Then, we will use the deviation bound in the first
step to assign scores to the candidates. We show that
running NOISYTOP based on these scores give ap-
proximate fairness and low regret guarantees. These
scores are computed in a way similar to the gener-
alized exponential mechanism of Raskhodnikova &
Smith (2016).

3.1. Confidence Intervals for CCDF Values

We will first give the following concentration inequality
specialized for the uniform distribution over (0, 1).

Lemma 3.1. Fix any n ∈ N. Let x1, x2, . . . , xn be i.i.d.
draws from the uniform distribution over (0, 1). Then with
probability at least 1− δ, for any p ∈ (0, 1),

|p− p̂| ≤
√

ln(2n/δ)

(√
3p

n
+

2

n

)

where p̂ = 1
n

∑n
i=1 1[xi < p].

To translate this result into a deviation bound on the CCDF
values, first note that CCDF values for any distribution Fj
are drawn from the uniform distribution over (0, 1), so the
bound applies immediately to the CCDF values. By a stan-
dard calculation, we can also get a bound in terms of the
empirical CCDF value p̂ij as shown below.

Lemma 3.2. For each j ∈ [d], draw mj points Xj =
{xij}

mj

i=1 i.i.d. from Fj . For each point xij , let pij be its
true CCDF value and p̂ij be its empirical CCDF value in
Fj . Then with probability at least 1− δ over the n random
draws,

|pij − p̂ij | ≤ 9

√
p̂ij
m

ln(2n/δ)

where m = minjmj and n =
∑d
j=1mj .



Meritocratic Fairness for Cross-Population Selection

Remark 3.3. The standard DKW inequality gives a bound
of Õ(

√
1/m). Our bound gives a tighter dependence for

small empirical CCDF value p̂ij . For example, when p̂ij =

1/m, we obtain a bound of Õ(1/m). 6

3.2. The NoisyTop Subroutine

Given a set of individuals with scores Y = {y1, . . . , yn},
the subroutine NOISYTOP will first perturb each score by
adding independent noise drawn from the Laplace distri-
bution,7 and output the k individuals with the minimum
noisy scores (ties broken arbitrarily). We will now show
that NOISYTOP has the following desirable “Lipschitz”
property—individuals with similar scores are chosen with
similar probabilities. This is crucial for obtaining approxi-
mate fairness.

Algorithm 1 NOISYTOP({y1, y2, . . . , yn}, α, k)

Input: n numbers {y1, y2, . . . , yn} and parameter α
For each i ∈ [n]: let ỹi = yi + Lap(α)

Output: the k indices with the smallest ỹi

Lemma 3.4. Let i, j ∈ [n] be such that ∆ = yi − yj ≥ 0.
Let Pi and Pj denote the probabilities that the two indices
i and j are output by NOISYTOP({y1, y2, . . . , yn}, α) re-
spectively. Then Pi ≤ Pj ≤ Pi exp(2∆/α).

Proof. Let ỹi and ỹj be the noisy scores for i or j. We will
introduce a new random variable Q to denote the value of
the (k − 1)-st lowest noisy value, not counting ỹi and ỹj .
We will slightly abuse notation and write Pr[R = r] as a
shorthand for the pdf of any random variable R evaluated
at r. The ratio Pi

Pj
can then be written as∫

q∈R Pr[Q = q]
(∫
t∈R Pr[ỹj = t] Pr[ỹi < min{t, q}]dt

)
dq∫

q∈R Pr[Q = q]
(∫
t∈R Pr[ỹi = t] Pr[ỹj < min{t, q}]dt

)
dq

(1)

For any fixed value r ∈ R, we also have the following
based on the Laplace distribution,

Pr[ỹi = r]

Pr[ỹj = r]
=

1
2α exp

(
− |r−yi|α

)
1
2α exp

(
− |r−yj |α

)
= exp

(
|r − yj |
α

− |r − yi|
α

)
By the triangle inequality we know that |r−yj |−|r−yi| ≤
∆. It follows that for any t and q,

exp(−∆/α) ≤ Pr[ỹi = t]

Pr[ỹj = t]
≤ exp(∆/α) and,

6As shown in Corollary 3.8, this also gives an improvement
over regret when k is small (Õ(

√
k/n) versus Õ(

√
1/n)).

7The Laplace distribution Lap(b) has density function f(x) =
exp(−|x|/b).

Pr[ỹi < min{q, t}]
Pr[ỹj < min{q, t}]

=

∫
r<min{q,t} Pr[ỹi = r] dr∫
r<min{q,t} Pr[ỹj = r] dr

≤ exp(∆/α)

Plugging these bounds into Equation (1), we get Pi

Pj
≤

exp(2∆/α). The inequality that Pi/Pj ≤ 1 follows di-
rectly from yi ≥ yj .

3.3. Wrapping Up

We will present our algorithm FAIRTOP by combining
the methods in the previous two sections. In the light of
Lemma 3.2, we will define the following confidence inter-
val width function on the empirical CCDF values

c(p̂) = 9 ln(2n/δ)
√
p̂/m

and a normalized score function s(p̂) = p̂/c(p̂). We have
that any candidate is guaranteed a score not much lower
than a less qualified one.

Lemma 3.5. Let x, y ∈ [0, 1] be the (true) CCDF values
for two individuals such that x ≤ y. Let x̂, ŷ be the empiri-
cal CCDF values respectively. Suppose that |x− x̂| ≤ c(x̂)
and |y − ŷ| ≤ c(ŷ), then s(x̂)− s(ŷ) ≤ 1.

Algorithm 2 FAIRTOP(X = {xij}, ε, δ, k,m)

Input: candidates’ observations X , fairness parameters
ε, δ, number of selected individuals k, and smallest pop-
ulation size m

For each individual xij ∈ X
Compute the empirical CCDF value p̂ij and the
associated score s(p̂ij)

Run NOISYTOP({s(p̂ij}, 2/ε, k)

Our algorithm FAIRTOP (presented in Algorithm 2) pro-
ceeds by first computing the normalized score of every can-
didates based on their empirical CCDF values, and then
calling NOISYTOP to output k individuals. We will first
establish the approximate fairness guarantee.

Theorem 3.6. The algorithm FAIRTOP instantiated with
parameters ε and δ satisfies (ε, δ)-approximate fairness.

Proof sketch. By Lemma 3.2, we know that with probabil-
ity 1 − δ, for every candidate xij , the true and empirical
CCDF values satisfy |pij − p̂ij | ≤ c(p̂ij). This means
that for any pair of individuals a and a′ with CCDF val-
ues pa < pa′ (that is, a is more qualified than a′), we also
have s(p̂a) ≤ s(p̂a′) + 1 by Lemma 3.5. Finally, by the
result of Lemma 3.4 and the instantiation of NOISYTOP,
we guarantee that a′ will not be selected with substantially
higher probability: Aa exp(ε) ≥ Aa′ , which recovers the
approximate fairness guarantee.
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Our algorithm also has a diminishing regret guarantee:

Theorem 3.7. Fix any β ∈ (0, 1). Then with probability
at least 1 − β, the algorithm FAIRTOP instantiated with
fairness parameters ε and δ has regret bounded by(

1

ε

√(
k

n
+

1

m

)
1

m
+

1

mε2

)
· polylog(n, 1/β, 1/δ)

Thus for example, as the smallest sampled population size
m grows (fixing k and ε), our regret rapidly approaches 0.
To understand the utility guarantee better, we will state the
regret bound for the following natural scaling, which is also
examined in the simulations of Section 7:

Corollary 3.8. Consider an instance with two population
of sizesm1 andm2 such thatm1 = αm2 for some constant
α ≥ 1. Suppose we instantiate FAIRTOP with parameter
ε = Θ(1), then the regret is at most Õ

(√
k
m

)
.

4. Within Population Ex-Post Fairness
In this section, we provide a variant of the FAIRTOP algo-
rithm that satisfies approximate ex-interim fairness across
different populations, but also ex-post fairness within each
population. The key idea here is that since we know the
ranking of the candidates true qualities within each popula-
tion, we can guarantee ex-post fairness within populations
as long as we select a prefix of candidates in each popu-
lation. This will however come at a cost — our algorithm
will no longer select exactly k individuals, but only approx-
imately k individuals.

Similar to FAIRTOP, the algorithm ABOVETHRE (pre-
sented in Algorithm 3) also computes the normalized
scores for each candidate. Instead of perturbing the scores,
ABOVETHRE computes a noisy threshold Tj for each pop-
ulation by adding Laplace noise to s(k/n). The algorithm
then selects all candidates with scores above the noisy
threshold. Because the algorithm selects a prefix of the raw
scores within each population, within population ex-post
fairness is immediate. We also show that ABOVETHRE
also achieves approximate ex-interim fairness.

Theorem 4.1. The algorithm ABOVETHRE instantiated
with fairness parameters ε and δ satisfies both (ε, δ)-
approximate ex-interim fairness and ex-post fairness within
each population.

Note that were the algorithm to take all the individuals with
scores above s(k/n), it would select a (k/n) fraction from
each population and therefore select k people in total. Due
to the noisy thresholds, the algorithm will only select ap-
proximately k individuals. We will now establish the utility
guarantee of ABOVETHRE and show that the number of se-
lected individuals is roughly k± Õ(

√
k) when m = Θ(n).

Algorithm 3 ABOVETHRE(X = {xij}, ε, δ, k,m)

Input: observations X , fairness parameters ε, δ, target
number of selected individuals k, smallest population
size m

For each individual xij
Compute her empirical CCDF value p̂ij
and the associated score s(p̂ij)

For each population j
Compute a noisy threshold Tj = s(k/n)+νj where
νj is drawn from Lap(1/ε)
Select candidates xij with scores s(p̂ij) above Tj

Theorem 4.2. Fix any β ∈ (0, 1). With probability at least
1 − β, the algorithm ABOVETHRE instantiated with fair-
ness parameters ε and δ has regret bounded by(

1

mε2
+

√
k

ε
√
mn

)
· polylog(n, d, 1/δ, 1/β),

and selects a total number of k̂ individuals with

|k − k̂| ≤ d+

(
n

mε2
+

√
nk

ε
√
m

)
· polylog(n, d, 1/δ, 1/β)

5. Lower Bound for Exact Fairness
We will show that it is impossible to achieve exact ex-
interim fairness with non-trivial regret guarantees.

Theorem 5.1. Fix any δ < 0.0002 and any δ-fair algo-
rithm A. There exist two distributions F1 and F2 over the
two populations such that if algorithm A takes m obser-
vations drawn from each distribution as input, and must
select at least k = Ω(m1/2+α) individuals for any α > 0,
A incurs a regret of Ω(1).

The main idea is to show that there exist distributions F1

and F2 such that any fair algorithm will essentially have to
select uniformly at random across Ω(m) individuals, which
incurs regret Ω(1). We will proceed via Bayesian reason-
ing. Suppose that the observations from the two popula-
tions are drawn from two different unit-variance Gaussian
distributions N (µ1, 1) and N (µ2, 1), and both means µ1

and µ2 are themselves drawn from the prior N (0, 1). The
following lemma characterizes the posterior distribution on
the mean given a collection of observations.

Lemma 5.2. (Murphy, 2007) Suppose that a mean param-
eter µ is drawn from a prior distribution N (0, 1). Let
D = (x1, x2, . . . , xm) be m i.i.d. draws from the distri-
butionN (µ, 1). Then the posterior distribution of µ condi-
tioned on D is the Gaussian distribution N (µ̂, σ2), where
µ̂ =

∑
i xi

m+1 and σ2 = 1
m+1 .
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The result above shows that conditioned on any m draws
from the Gaussian distribution, there is constant probability
that the true mean will be bounded away from the posterior
maximum likelihood estimate by at least Ω(1/

√
m). With

this observation, we will partition the real line into the fol-
lowing intervals: Given any posterior mean µ̂ any integer
r ≥ 1, let the two intervals I+r (µ̂) and I−r (µ̂) be

I+r (µ̂) = [µ̂+ (r − 1)/
√
m, µ̂+ r/

√
m] and

I−r (µ̂) = [µ̂− r/
√
m, µ̂− (r − 1)/

√
m]

The intervals capture the uncertainty we have regarding
the CDF values of the observations xij . Let Xj =
(x1j , x2j , . . . , xmj} denote the m draws from each distri-
butionFj , µ̂j =

∑
i xij

m+1 be the posterior mean for µj condi-
tioned on the draws. Consider two individuals xi1 and xi′2
such that xi1 ∈ I+r (µ̂1) and xi′2 ∈ I+r+1(µ̂2). Even though
(xi′2 − µ̂2) > (xi1 − µ̂1), there is a constant probability
that their CDF values satisfy F1(xi1) > F2(xi′2). Any
fair algorithm therefore must play these two individuals in
these “neighboring” intervals with equal probabilities.

Next, we show that with high probability over the realiza-
tions of the true mean µ and the m draws X , all of the
O(m logm) intervals around the posterior mean will be
“hit” by points in X .
Lemma 5.3. Fix any c < 1 and β ∈ (0, 1). Let
mean µ be drawn from N (0, 1), r̂ =

√
cm logm + 1

and X = (x1, x2, . . . , xm) be m i.i.d. draws from
N (µ, 1). Let µ̂ =

∑
i xi

m+1 . Then except with probability

2r̂ exp
(
−m

(1/2−c/2)
√
2A

)
+ 3β over the joint realizations of µ

and X , the following holds

• for all r ≤ r̂ − 2
√

2 ln(2/β), there exist two draws
x+r , x

−
r ∈ X such that x+r ∈ I+r (µ̂) and x−r ∈ I−r (µ̂);

• the number of points that are bigger than µ̂ + (r̂ −
2
√

2 ln(2/β))/
√
m is no more than

m1−c/2 +m1/2−c/4
√

3 ln(1/β)

We show that the event that all of the consecutive intervals
are occupied for both populations will force a fair algo-
rithm to play all the individuals in these intervals with equal
probability. More formally, fix any c and sufficiently small
constant β, let r̂ =

√
cn log n+ 1 and let Y = {xij | xij ∈

I+r (µ̂j) ∨ xij ∈ I−r (µ̂j) for some r ≤ r̂ − 2
√

2 ln(2/β)}.
Consider the following events:

• FULLCHAIN(X1, X2): for all r ≤ r̂ − 2
√

2 ln(2/β)
and j ∈ {1, 2}, both the intervals I+r (µ̂j), I−r (µ̂j)
contain at least one point in Xj ,

• UARCHAIN(A, X1, X2): the points in Y are selected
by the algorithm A with equal probabilities.

Lemma 5.4. Fix any δ-fair algorithm A for some δ <
0.0002. With probability at least 1/2 over the realizations
of µ1, µ2, X1 and X2, the event FULLCHAIN(X1, X2) im-
plies UARCHAIN(A, X1, X2).

Proof sketch for Theorem 5.1. The combination of Lem-
mas 5.3 and 5.4 shows that with constant probability over
µ1, µ2 and X , A will need to select Ω(m) individuals with
equal probabilities, which leads to an expected regret of
Ω(1) over the draws of µ1, µ2 This means there exist dis-
tributionsF1 = N (µ∗1, 1) andF2 = N (µ∗2, 1) under which
A incurs Ω(1) regret.

6. Sequential Batch Setting
We briefly mention an extension to the sequential batch
setting, in which the algorithm selects individuals in T
rounds. In each round t, for each population j, there aremj

new candidates with their observations drawn i.i.d. from
the distribution Fj , At each round t, the algorithm needs
to select k individuals from this pool. Let Stj be the set
of observations from population j accumulated after the
first t rounds. In particular, for any observation x and
population j, let the historical CCDF value be q̂tj(x) =

1
|mjt|

∑
x′∈St

j
1[x′ < x]. As t grows large, the empirical

CCDF values become better estimates for the true CCDF
values. We give a variant of the FAIRTOP algorithm that
achieves (ε, δ)-approximate fairness in every round, and in-
curs average regret over time diminishing as Õ

(
1

ε
√
mT

)
.

7. Simulations
We conclude by discussing some illustrative simulation re-
sults for FAIRTOP, along with comparisons to simpler algo-
rithms without fairness guarantees. The simulations were
conducted on data in which the raw scores for each pop-
ulation i = 1, 2 were drawn from N (µi, 1) respectively,
and the µi themselves were chosen randomly fromN (0, 1).
Thus befitting the motivation for our model, the raw scores
are not directly comparable between populations. While
we varied the population sizes, they were held in the fixed
ratio m1/m2 = 2 and k = d0.1(m1 +m2)e.

For such a simulation with population sizes m1 = 100
and m2 = 50, Figure 1(a) shows the underlying scores
computed by FAIRTOP (which depend only on the empiri-
cal CDF values) for each member of both populations, but
sorted according to their true CDF values so that the trans-
positions that occur between emprical and true CDFs are
apparent; the red points are for the larger population and
green for the smaller. Overlaid on this arc of underlying
scores is a black plot illustrating sample post-noise scores
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(a) (b) (c)

Figure 1. (a) Sample underlying and noisy scores as a function of true CDF rank for ε = 10. (b) Empirical distribution of selection
counts as a function of true CDF rank for ε = 10. (c) Regret as a function of population sizes, for ε = 1 (green), 5 (red), and 10 (blue).

when ε = 10. As we can see, re-sorting the points by their
noisy scores will result in a significant amount of additional
reshuffling.

Figure 1(b) illustrates the induced distribution over cho-
sen individuals; here we show the results of resampling the
Laplace noise (again at ε = 10) for 100,000 trials, and
choosing the top k post-noise scores across populations.
The ordering is again by true CDF values and the same
color coding is used. At this value of ε the distribution
is biased towards better true CDF values but still enjoys
strong fairness properties. For example, the “unfairness ra-
tio” (maximum ratio of the number of times a worse CDF
value is chosen to a better CDF value is chosen) is only
1.56 (note that this is substantially stronger than the bound
of e10 guaranteed by our theorem). It is also visually clear
that FAIRTOP is treating similar CDF values similarly, both
within and between populations.

Nevertheless, the regret of FAIRTOP for these population
sizes and ε is nontrivial (roughly 0.20 regret compared to
the best k true CDF values). Of course, as per Theorem 3.7
by increasing ε we can reduce regret to any desired level
at the expense of weakened fairness guarantees. However,
as per Corollary 3.8 even for fixed ε (and therefore fixed
fairness properties), regret diminishes rapidly in the natu-
ral scaling where the population sizes grow, but in a fixed
ratio. This is illustrated empirically in Figure 1(c), where
for varying choices of ε we plot regret as m1,m2 → ∞
with m1/m2 = 2.

We now briefly compare the properties of FAIRTOP to sim-
pler approaches that generally enjoy lower regret but have
no fairness properties. Perhaps the simplest is to pick the
k highest ranked individuals by empirical CDF rank. This
method will in general have very low regret, but since it
is deterministic, any trial in which it doesn’t select the top
k true CDF values has no fairness guarantee (i.e. the un-
fairness ratio will be infinite), and this happens in approx-

imately approximately 87% of trials under the simulation
parameters above (and approaches 100% as populations
grow in fixed ratio).

Perhaps the most natural “learning” approach is to use
the raw scores to obtain estimated population means µ̂i
(or more generally to estimate the unknown parameters of
some known or assumed parametric form) and then use the
CDFs of N (µ̂1, 1) and N (µ̂2, 1) to select the k best indi-
viduals across the two populations. This again has gener-
ally lower regret than FAIRTOP, but is deterministic and
without fairness guarantees, with approximately 53% of
trials resulting in unbounded unfairness ratio (approaching
100% as populations grow in fixed ratio).

But the main drawback of such a learning approach in com-
parison to the data-oblivious FAIRTOP is its need for real-
izability. For instance, if we change the population 2 scores
to be drawn from the uniform distribution over a wide
range, but the learning approach continues to assume nor-
mality in each population, it will virtually always choose
only members of population 2, a clear and dramatic viola-
tion of any intuitive notion of fairness. This is of course
due the fact that the highest scores in population 2 appear
to have extraordinarily high CDF values when (incorrectly)
assumed to have been drawn from a normal distribution. In
contrast FAIRTOP, since it doesn’t even consider the actual
scores but only generic properties of the relationship be-
tween empirical and true CDF values, will behave exactly
the same, in both fairness and regret, regardless of how the
underlying scores are generated.
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