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1 INTRODUCTION AND OVERVIEW OF PAPER
In modern financial markets, massive resources are directed towards what can be considered ad-hoc

privacy mechanisms, intended to allow participants to cloak their trading activity and intentions.

Such efforts occur both in the exchanges themselves and in the algorithmic trading services offered

by large brokerages. In this work, we provide a differentially private (DP) version of classical

one-shot double auctions (also known as “call auctions”). Frequent instances of DP call auctions

could potentially simplify the convoluted efforts at providing trading secrecy that are rampant in

today’s markets while still permitting dynamic price discovery.

Current electronic exchanges offer a staggering variety of order types and mechanisms meant to

provide specific types of privacy. Dark pools were introduced to allow large-volume counterparties

to discover each other away from the so-called “lit” markets where high-frequency traders (HFTs)

are prevalent. Order types restricting execution with small-volume counterparties are meant to

provide similar protections. Hidden and “iceberg” orders in the lit exchanges provide secrecy at the

expense of time priority in the standard continuous limit order book. The relatively new exchange
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IEX was created to foil the latency arbitrage of HFT by introducing a “speed bump” for all incoming

orders. On the brokerage side, algorithms executing large client trades attempt to minimize visibility

by breaking orders up over time and across exchanges and employ randomization in both timing

and sizing to avoid detectable “heartbeats.”

These efforts are all ad-hoc in the sense that they each protect market participants from rather

specific forms of detection or exploitation. While well-intentioned, they have contributed sig-

nificantly to the complexity of modern electronic markets. At the same time, it is also widely

understood that there are limits to the privacy that can be provided for large trades executed in

short periods, and there is a large academic and practical literature on theories of market impact

(see [11, 12] for an overview) and algorithms for minimizing it. This literature identifies a trade’s

participation rate — the ratio of its volume to that of the overall market during the trade’s execution

— as the key determinant of market impact.

Our main conceptual contribution is the development of DP call auctions as a mechanism

providing privacy against all forms of attack or detection, up to the participation rate of a trade. In

this formulation, we provide a per-share privacy guarantee determined by the sensitivity of the

call auction, which in turn determines the amount of noise added. Trades with higher participation

rates will unavoidably have less privacy than those with smaller ones, but the nature of the privacy

will now be as general as possible. Repeated DP call auctions also enjoy graceful degradation of the

privacy guarantee. Furthermore, we can (informally) relate our results to standard market impact

theories via the shared notion of participation rate and show that, under natural conditions, DP

call auctions clear a near-optimal number of shares under the predictions of the “square root law”

of market impact. We analyze our DP mechanisms extensively, including its incentive properties

and behavior under natural no-regret learning dynamics by market participants.

We note that (non-private) call auctions are already common in modern markets. In particular,

both NYSE and NASDAQ hold call auctions (also sometimes called “crosses”) to establish opening

and closing prices in U.S. equities [19, 20]; in the Tokyo Stock Exchange there are additional intraday

call auctions, which are also the subject of academic study (e.g. [2, 3]). The influential paper [1]

(discussed at greater length in Related Work below) proposes and analyzes frequent intraday (again

non-private) call auctions specifically as a defense against latency arbitrage; see also [25]. Our work

can be seen as a continuation of this line of thinking, in which frequent intraday DP call auctions

could provide even more general privacy guarantees to all market participants.

Outline and Summary of Results: At a high level, our results fall into three broad categories:

(1) The development and analysis of (jointly) differentially private call auctions. We

carry this out in Section 3. We initially present this purely as an algorithm design task,

abstracting away incentive properties. We prove bounds relating the privacy properties of

the mechanism, the number of shares it is guaranteed to clear compared to the optimal

benchmark, and the net inventory that the mechanisms may have to take on. (Unavoidably,

jointly differentially private call auctions cannot exactly match the number of buyers and

sellers and so will have to take on a net position of shares itself to clear the market — we prove

that this net position is small.). We also prove a lower bound showing that our mechanisms

are near optimal amongst all differentially private mechanisms. We explore the connection

between our guarantees and theories of market impact in Section 3.5.

(2) The analysis of incentive properties and learning dynamics. Having developed our

algorithms, we turn our attention to how buyers and sellers should interact with them. First,

in Section 4, we show that our algorithm is ex-post individually rational and approximately

dominant strategy truthful for agents who wish to trade only a small number of shares,

with a guarantee that degrades gracefully in the size of the desired trade. (We note that this



is a stronger incentive guarantee than standard non-private call auctions.) We then study

the global behavior that results when agents interact with a repeated version of one of

our mechanisms using learning dynamics: we show that although an abstract guarantee of

no-regret learning is not enough to guarantee convergence to the optimal number of trades, a

small modification of the exponential weights learning algorithm (informally, a modification

that still guarantees the no-regret property, but breaks ties in favor of trading whenever such

ties exist) does converge to the optimal number of trades.

(3) Simulation Results. Finally, in Section 5, we conduct simulations in both one-shot and
repeated settings, showing that in the settings considered, the realized outcomes of our

mechanisms tend to be significantly better than the worst-case guarantees of our theorems.

Related Work: Our work relates to several large strands of literature. Prominently, the study

of double auctions dates back to the early days of mathematical economics. [21] provides an

introduction to double auctions, and a useful survey from a computer science perspective can be

found in [22]. Our modeling of the strategic framework in which agents participate in the double

auction is broadly consistent with this literature.

Of particular note are [1] and [25], which both propose frequent call auctions to eliminate

latency arbitrage.
1
The work of [1] first establishes the empirical availability of latency arbitrage

opportunities for even highly traded securities, and shows moreover that competition between

traders has not eliminated this opportunity over time. Instead, it has resulted in an “arms race” for

speed, with arbitrage windows becoming shorter over time, but arbitrage profit per unit remaining

essentially constant. The authors then propose a solution to mitigate latency arbitrage: repeated

high-frequency call auctions. Using a game theoretic approach, they model how the “sniping”

process results in arbitrage opportunities in the continuous limit order book; in their model, the

profit opportunity (along with arms race) is an equilibrium constant, even despite improving

technology. Then, using the same underlying model of firm behavior, the authors show that

repeated call auctions eliminate these arbitrage opportunities and cause firms not to choose to

invest in speed, ending the arms race. We follow in the spirit of [1], but note that their solution does

not mitigate the problem of privacy, and in particular does not solve the issue of the proliferation of

ad-hoc and increasingly complex trading algorithms. (The earlier work of [25] performs extensive

simulation studies that establish the salutary effects of frequent call auctions on latency arbitrage.)

Our work is connected to, and leverages tools from, the broad literature on differential privacy

[7]; for an overview, see, e.g. [8]. The most related strand of this literature is the connection between

differential privacy and mechanism design, first made by [18]. In particular, they observed that

differentially private mechanisms inherit strong incentive properties. For many mechanism design

tasks that involve the allocation of a resource to individuals, it is not possible to satisfy differential

privacy in the standard sense over allocations: in cases like this, the relevant solution concept is

joint differential privacy [16]. This solution concept has been used in a number of mechanism design

settings, including max-welfare matchings and other allocation problems [13, 14], stable matchings

[15], equilibrium selection problems [5, 24], and tolling problems [23]. In particular, although joint

differential privacy can be used as a tool to achieve truthfulness, not all jointly private mechanisms

are approximately truthful, and more specialized arguments are needed. Finally, while [4] have

shown how to privately compute near-optimal prices in double auctions, their process does not

guarantee end-to-end joint differentially privacy when taking trade allocations into account, unlike

this work.

1Latency arbitrage is the opportunity for traders to simultaneously buy and sell nearly or exactly identical securities on

different exchanges (e.g. Chicago’s Mercantile Exchange and the New York Stock Exchange) in the instant where price has

changed on one exchange but remains “stale” on the other; it is described in the popular book Flash Boys [17].



2 MODEL AND PRELIMINARIES
2.1 Model
We consider a call auction setting with ns sellers and nb buyers; we let S be the set of sellers, B

be the set of buyers, and n = ns + nb . Each seller i ∈ S has one unit of a security for which it has

a value vsi ; each buyer j ∈ B wishes to purchase one unit of the security for which it has a value

of vbj . We let vs = (vs
1
, . . . , vsns ) be the vector of all sellers’ valuations and vb = (vb

1
, . . . , vb

nb
) the

vector of all buyers’ valuations. We assume valuations are drawn from a discrete set P ; without
loss of generality, we let P = {1, 2, . . . ,V } for some integer V .

Agents report their valuations in P directly to a mechanismM.
2
Based on the agents’ reports,

the mechanism selects a clearing price p ∈ P and an allocation vector a = (as , ab ), where asi (resp.
abj ) is equal to 1 if seller i (resp. buyer j) is selected to participate in a trade and 0 otherwise. The

mechanism concludes by buying a share at price p from every seller i with asi = 1 and selling a

share at price p to every buyer with abj = 1.
3

Privacy Constraints. The outcomes of the mechanisms we consider are functions of the agents’

reports, which themselves depend on their valuations. In turn, these outcomes may leak information

about the participants’ valuations. This provides motivation for designing call auctions that protect

the privacy of the participants. In this paper, we do so using differential privacy ([7]). We will design

our mechanisms to release the clearing price p in a differentially private fashion, and the allocation

vector a = (as , ab ) in a jointly differentially private manner [16]. Differential privacy and joint

differential privacy are formally defined in Section 2.2.

Mechanism Designer’s Objective. The main objective of our mechanisms for call auctions is to

maximize the volume of trades between buyers and sellers. However, because of the randomization

that we will need to add to achieve differential privacy, our mechanism will inevitably incur several

kinds of cost. First, the payoff of the mechanism, given by the number of shares cleared, will

generally be lower than the optimal payoff that could have been reached absent differential privacy.

Second, we will have to deal with situations in which the number of sellers and the number of

buyers who are selected to trade differ because of the noise added to the allocation rule for privacy

concerns; this creates an inventory in which some of the trades must be fulfilled by the mechanism

itself (when there are more sellers selected than buyers, the mechanism buys surplus shares from

the sellers; when there are more buyers selected than sellers, the mechanism sells to the buyers from

its own reserve of shares). We will aim to keep the inventory of our private auction mechanisms as

small as possible. Formally, the payoff and the inventory of a mechanismM are defined as follows:

Definition 1 (Payoff and Inventory of a MechanismM). For any mechanismM outputting
a price p and an allocation vector a, the payoff is the number of shares cleared by M: Π (M) =
min{

∑
i ∈S asi ,

∑
j ∈B abj }, and the inventory ofM is the number of allocations that must be fulfilled

by the mechanism: I (M) = |
∑

i ∈S asi −
∑

j ∈B abj |.

The main benchmark we use to measure the performance of our mechanisms is the maximum

number of trades that can be obtained (absent differential privacy) while setting a uniform price p

2
We will argue in Section 4 that it is in every agent’s best interest to report his valuation to the mechanism truthfully, hence

our mechanisms can work with the agents’ valuations without loss of generality.

3
In principle, mechanisms can choose non-uniform pricing; that is, different agents could be charged different prices based

on their reports. Here, we only consider uniform pricing mechanisms, as is commonplace in the double auction literature.



and guaranteeing every agent non-negative utility.
4
Formally, our benchmark is given by

5

OPT = max

p∈P
min


∑
i ∈S

1
[
vsi ≤ p

]
,
∑
j ∈B

1
[
vbj ≥ p

] . (1)

2.2 Differential Privacy
Let D be a data universe from which a data set D of size n is drawn. In the setting considered

in this paper, D = (vs , vb ) contains the reported valuations of sellers and buyers in the market.

The algorithms we consider in this paper have output that can naturally be partitioned across

the n users who provide the inputs — namely for each agent, whether they get to participate in

a trade, and at what price. LetM be an algorithm that takes the data set D as input and outputs

M(D) ∈ Rn , which is a vector whose ith coordinate corresponds to the output sent to agent i .
Here R is the output range of the algorithm for a single agent, which we will take to be {0, 1} × P
(whether someone is chosen to participate in a trade, and a price for the trade). Informally speaking,

differential privacy requires that a change in a single data entry should have little (distributional)

effect on the output of the mechanism. In other words, for every pair of data sets D,D ′ ∈ Dn
that

differ in at most one entry, differential privacy requires that the distribution ofM(D) andM(D ′)
are “close" to each other where closeness is measured by the privacy parameters ε and δ .

Definition 2. Let D,D ′ ∈ Dn be two data sets of size n. We say D and D ′ are neighboring and
write D ∼ D ′ if they differ in at most one data entry. D and D ′ are called i-neighbors (denoted by
D ∼i D

′) if D−i = D ′−i .

Definition 3 ((Standard) Differential Privacy (DP) [7]). An algorithmM : Dn → Rn is
(ε, δ )-differentially private if for every pair of neighboring data sets D ∼ D ′ ∈ Dn , and for every
subset of outputs S ⊆ Rn ,

Pr [M(D) ∈ S] ≤ eε · Pr [M(D ′) ∈ S] + δ

where the probability is taken with respect to the randomness ofM. if δ = 0,M is said to be ε-DP.

We now define joint differential privacy. Joint differential privacy is defined in settings in which

not only the inputs but also the outputs of the mechanism can be partitioned amongst the n users of

the mechanism. In our setting, as in many mechanism design settings, this is the case: users report

their valuations (which constitute the data) and then each receives an individual allocation. Joint

differential privacy requires that an individual’s input to the mechanism has little (distributional)

effect on the outputs given to others — but allows one’s own input to have a large effect on one’s

own output. Informally, it protects the privacy of each individual from arbitrary coalitions of other

individuals using the system.

Definition 4 (Joint Differential Privacy [16]). An algorithmM : Dn → Rn is (ε, δ )-joint
differentially private if for every i , for every pair of i-neighborsD ∼i D ′ ∈ Dn , and for every S ⊆ Rn−1,

Pr [M(D)−i ∈ S] ≤ eε · Pr [M(D ′)−i ∈ S] + δ

where the probability is taken with respect toM’s randomness. If δ = 0,M is said to be ε-joint DP.

We will use the Laplace and exponential mechanisms of differential privacy in our proposed

algorithms. See Appendix A for their formal definitions, their privacy and accuracy guarantees,

and a few properties of differential privacy including post-processing and composition.
4
i.e., we only allocate agents willing to trade at price p . Agents not willing to participate at price p will opt out from the

trade, thus are not taken into account by our benchmark.

51[A], here and throughout the paper, represents the indicator function of event A.



3 PRIVATE CALL AUCTION MECHANISMS
In this section, we outline our jointly differentially private mechanisms for the call auction problem

and analyze their performance guarantees. Each mechanism’s performance is measured in terms of

its payoff — that is, the total number of shares cleared — as well as its inventory — the net position

that the mechanism must itself take on. We measure our mechanisms’ payoffs against the maximal
number of shares that could be cleared with a uniform price, given the agents’ reports.

Throughout this section, we assume reports are truthful; we will show in Section 4 that our

mechanisms are approximately dominant strategy truthful. We also highlight that taking on some
inventory is unavoidable – if the mechanism took no net position, a coalition of agents could use

the constraint that the number of buyers and sellers must be equal to circumvent joint differential

privacy – but our guarantees ensure that this net position remains small with high probability.

We propose three mechanisms. The first mechanism, described in Subsection 3.1, uses the

exponential mechanism (see Appendix A) to select a clearing price and then uses binomial random-

ization to determine who participates in a trade. In Subsection 3.2, we provide a second mechanism

that again uses the exponential mechanism to select a price, but uses lottery numbers which are

assigned to agents ex-ante to determine market participants. In Subsection 3.3, we describe a

meta-algorithm that privately picks the mechanism with the better performance guarantee,
6
and

achieves performance as good as that of the best of the first two mechanisms.

Finally, in Subsection 3.4, we show matching lower bounds (up to log factors) for the payoff of

any (ε, δ )-joint differentially private mechanism for the call auction.

3.1 A Private Call Auction Mechanism via Coin Flipping
In this subsection, we introduce our first jointly differentially private algorithm for selecting a

price and allocating buyers and sellers to trades. The algorithm uses the exponential mechanism to

differentially privately select a clearing price. With a slight abuse of notation, let

Π
(
p, vs , vb

)
= min


∑
i ∈S

1
[
vsi ≤ p

]
,
∑
j ∈B

1
[
vbj ≥ p

] (2)

be the number of trades that can happen at price p while guaranteeing every agent non-negative

utility; Π
(
p, vs , vb

)
is the utility function used by the exponential mechanism. After choosing the

price, the mechanism randomly selects buyers and sellers willing to transact at the chosen price

by flipping a coin with some particular bias for every agent in the market. The exchange then

transacts with all selected transactors, possibly taking a net position in the asset. We formalize

this mechanism in Algorithm 1. The mechanism takes data set (vs , vb ), privacy parameter ε , and
confidence parameter α as inputs and outputs a price p and allocation vectors a = (as , ab ). In the

algorithm description, exp(·) is the exponential function, Lap(σ ) represents a mean-zero Laplace

random variable with scale parameter σ , (x)+ := max(x, 0), and Bern(q) represents a Bernoulli

random variable with success probability q.
We start the analysis by providing the privacy guarantees obtained by Algorithm 1:

Claim 1. The allocation mechanism described in Algorithm 1 satisfies 3ε joint differential privacy.

The full proof of this claim can be found in Appendix C. We also provide bounds on the payoff

and the inventory of Mechanism 1 below:

6
Which guarantee is best depends on the specific instance at hand.



ALGORITHM 1: Private Call Auction with Allocation via Coin Flipping (M1)

Input: Agents’ valuations (vs , vb ), privacy level ε , confidence level α .

Output: Market price p, allocations a = (as , ab ).

Draw p ∝ exp

(
εΠ(p,vs ,vb )

2

)
▷ Exponential mechanism chooses a price p privately

ŝ ←
∑
i ∈S 1

[
p ≥ vsi

]
+ Lap( 1ε ) ▷ Privately estimate # of sellers willing to trade at p

b̂ ←
∑
j ∈B 1

[
p ≤ vbj

]
+ Lap( 1ε ) ▷ Privately estimate # of buyers willing to trade at p

asi ← 1
[
p ≥ vsi

]
· Bern

(
qs = min

{
1,

(
b̂
)
+(

ŝ− ln(1/α )
ε

)
+

})
for all i ∈ S. ▷ Sellers’ allocations

abj ← 1
[
p ≤ vbj

]
· Bern

(
qb = min

{
1,

(ŝ)+(
b̂− ln(1/α )

ε

)
+

})
for all j ∈ B. ▷ Buyers’ allocations

Theorem 1 (Payoff and Inventory of Mechanism 1). Suppose OPT ≥ 5 ln(V /α)/ε .

(1) Payoff: with probability 1 − 8α ,

Π (M1) ≥ OPT −
2 ln(V /α)

ε
−
2 ln (1/α)

ε
−

√
6

(
OPT +

ln(1/α)

ε

)
ln (1/α)

(2) Inventory: with probability 1 − 6α ,

I (M1) ≤
18 ln(1/α)

ε
+ 2

√
6

(
OPT +

ln(1/α)

ε

)
ln(2/α) +

4 ln(2/α)

3

Remark 1. Note that we constraint OPT = Ω (ln (V /α) /ε). When OPT = O (ln (V /α) /ε), the
inaccuracy introduced by releasing a differentially private price via the exponential mechanism is on
the order of OPT = Ω (ln (V /α) /ε), and we cannot hope to recover non-trivial utility guarantees.

The proof of Theorem 1 is given in Appendix D.1. We note that our bound does not follow

directly from the classical guarantees of the Laplace and exponential mechanisms; it requires a

more involved analysis of the concentration of the distribution of buyers and sellers selected to

trade in Algorithm 1.

3.2 A Private Call Auction Mechanism via Lottery Numbers
Here, we present a second mechanism that, rather than using independent randomization to

decide who participates in a trade, uses correlated randomization to improve the payoff and reduce

the inventory requirements of the mechanism. In the second mechanism, participants are given

data-independent “lottery numbers”, and thresholds on these lottery numbers (selected using the

exponential mechanism) are used to select among willing traders on both sides of the market. This

correlation allows us to remove the

√
OPT term in the bounds of the previous mechanism, at the

cost of introducing a logarithmic dependence on the number of agents n.
For a given valuation profile (vs , vb ), let Π

(
p, vs , vb

)
be defined as in Equation 2. Assume seller

i is assigned a lottery number lsi ∈ [n
s ] and buyer j is given lbj ∈ [n

b ] where we require that these

lottery numbers are different for different agents. Without loss of generality, we assume lsi = i and

lbj = j . For a given price p, and profiles (vs , vb ), the loss of thresholds τ s and τb on lottery numbers



(one for sellers and one for buyers) is expressed as follows:

Ls
(
τ s ,p, vs , vb

)
=

�����∑
i ∈S

1
[
p ≥ vsi , τ

s ≥ i
]
− Π

(
p, vs , vb

)����� ,
Lb

(
τb ,p, vb , vb

)
=

������∑j ∈B 1
[
p ≤ vbj , τ

b ≤ j
]
− Π

(
p, vs , vb

)������
For a price p, these loss functions measure how far off the number of agents chosen to trade on each

side of the market would be from our target number of trades, Π(p, vs , vb ), if we used thresholds

τ s and τb as a tie-breaking rule to select sellers and buyers who are willing to trade at price p,
respectively. In Algorithm 2, just as before, we first use the exponential mechanism to select a price

and then use the exponential mechanism with loss functions Ls and Lb (or utility functions: −Ls

and −Lb , based on the terminology used to describe the exponential mechanism in Appendix A) to

select the thresholds on lottery numbers.

ALGORITHM 2: Private Call Auction with Allocation via Lottery Numbers (M2)

Input: Agents’ valuations (vs , vb ), privacy level ε .

Output: Market price p, allocations a = (as , ab ).

Draw p ∝ exp

(
εΠ(p,vs ,vb )

2

)
▷ Exponential mechanism to privately choose a price p

Draw τ s ∝ exp

(
−
εLs (τ s ,p,vs ,vb )

4

)
▷ Exponential mechanism to privately choose τ s

Draw τb ∝ exp

(
−
εLb (τ b ,p,vs ,vb )

4

)
▷ Exponential mechanism to privately choose τb

asi ← 1
[
p ≥ vsi , τ

s ≥ i
]
for all i ∈ S. ▷ Sellers’ allocations

abj ← 1
[
p ≤ vbj , τ

b ≤ j
]
for all j ∈ B. ▷ Buyers’ allocations

Claim 2. The allocation mechanism described in Algorithm 2 satisfies 3ε joint differential privacy.

Theorem 2 (Payoff and Inventory of Mechanism 2). For any α > 0,
(1) Payoff: with probability 1 − 3α ,

Π (M2) ≥ OPT −
2 ln (V /α)

ε
−
4 ln (n/α)

ε

(2) Inventory: with probability 1 − 2α ,

I (M2) ≤
8 ln (n/α)

ε
,

The proof of Claim 2 is provided in Appendix C, and that of Theorem 2 in Appendix D.2.

3.3 A Meta Algorithm: Selecting the Best Mechanism Privately
Notice that the first term in the payoff bounds of both Theorems 1 and 2 are identical (as they both

correspond to choosing a price using the exponential mechanism) but the remaining terms differ

(M1 relies on binomial coin flips for tie-breaking whereasM2 tie-breaks via thresholds on lottery

numbers). These two bounds are in general not comparable, as one depends on the maximum

number of shares OPT that can be cleared, whereas the other one depends on the total number n
of agents in the market. The first bound provides better guarantees (up to constants and ln (1/α)

terms) when

√
OPT < ln (n) /ε , i.e. when the number of possible trades is significantly smaller than



the total number of agents in the market,
7
whereas the second bound provides better guarantees

when

√
OPT > ln (n) /ε .

We can achieve the better of the two bounds by comparing the bounds of Theorems 1 and 2 in a

differentially-private manner and then running the mechanism with the better bound according to

this private computation. Details of this meta-algorithm and its guarantees are given in Appendix B.

3.4 A Lower Bound
We now provide a lower bound showing that any algorithm which computes a price in an (ε, δ )-
differentially private manner and allocates among willing participants at this price must, for some
instance, suffer a loss of Ω (1/ε) (compared to the optimal number of shares that could be cleared on

that instance). Because this bound applies to a broader set of mechanisms that reveal only the price

privately (but may select the optimal allocation absent privacy), it also applies to the mechanisms

considered in Section 3. We will compare the performance of any given differentially private

algorithm on several input data sets. To do so, we will define an instance-dependent benchmark

below, that we call OPT(D). Formally, given an input data set D = (vs , vb ), our benchmark is:

OPT (D) = max

p
min

{∑
i ∈S

1
[
vsi ≤ p

]
,
∑
j ∈S

1
[
vbj ≥ p

]}
.

Definition 5 (Loss of an algorithm). For any (possibly randomized) algorithm A : Dn → P
that takes a data set D = (vs , vb ) as an input and outputs a price p, the loss of A on input data set
D = (vs , vb ) of agents valuations is defined as follows:

L (A,D) = OPT (D) − Ep∼A(D)

[
min

{∑
i ∈S

1
[
vsi ≤ p

]
,
∑
j ∈S

1
[
vbj ≥ p

]}]
.

I.e., this loss compares the number of trades that could be cleared in expectation at the price selected
by A to the maximum number of trades when the trading price is optimally chosen. We define the
worst-case expected loss of A as the worst-case loss over all data sets, i.e. L (A) = supD [L(A,D)].

Our lower bound will hold so long as δ is not too large in comparison with ε .8 We note that our

lower bound on the expected loss matches the Õ (1/ε) dependencies9 of our high probability upper

bounds on the loss for Mechanisms 1, 2, 5 (and consequently of any upper bound on the expected loss

of these mechanisms). Finally, it is worth remarking that our lower bound for (ε, δ )-DP mechanisms

matches the upper bound obtained by restricting attention to (ε, 0)-DPmechanisms; this implies that

relaxing δ -privacy requirements of Mechanisms 1, 2, 5 will not lead to any significant improvements

in terms of their accuracy guarantees.

Theorem 3. [Lower bound on the loss of private algorithms] Pick any ε, δ such that 0 ≤ ε ≤ 1 and
δ = O(ε). There exists a range of (integer) valuations P(ε) and a number of agents n(ε) such that any
(ε, δ )-DP algorithm A : Dn(ε ) → P(ε) must suffer worst-case expected loss of Ω (1/ε).

The proof of Theorem 3 relies on constructing a family of data sets {Dl }l such that no differentially

private algorithmA can simultaneously suffer expected loss of O (1/ε) on all of them. We do so by

carefully calibrating the following trade-off: on the one hand, we require any pair of data sets in

7
This models practical situations in repeated financial markets where sellers price a security higher than most buyers are

willing to pay. In such situations, buyers may elect to wait until a new seller comes and offers a better price, while sellers

may wait for a new buyer willing to buy at the current price.

8
Typically, differentially private algorithms use δ << ε .

9
The instances we construct use V , n ∼ 1/ε . The logarithmic dependencies of our upper bounds in n and V translate into

logarithmic dependencies in 1/ε , hence the Õ notation.



{Dl }l be close enough that the stability properties of differential privacy guarantee any private

algorithm must pick a similar distribution of prices on both data sets. On the other hand, we require

that the data sets furthest from each other are different enough such that no fixed distribution can

incur a low loss on both.

3.5 Connections to the Market Impact Literature
As mentioned in the Introduction, it is possible to draw some informal but interesting connections

between this work and the finance literature on market impact. Market impact models typically

propose strong stochastic assumptions on price formation (e.g. random walk and diffusion models

or martingale assumptions on limit order dynamics) and then solve for the optimal strategy to

minimize trading costs and price impact. In particular, there is a large body of work on the so-called

“square root law” (see, eg. [11, 12]). which predicts that the change to price inflicted by a trade of k

shares scales with

√
k/V , whereV is the total volume of shares cleared during the trade; the ratio

k/V is referred to as the trade’s participation rate. As we note below,V is typically closely related

to other measures of market activity such as the number of orders placed (as with our n) or the
number of quote changes in limit order dynamics.

Our results imply that the change in the expected clearing price in our DP call auction resulting

from an order of k shares is bounded by a multiplicative factor of (ekε − 1). Setting this equal to√
k/n to match the square root law

10
and solving for ε approximately yields ε ≈ 1/

√
kn for small

participation rates. Plugging this into our utility bound of Theorem 2, the shares we execute at this

ε scales like OPT(1 −
√
kn/OPT). Thus as long as k is o (n) and OPT scales with n,11 asymptotically

we approach OPT with the same price impact as that predicted by the square root law but with

two major advantages. First, we have made no assumptions, stochastic or otherwise, on the orders

placed by market participants. Second, we are not only bounding the price impact, we are also

bounding information leakage of any form, as per the promises of DP.

4 STRATEGIC FRAMEWORK
In Section 3, we focused on the algorithmic form of our mechanism and provided privacy guarantees

and optimality guarantees with respect to the reported valuations, without regard to whether those

reports are truthful or not. In this section, we embed our mechanisms into a game theoretic

framework and examine its properties, including (approximate) truthfulness. More precisely, we

now assume the agents are strategic; they may decide to report a bid that differs from their valuation,

or even to not participate in the mechanism in the first place. Formally, all sellers i and buyers j
have quasi-linear utilities determined by their own valuations and the outcome of the mechanism:

usi (M) = asi · (p − v
s
i ), u

b
j (M) = abi · (v

b
j − p), where, with a slight abuse of notation, we omit the

dependency ofM on the agents’ reports.

Buyers and sellers aim to maximize their utility from participating (or not participating) in the

mechanism. In the face of strategic behavior, we will require our mechanisms to be (approximately)

truthful and individually rational; i.e., it should never be in an agent’s best interest to misreport his

valuation, and an agent should always have a strategy that guarantees non-negative utility from

participating in the mechanism and so would rather participate than not. Individual rationality and

(approximate) truthfulness are formally defined below:

Definition 6 (Ex-Post Individual Rationality). We say a double-auction mechanism M
satisfies ex-post individual rationality if, for every seller i ∈ S, there exists a bid rsi for agent i such that
10
Here we are assuming that the number of orders n in our model plays the role of V above; see subsequent footnote.

11
This scaling is broadly consistent with recent data from electronic exchanges. For instance, the ratio of shares traded to

quote changes (a common measure of market activity) across 3443 U.S. equities averaged 0.16 with standard deviation 0.09.



for every possible set of bids r−i submitted by all agents but i , and every realization of the randomness
of the mechanismM, usi

(
M

(
rsi , r−i

) )
≥ 0, and similarly for every buyer j, there exists a bid rbj for

agent j such that for every possible set of bids r−j submitted by all agents but j, and every realization

of the randomness of the mechanismM, ubj
(
M

(
rbj , r−j

))
≥ 0.

Definition 7 (Approximate Dominant-Strategy Truthfulness). We say a double-auction
mechanismM satisfies γ -approximate dominant-strategy truthfulness if, for every seller i ∈ S, every
possible bid rsi submitted by i , and every possible set of bids r−i submitted by all agents but i ,

EM
[
usi

(
M

(
rsi , r−i

) ) ]
≤ EM

[
usi

(
M

(
vsi , r−i

) ) ]
+ γ

and similarly for every buyer j, for every possible bid rbj submitted by j and every possible set of bids
r−j submitted by all agents but j,

EM

[
ubj

(
M

(
rbj , r−j

))]
≤ EM

[
ubj

(
M

(
vbj , r−j

))]
+ γ

where expectations are taken with respect to the randomness ofM.

In Section 4.1, we show that our mechanisms are individual rational and (unlike in the standard

call auction) approximately dominant-strategy truthful. While our results assume that agents wish

to trade a single share, we show how our per-share guarantees translate into (gracefully degrading)

per-player guarantees in more general setting in which agents can trade multiple shares.

Then, in Sections 4.2.1-4.2.2, we consider learning dynamics under both the standard call auction

and our mechanism and show that a system in which agents use a modified exponential weights

algorithm (which we call “Social” Exponential Weights) to learn to bid will eventually converge

to the optimal number of shares cleared. While it is true that truthfulness implies that agents

cannot do better than bidding their true values, one might consider learning dynamics for two

reasons. First, if agents do not trust the mechanism designer (or share their assumptions), applying

a no-regret learning algorithm is a plausible response to guarantee good performance. Second,

good outcomes obtained in the presence of decentralized, distributed, and selfish algorithms are

compelling evidence of the robustness and quality of our mechanism. To our knowledge, the use of

no-regret learning algorithms by all agents in a call auction setting has not been studied before,

and these results may be of independent interest.

4.1 Individual Rationality and Truthfulness Properties of Our Algorithms
In this section, we discuss the incentive properties of our proposed algorithms. To do so, we note

that (vs , vb ) are the true valuations of sellers and buyers and denote their revealed bids by (rs , rb ),
respectively. To study truthfulness, we assume seller i (buyer j) can submit a bid rsi (r

b
j ) that may

not be equal to their valuation vsi (v
b
j ), and show that it is approximately never in agent i’s (resp.

j’s) best interest to do so. We start by noting that our mechanisms are individually rational:

Claim 3 (Individual Rationality). The mechanisms described in Algorithms 1, 2, and the Meta
Algorithm 5 (described in Appendix B) are ex-post individually rational.

Proof. We prove the result for Mechanism 1; proofs for the other mechanisms are similar. It

suffices to show that there exists a strategy for any seller (resp. any buyer) that guarantees him

non-negative utility. For any seller i , setting rsi = vsi is a strategy that ensures that whenever

i is allocated a trade (i.e. asi = 1), it must be that p ≥ rsi = vsi ; this immediately guarantees i
gets non-negative utility—independently of how other agents bid and of the randomness of the

mechanism. A similar proof holds for buyers. □



We also show that differential privacy guarantees approximate truthfulness in the dominant-

strategy sense: i.e., it does not allow agents (sellers and buyers) to gain too much profit by submitting

a bid different than their true valuation, no matter what the realized bids of the other agents are12.

Claim 4 (Approximate Truthfulness). Themechanisms described in Algorithms 1 and 2 satisfyγ -
approximate dominant-strategy truthfulness for γ = (e3ε −1)V ; the mechanism described in Algorithm
5 (in Appendix B) satisfies γ -approximate dominant-strategy truthfulness for γ = (e7ε − 1)V .

We defer the full proof to Appendix F. In the proof, we first observe that since the market

price is chosen subject to differential privacy, individual agents cannot significantly change it by

misreporting their valuations. However, this is not enough to argue truthfulness, as under joint
differential privacy, an agent’s allocation may heavily depend on his report. To complete the proof,

we show that the function by which the mechanism determines transactors is a best-response for

an agent with the reported valuation given the output of the differentially private mechanism.

Note that, in general, call auctions are not dominant-strategy truthful, since even small bidders

may impact the price selected by a mechanism acting on reported bids. This is a consequence

of the fact that in the simple call auction (as well as in continuous order book mechanisms) the

optimal price is, in general, not stable [10]. Importantly, we note that the truthfulness guarantees

are a function of ε ; as OPT grows larger, ε can be made smaller with less and less relative cost.

Consequently, the truthfulness guarantee can be made stronger for a given level of privacy as the

number of optimal trades cleared increases.

We highlight that because our strategic framework assumes each bidder controls a single share,

our guarantees are at the per-share level. Our privacy guarantees generalize, however, to the case

where bidders control at mostk shares by expanding ε by a factor ofk .13 Our truthfulness guarantees
also follow by expanding ε by a factor of k .

4.2 Learning in Repeated Call Auctions
In this section, we consider a repeated call auction. Agents are initially unaware of each other’s

valuations and behavior and run simple learning algorithms to learn how to bid. In each time step t ,
each seller i (respectively buyer j) reports a bid rsi ,t (resp. r

b
j ,t ), which may differ from his valuation,

to the mechanism. Given this input (rst , r
b
t ), the mechanism computes and publicly releases a price

pt and assigns an allocation ai ,t to each seller i (respectively aj ,t to each buyer j). We will consider

two versions of this mechanism, one that is non-private and is inspired by standard call auctions,

in Section 4.2.1, and one that is private and is based on Mechanism 1, in Section 4.2.2. The agents

then update their bidding strategies based on the quantities outputted by the mechanism, via a

simple no-regret algorithm (Exponential Weights).

We highlight that our agents are naive in that they do not compute a counterfactual price pt and
allocation vector at given alternative bids they could have made. Instead, they only update their

bidding strategies with respect to how much better off they could have been by bidding differently,

assuming they had no effect on the price. The motivation for this is two-fold: first, counterfactual

reasoning would require the agents to know the bids of other agents, which are not released by the

mechanism (and typically not available in many real-life call auctions). Second, when agents are

small relative to the total market, they may believe that their actions do not greatly affect these

12
Truthfulness is desirable not only because it makes computing equilibrium strategies and predicting equilibrium behavior

simpler, but also because knowing the true valuations allows the mechanism designer to clear the most shares.

13
An ε -differentially private mechanism with respect to a single share is kε -differentially private with respect to the data of

a bidder who controls k shares; intuitively, this is because an agent that misreports his valuation over k shares creates

a dataset that is a k-neighbor of the dataset in which they had bid truthfully. Such a bidder can affect the distribution of

prices by an amount of at most ekε , and so their own expected utility by (ekε − 1)V .



quantities. We note that differential privacy makes this belief into a property of our mechanism

rather than a naive assumption. Thus, small bidders using naive updates will have a real regret
guarantee when interacting with a differentially private call auction.

4.2.1 Learning in the Absence of Privacy. In this section, we focus on learning dynamics when the

mechanism runs a standard call auction, absent privacy; this non-private setting will serve as a

natural point of comparison for dynamics with respect to our private mechanism. At every time step

t , agents submit bids that may differ from their valuations. In response, the mechanism computes

a price and allocation, with the goal of maximizing traded shares among willing participants.

We denote the agents’ reports as rsi ,t and rbj ,t for seller i and buyer j, respectively, at time t . The
mechanism chooses a price pt to maximize

Π
(
p, rst , r

b
t

)
≜ min


∑
i ∈S

1
[
rsi ,t ≤ p

]
,
∑
j ∈B

1
[
rbj ,t ≥ p

] ,
which is the number of shares the mechanism will trade at price p, assuming that sellers will only

agree to trade when the price is above their reported bid and buyers when the price is below their

reported bid. To compute the allocation at = (ast , a
b
t ), the mechanism must choose among these

sellers and buyers it believes (based on the reports) are willing to trade at the chosen price pt .
When there are an equal number of sellers and buyers willing to trade at price pt , the mechanism

allocates a trade to all of them; otherwise, the mechanism randomly selects a subset of Π(p, rst , r
b
t )

agents from the side with excess number of willing participants. Formally, the mechanism computes

qbt = Π(pt , rst , r
b
t )/

∑
j ∈B 1[rbj ,t ≥ pt ] and qst = Π(pt , rst , r

b
t )/

∑
i ∈S 1[rsi ,t ≤ pt ]; these probabilities

will be less than 1 on the excess side of the market and exactly 1 on the short side. We assume the

mechanism publicly releases pt , q
s
t , and q

b
t to all agents in the market, and communicates to each

seller i (resp. buyer j) his own allocation asi ,t (resp. a
b
j ,t ).

Agents learn via Exponential Weights: A natural no-regret (regret here is the classic notion of

performance in online learning) algorithm for updating bidding strategies is the Exponential

Weights mechanism. We describe the classical Exponential Weights Update rule for buyers (buyer j)
in Algorithm 3, and note that this update is defined symmetrically for the sellers.

ALGORITHM 3: Exponential Weights

Input: Learning rate η.
Set wb

j ,1(k) ←
1

vbj
for k = 1, . . . , vbj ▷ Initialize uniform weights.

for t ∈ 1...T do
rbj ,t ∼ wb

j ,t ▷ Draw bid from distribution

µbj ,t (k) ← qbt (v
b
j − pt )1[k ≥ pt ] for k = 1, . . . , vbj ▷ Observe payoff of each bid k

wb
j ,t+1(k) ←

exp(ηµbj ,t (k ))∑
j wb

j ,t (j) exp(ηµ
b
j ,t (j))

·wb
j ,t (k) for k = 1, . . . , vbj ▷ Update the weights.

end

Informally, the updates work as follows. Initially, we assume every seller bids uniformly above

their value and every buyer bids uniformly below their value.
14
Then, in each round t , for every

14
A buyer j cannot improve his utility by bidding over his valuation (as increasing his bid cannot decrease pt nor increase

his probability of allocation), and risks obtaining negative utility by doing so, if vbj ,t < pt ≤ rbj ,t . Hence, bidding above his

valuation is a dominated strategy for the buyer. Similarly, bidding under his value is a dominated strategy for a seller. The

assumption of this prior knowledge can be relaxed at the price of slower convergence.



possible k ∈ P , agents compute what their expected payoff would have been had they reported k as

their valuation, given the current price pt and the allocation probabilities qst and q
b
t . They use these

expected payoffs to update their distribution of bids, in a way that puts exponentially more weight

on bids with higher expected utilities; the speed at which these updates happen is controlled by

the learning rate parameter η, taken here to be constant. For appropriate choices of learning rate η,
this algorithm is known to be no-regret.

One may hope these dynamics converge to clearing OPT shares with probability going to 1,

where OPT is defined as in Equation 1. However, this may not be the case when agents update their

weights according to Algorithm 3. This stems from the fact that agents are indifferent between

trading at their valuation, and not trading at all, as both net a payoff of zero. This is reflected in the

exponential weight update, and buyers learn to put a significant amount of weight on bids that

are strictly less than their valuation (as trades for those bids are strictly profitable). When clearing

OPT trades requires many agents to bid exactly at their valuation, the number of shares cleared is

bounded away from the benchmark. We show instead that the dynamics will clear the following

benchmark, which only considers trades that are strictly profitable for both sides of the market:

Definition 8 (Optimal Jointly Profitable Trades). We let OPT′ be the maximum number
of trades achievable for a given (vs , vb ), such that all trading buyers and sellers get strictly positive
utility. Formally,

OPT′ = max

p
min


∑
i ∈S

1
[
vsi < p

]
,
∑
j ∈B

1
[
vbj > p

] .
We call this benchmark the “Optimal Jointly Profitable Trades with Uniform Pricing” benchmark.

The statement showing that the mechanism will converge in probability to clearing at least OPT
′

shares is formalized below:

Theorem 4 (Convergence to (at least) OPT
′
). Suppose buyers and sellers update their bid

distributions according to Algorithm 3 (with any η > 0). Further, at any time t , suppose pt is chosen
uniformly at random among the set of optimal prices at time t . Then, the number of shares cleared at
time t satisfies the following statement: limt→∞ Pr

[
Π

(
pt , rst , r

b
t

)
≥ OPT′

]
= 1.

We also provide a variant of the Exponential Weights algorithm, that we will show converges to

OPT shares cleared. This variant is described in Algorithm 4.

ALGORITHM 4: Social Exponential Weights

Input: Learning rate η, “fake” utility ξ .
wb
j ,1(k) ← 1/vbj for k = 1, . . . , vbj ▷ Initialize with uniform weights.

for t = 1, . . ., T do
rbj ,t ∼ wb

j ,t ▷ Draw from the current weights.

if vbj , pt then
µbj ,t (k) ← qbt (v

b
j − pt )1[k ≥ pt ] for k = 1, . . . , vbj ▷ expected utility for bid k .

else
µbj ,t (k) ← qbt ξ1[k = vbj ] for k = 1, . . . , vbj ▷ Agent pretends getting utility ξ from trading.

end

wb
j ,t+1(k) ←

exp(ηµbj ,t (k ))∑
l wb

j ,t (l ) exp(ηµ
b
j ,t (l ))

·wb
j ,t (k) for k = 1, . . . , vbj ▷ Update the weights.

end



Algorithm 4 is a modification of the classic Exponential Weights algorithm. In particular, when

the price is equal to agent’s valuation, the algorithm assigns a nonzero utility qbt ξ to reporting the

agent’s valuation, for ξ arbitrarily small; this can be seen as agents updating their weights as if

they strictly preferred trading to not trading, even when their trade would make no profit. In other

words, it implements a preference to break ties (in utility) in favor of trading over not trading. We

call this “Social” Exponential Weights because incorporating this modified utility allows the system

as a whole to reach a better social outcome (one with more shares traded) than otherwise. Crucially,

despite this modification, Algorithm 4 remains no-regret for a fixed horizon T with appropriate

choices of learning rate, η, and “fake” utility, ξ :

Lemma 1 (No-regret). Algorithm 4 is no-regret (O
(√
T
)
cumulative regret) for η, ξ = O

(
1/
√
T
)
.

The proof is almost identical to that of the no-regret guarantees of traditional exponential weights,

and is deferred to Appendix G.1. We highlight that we define regret with respect to the single

best action in hindsight given the fixed sequence of prices observed; that is, we do not consider

the notion of Stackelberg regret, which is calculated with respect to the best fixed action given
that the mechanism picks a sequence of prices in response to the selected actions (see, e.g. [6]). If

agents are small enough that their actions do not greatly affect the mechanism’s responses, then the

standard notion of regret and Stackelberg regret do not greatly differ; if, moreover, a mechanism

is differentially private, then (for small enough agents) these notions of regret coincide, because

differential privacy ensures that agents placing small orders have little impact on the price.

Under Algorithm 4, the number of shares cleared converges to OPT with probability that tends

to 1 as t grows large. We make this statement formally below:

Theorem 5 (Convergence toOPT). Suppose buyers and sellers that update their bidding strategies
according to Algorithm 4 (with any η, ξ > 0). Further, suppose pt is chosen uniformly at random
among the set of optimal prices at time t . Then, the number of shares cleared at time t satisfies the
following statement: limt→∞ Pr

[
Π

(
pt , rst , r

b
t

)
= OPT

]
= 1.

To prove this result, we show that with a small, constant probability (in t ) in any given round, all

agents bid their valuations. In such cases, the mechanism picks an optimal price, and at least OPT
buyers (resp. sellers) increase their probability of bidding above (resp. below) this price. When the

number of rounds goes to infinity, this event is repeated infinitely often for some optimal price p⋆,
and OPT buyers (resp. sellers) bid above (resp. below) p⋆ with probability that tends to 1. The full

proof is given in Appendix G.3. A similar argument is used to prove Theorem 4, in Appendix G.2.

4.2.2 Learning in Repeated Call Auctions with Differential Privacy. We now consider the same

dynamic setting as before, with the difference that the centralized designer now computes the price

pt and the allocation at at time t in a joint-differentially private fashion. For simplicity of exposition,

we pick the private mechanism used by the designer to be Mechanism 1, which picks a price via

the exponential mechanism and picks agents to allocate from the smaller side of the market via

binomial coin flips. We show that when agents play according to the exponential weights (resp.

Social EW) algorithm, the dynamics converge to clearing at least OPT (resp. OPT
′
) shares minus

inaccuracies introduced by privacy.

Theorem 6. Suppose buyers and sellers update their bidding strategies according to Algorithm 4
(with any η, ξ > 0). Further, suppose the market allocation mechanism is Algorithm 1. There exists an



integer N (α) such that for any t ≥ N (α), the number of shares cleared at time t satisfies

Pr

Π
(
pt , rst , r

b
t

)
≥ OPT −

2 ln(V /α)

ε
−
2 ln (1/α)

ε
−

√
6

(
OPT +

ln(1/α)

ε

)
ln (1/α)

 ≥ 1 − 9α .

where this probability is taken with respect to the randomness of both Algorithms 1 and 4.

The proof idea is the following: despite the price randomness due to privacy, the event in which all

agents bid their value and an optimal price is picked happens infinitely often, as in the non-private

case. In turn, (at least) OPT buyers (resp. sellers) eventually learn to bid above (resp. below) an

optimal price p⋆. However, the mechanism will still pick sub-optimal prices to guarantee privacy,

as per the bound of Theorem 1. We refer the reader to Appendix G.4 for a complete proof.

A similar statement holds, with respect to benchmark OPT
′
(see Definition 8), when agents

update according to Algorithm 3.

Theorem 7. Suppose buyers and sellers use the Exponential Weights Algorithm 3 (with any η > 0)
to update their bids. Further, suppose the market allocation mechanism is Algorithm 1. There exists an
integer N (α) > 0 such that for all t ≥ N (α), the number of shares cleared at time t satisfies

Pr

Π
(
pt , rst , r

b
t

)
≥ OPT′ −

2 ln(V /α)

ε
−
2 ln (1/α)

ε
−

√
6

(
OPT′ +

ln(1/α)

ε

)
ln (1/α)

 ≥ 1 − 9α .

5 SIMULATIONS
In previous sections, we designed our mechanism and obtained theoretical guarantees of perfor-

mance; these guarantees were given both in a one-shot setting and relative to the optimal result

that could be reached given agents’ bids and also in a repeated setting using no-regret learning. In

this section, we conduct experiments on simulated data in both a one-shot and learning setting in

order to explore how tightly these guarantees bind in practice.

We perform all simulations in MATLAB using a similar starting configuration. We have 5000

buyers and 5000 sellers, and valuations must be integer values between 1 and 100. Valuations

are drawn from normal distributions centered at 45 for sellers and 55 for buyers, with standard

deviations of 15 for both. The draws are rounded to the nearest integer, and draws below 1 or above

100 are replaced with 1 and 100 respectively.

The mechanism we implement is the first we defined, namely, that described in Algorithm 1,

run once or repeatedly for the one-shot game and learning settings, respectively. We vary ε over a
range from ε = 0.01 to ε = 0.5.

Single-shot game. For the single shot game, we perform 800 trials per value of ε with a fixed set

of agent valuations. These valuations were drawn randomly according to the procedure described

above. We assume agents bid truthfully (and all of our comparisons are to the truthful optimal).

In the first plot of Figure 1, we show the empirical 5% quantile (i.e. the value for which only 5% of

draws saw lower values) of the competitive ratio defined as the shares cleared as a fraction of OPT,

the optimal number of shares that can be cleared given the realized valuations. This competitive

ratio quantile is plotted in blue. The appropriate guarantee to compare to is the lower bound on this

quantile given in Theorem 1, with confidence parameter α = 0.05/8; this bound is plotted in orange.

While the realized competitive ratio indicates, unsurprisingly, that privacy is not costless for very

small levels of ε , it remains far above the worst-case guarantee predicted, and rapidly increases

to nearly 1 in the practical regime (i.e., even for ε = 0.1). This shows that, for a large enough



number of agents and valuations drawn from well-behaved distributions, reasonable privacy can

be achieved in practice with very little loss in utility.

The second plot of Figure 1 shows the absolute value of the inventory taken on by the mechanism,

again plotting this quantile as a ratio of the optimal number of shares cleared in blue (again, limited

to the top 95% of runs) and the theoretical upper bound for α = 0.05/6 (as per the inventory bound

of Theorem 1) in orange. Notice that for very small ε , the theoretical guarantee can be extremely

large; yet, again, the realized inventory is far below the guarantee and never exceeds 23% for even

ε = 0.01 and is less than 5% for ε ≥ 0.05.

Fig. 1. Realized payoff and inventory figures relative to theoretical optimal in one-shot game for varying ε .

Learning Setting. In the learning setting, we plot the shares cleared over time as agents learn to

bid given their valuations. We repeat the auction for 1000 rounds (1500 for the imbalance plot)

with learning rate η = 0.1 and “fake” utility ξ = 0.1. Agents draw fixed valuations and then use the

Social Exponential Weights described in Algorithm 4 to learn and bid each round. We repeat this

process for several different values of ε .
The first three plots in Figure 2 tell similar stories: agents, and thus the system, learn to bid over

time in such a way as to clear the optimal number of shares (were the mechanism privacy-free).

The noisiness in the plots is due to privacy and depends on the choice of ε : the smaller the value

of ε , the more likely the mechanism is to pick a sub-optimal price, even after agents learn to bid

optimally. For ε = 0.01, the randomness of the mechanism induces enough noise as to occasionally

forego a large portion of utility; at larger values of ε , the added randomness costs relatively little.

The fourth plot displays the imbalance between number of buyers bidding above vs. sellers

bidding below the price chosen by the repeated standard (i.e., non-private) call auction when buyers

use Social Exponential Weights. We highlight an interesting connection to real-world behavior:

NYSE and NASDAQ perform pre-opening or pre-closing repeated "hypothetical" auctions aimed at

price discovery. In these hypothetical auctions, the exchanges accept bids, announce the current

price and imbalance, allow bidders to submit updated bids, and repeat. The pattern in imbalances

documented by [3] agrees broadly with that of Figure 2: that is, the imbalance begins skewed to one

side or another, but it repeatedly oscillates as bidders adjust before converging to a settled state.
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Fig. 2. The first three plots show the shares cleared over time, in the repeated setting of our mechanism, using
Social Exponential Weights (Algorithm 4) for various choices of ε . The last plot shows the imbalance between
buyers and sellers over time in a repeated (non-private) auction. The agents’ updates use η = 0.1 and ξ = 0.1.
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A DIFFERENTIAL PRIVACY TOOLS
In this section, we remind the reader of mechanisms that are classically used to guarantee differential

privacy. These mechanisms work by adding appropriately-chosen noise to the choices and outputs

of a mechanism, so as to ensure that a change in a single individual’s data cannot have a large

distributional effect on the mechanism’s output. The noise introduced by differentially private

mechanisms depends not only on the level (ε, δ ) of privacy one aims to guarantee, but also on the

sensitivity of the query of interest. This sensitivity measures how much the real-valued function of

interest is affected by a change in a single entry of an input data set, and will be formally defined

in our introduced DP mechanisms.

A commonly used mechanism for releasing the answer to numerical queries while guaranteeing

(ε, 0)-differential privacy is the Laplace mechanism. The Laplace mechanism takes a numerical

query f as an input, and perturbs the value of f on the input data set with zero-mean Laplace

noise that has scale proportional to (∆f /ε) where ∆f is the ℓ1-sensitivity of f .

Definition 9 (Laplace Mechanism [7]). Given a function f : Dn → Rk with ℓ1-sensitivity ∆f :

∆f = max

D ,D′ ∈ Dn
D∼D′

∥ f (D) − f (D ′)∥
1
,

a data set D ∈ Dn , and a privacy parameter ε , the Laplace mechanism outputs:

fε (D) = f (D) + (W1, . . . ,Wk )

whereWi ’s are i .i .d . random variables drawn from Lap (∆f /ε).

We provide the privacy and accuracy guarantees of the Laplace mechanism below:
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https://mfe.baruch.cuny.edu/wp-content/uploads/2017/05/Chicago2016OptimalExecution.pdf
https://doi.org/10.1145/2591796.2591826
http://www.jstor.org/stable/42920975
https://books.google.com/books?id=UcIkAwAAQBAJ
https://doi.org/10.1109/FOCS.2007.41
https://www.nasdaqtrader.com/Trader.aspx?id=OpenClose
https://www.nyse.com/publicdocs/nyse/markets/nyse/NYSE_Opening_and_Closing_Auctions_Fact_Sheet.pdf
https://www.nyse.com/publicdocs/nyse/markets/nyse/NYSE_Opening_and_Closing_Auctions_Fact_Sheet.pdf


Theorem 8 (Privacy vs. Accuracy of the Laplace Mechanism [7]). The Laplace Mechanism
guarantees (ε, 0)-differential privacy and that with probability at least 1 − δ ,

∥ fε (D) − f (D)∥∞ ≤ ln

(
k

δ

)
·

(
∆f

ε

)
We remark that the Laplace mechanism can be used to privately output the answer to numerical

queries. However, suppose we want to privately output the solution to a maximization problem

defined on the input data. Then, directly adding noise to the optimal solution could completely

destroy the objective value of the maximization problem in question (for example, in an auction,

adding a small amount of noise on the price of an item could significantly reduce revenue). In such

situations, the Laplace mechanism performs poorly, and a better choice of private mechanism is

the Exponential Mechanism, defined below:

Definition 10 (Exponential Mechanism [18]). LetU : Dn × P → R be a utility function that
takes a data set D ∈ Dn and a parameter p ∈ P as inputs, and let ∆U be its sensitivity. In other words,

∆U = max

p ∈ P
max

D ,D′ ∈ Dn
D∼D′

|U (D,p) −U (D ′,p)| .

Given a data set D ∈ Dn and a privacy parameter ε , the exponential mechanism outputs p ∈ P with
probability proportional to exp

(
εU (D ,p)
2∆U

)
where exp(·) is the exponential function.

Theorem 9 (Privacy vs. Accuracy of the Exponential Mechanism [18]). The Exponential
Mechanism guarantees (ε, 0)-differential privacy. Further, let pε ∈ P be the output of the Exponential
mechanism, we have that with probability at least 1 − δ ,����U (D,pε ) −max

p∈P
U (D,p)

���� ≤ ln

(
|P |

δ

)
·

(
2∆U

ε

)
An important property of differential privacy is that it is robust to post-processing. Applying

any data-independent function to the output of an (ε, δ )-DP algorithm preserves (ε, δ )-differential
privacy.

Lemma 2 (Post-Processing [7]). LetM : Dn → R be an (ε, δ )-DP algorithm and let f : R → R ′

be any function. We have that the algorithm f oM : Dn → R ′ is (ε, δ )-DP.

Another important property of differential privacy is that DP algorithms can be composed

adaptively with a graceful degradation in their privacy parameters.

Theorem 10 ((Simple) Composition [9]). LetMt be an (εt , δt )-DP algorithm for t ∈ [T ]. We
have that the compositionM = (M1,M2, . . . ,MT ) is (ε, δ )-DP where ε =

∑
t εt and δ =

∑
t δt .

To prove that ourmechanisms satisfy (ε, δ )-joint differential privacy, wewill leverage the billboard
lemma ([13]). The billboard lemma shows that for every individual i in the data set, restricting i’s
output to be a function of only the output of a differentially private mechanism (run on all agents’

data) and his own input guarantees joint differential privacy.

Lemma 3 (Billboard Lemma [13]). SupposeM : Dn → R ′ is (ε, δ )-differentially private. Consider
any set of functions fi : Di × R

′ → R, where Di is the portion of the data set containing i’s data.
The composition { fi (Πi (D),M(D))} is (ε, δ )-jointly differentially private, where Πi : D

n → Di is
the projection to i’s data.



B A META-ALGORITHM FOR DIFFERENTIAL PRIVACY
We provide a meta algorithm that simply computes the difference of payoff bounds of Mechanisms 1

and 2

f ≜
2 ln (1/α)

ε
+

√
6

(
OPT +

ln(1/α)

ε

)
ln (1/α) −

4 ln(n/α)

ε

in a differentially privately manner.
15
Then, based on the sign of f , the mechanism decides whether

to runM1 orM2. The private computation of f will unavoidably add an extra term of order O(1/ε)
to the payoff bound.

ALGORITHM 5: Private Call Auction with Allocation: A Meta Algorithm (M3)

Input: Agents’ valuations (vs , vb ), privacy level ε , confidence level α .

Output: Market price p, allocations a = (as , ab ).

f ← 2 ln(1/α )
ε +

√
6

(
OPT +

ln(1/α )
ε

)
ln (1/α) − 4 ln(n/α )

ε

f̃ ← f + Lap

(√
6 ln(1/α )

ε

)
▷ Private estimate of f

if f̃ < 0 then
RunM1

(
vs , vb , ε,α

)
(Algorithm 1) and get p, a.

else
RunM2

(
vs , vb , ε

)
(Algorithm 2) and get p, a.

end

Claim 5 (Joint DP). The allocation mechanism described in Algorithm 5 is 7ε-joint DP.

Theorem 11 (Payoff and Inventory of Mechanism). Suppose OPT ≥ 5 ln(V /α)/ε .

(1) Payoff: with probability 1 − 18α ,

Π (M3)

≥ OPT −
2 ln(Vα )

ε
−min


2 ln

(
1

α

)
ε

+

√√√
6

(
OPT +

ln( 1α )

ε

)
ln

(
1

α

)
,
4 ln( nα )

ε

 −
√
6 ln

1.5( 1α )

ε

(2) Inventory: with probability 1 − 14α ,

I (M3)

≤ 4min


2 ln

(
1

α

)
ε

+

√√√
6

(
OPT +

ln

(
1

α

)
ε

)
ln

(
1

α

)
,
4 ln( nα )

ε

 +
4

√
6 ln

1.5( 1α )

ε
+
10 ln( 1α )

ε
+
4 ln( 2α )

3

This theorem follows from Theorems 1 and 2, as well as the accuracy guarantee of the Laplace

mechanism used in Algorithm 5 to compute f . We defer the full proof to Appendix D.3.

15
OPT is a function of the input data set, hence a direct comparison of the bounds without addition of noise may leak

information about the reported bids.



C PROOFS OF PRIVACY GUARANTEES OF OUR MECHANISMS
proof of Claim 1. We start the proof by noticing that the sensitivity of Π (as per Definition 10)

is 1: indeed, changing one element in the data (vs , vb ), i.e. the valuation of a single agent, will

change the number of shares cleared by at most one, for any fixed price p. We can therefore

conclude that by Theorem 9 the mechanism that takes the data set as input and outputs a price

p ∝ exp

(
εΠ(p, vs , vb )/2

)
is ε-DP. One can similarly argue that given a fixed price p, quantities∑

i ∈S 1[p ≥ vsi ] and
∑

j ∈B 1[p ≤ vbj ] have sensitivity 1 (see Definition 9), and therefore by Theorem 8,

ŝ and b̂ both satisfy ε-DP. We can now invoke the Composition Theorem 10 to conclude that the

triplet (p, ŝ, b̂) computed in Algorithm 1 satisfies 3ε-differential privacy. The claim then follows by

the Billboard Lemma 3 and noticing that each agent’s allocation depends only on their own data

and the triplet (p, ŝ, b̂). □

Proof of Claim 2. Notice first that according to Definition 10, the sensitivity of Π is 1 because

for any p, changing one agent’s valuation can change Π by at most 1. Now fixing the price p output

by the first exponential mechanism, it similarly follows that the sensitivity of loss functions Ls and
Lb are 2. We therefore have that the exponential mechanisms outputting p, τ s , and τb are all ε-DP
by Theorem 9, and hence the triplet (p, τ s , τb ) satisfies 3ε-DP by the Composition Theorem 10. The

claim then follows by the Billboard Lemma 3 and noticing that each agent’s allocation depends

only on their own data and the triplet (p, τ s , τb ). □

Proof of Claim 5. First, we note that the sensitivity of f is upper-bounded by

√
6 ln(1/α).

Indeed, we remind the reader that OPT has sensitivity of 1, and note that for any x ≥ 0

√
6 ln(1/α) ≥

√
6

(
x + 1 +

ln(1/α)

ε

)
ln (1/α) −

√
6

(
x +

ln(1/α)

ε

)
ln (1/α),

using the classical inequality

√
a +
√
b ≥
√
a + b. Therefore, by Theorem 8, the computation of f̃ is

ε-differential private. In each of mechanismsM1 andM2, p1 the price output byM1, respectively

p2 the price output by M2, are computed in an ε-differentially private manner. Similarly, ŝ, ˆb
(resp. τ s , τb ), the private counts of the number of agents willing to trade inM1 at price p1 (resp.
the thresholds picked by mechanismM2 for price p2) are each the result of an ε-differentially
private conputation (conditional on p1, p2). In turn, our mechanism can be seen as one that

computes ( f̃ ,p1,p2, ŝ, ˆb, τ
s , τb ) in a 7ε-differentially private manner (by the composition guarantee

of Theorem 10), then outputs an allocation asi for each given seller i (resp. abj for each buyer j)

as a function of only vsi (resp. v
b
j ) and ( f̃ ,p1,p2, ŝ,

ˆb, τ s , τb ). Hence, by Lemma 3,M is 7ε-joint
differentially private. □

D PROOFS OF PROFIT AND INVENTORY OF OUR MECHANISMS
D.1 Proof of Theorem 1

Proof. We will be using the following concentration inequalities in our proof.

Fact 1 (Multiplicative Chernoff Bound). Let {Xi }
n
i=1 be a collection of independent random

variables where Xi ∈ [0, 1] for all i . Let S =
∑n

i=1Xi and µ = E[S]. We have that for any 0 ≤ t ≤ 1,

Pr [S < (1 − t)µ] ≤ e−
µt2

2



Fact 2 (Bernstein’s Ineqality). Let {Xi }
n
i=1 be a collection of i .i .d random variables where for

each i , Xi ∈ [0, 1], E[Xi ] = µ, and Var (Xi ) = σ 2. Let S =
∑n

i=1Xi . We have that for any t ≥ 0,

Pr [|S − nµ | > t] ≤ 2e
− t2

2nσ 2+2t/3

Let s(p) =
∑

i ∈S 1
[
p ≥ vsi

]
and b(p) =

∑
j ∈B 1

[
p ≤ vbj

]
be the number of sellers and buyers

available at price p, where p is the price chosen by the exponential mechanism. Note that as p
is a random variable, so are s(p) and b(p). From now on, for simplicity of notations, we omit the

dependency of s and b in p. We start the proof by noting that by the accuracy guarantee of the

Laplace mechanism (see Theorem 8) and a union bound, we have with probability at least 1 − 2α
that ���b̂ − b��� ≤ ln (1/α)

ε
, |̂s − s | ≤

ln (1/α)

ε
, (3)

and by the accuracy guarantee of the Exponential mechanism (see Theorem 9), we have with

probability at least 1 − α that,

Π
(
p, vs , vb

)
= min {s,b} ≥ OPT −

2 ln(V /α)

ε
. (4)

By a union bound, Equations (3) and (4) hold simultaneously with probability at least 1 − 3α ,

and throughout this proof we condition on these events. Let s̃ =
∑

i ∈S asi and b̃ =
∑

j ∈B abj be the
number of sellers and buyers who participate in a trade, output by the mechanism.

First, let’s focus on s̃ . Observe that

s̃ |s, ŝ, b̂ ∼ Binomial
©­­«s, q̂ = min

1,
(
b̂
)
+(̂

s − ln(1/α )
ε

)
+


ª®®¬ .

Note that we have

ŝ −
ln(1/α)

ε
≥ s −

2 ln(1/α)

ε
(by Equation (3))

≥ OPT −
2 ln(1/α)

ε
−
2 ln(V /α)

ε
(by Equation (4))

≥ OPT −
4 ln(V /α)

ε
(V ≥ 1)

≥
ln(V /α)

ε
(by assumption, OPT ≥ 5 ln(V /α )

ε )

> 0,

and also

b̂ ≥ b −
ln(1/α)

ε
(by Equation (3))

≥ OPT −
ln(1/α)

ε
−
2 ln(V /α)

ε
(by Equation (4))

≥ OPT −
3 ln(V /α)

ε
(V ≥ 1)

≥
2 ln(V /α)

ε
(by assumption, OPT ≥ 5 ln(V /α )

ε )

> 0.



As such, q̂ is well-defined, and we can rewrite it as

q̂ = min

(
1,

b̂

ŝ − ln(1/α )
ε

)
.

We have by the multiplicative Chernoff Bound (Fact 1) with t =
√

2 ln(1/α )
sq̂ that,

s̃ ≥ sq̂ −
√
2sq̂ ln(1/α) (5)

with probability at least 1 − α when t ≤ 1. Note that the bound applies when t > 1 too, noting that

then sq̂ −
√
2sq̂ ln(1/α) < 0 but s̃ ≥ 0. In what follows, we will provide an upper bound and a lower

bound for the term sq̂ so that we can further lower bound s̃ in Equation (5). Symmetrically, we can get

a similar lower bound for b̃ which completes the first part of the proof because Π(M) = min{̃s, b̃}.
On the one hand, note that

sq̂ = s ·
min

{̂
s − ln(1/α )

ε , b̂
}

ŝ − ln(1/α )
ε

≥
s

s
·min

{̂
s −

ln(1/α)

ε
, b̂

}
= min

{̂
s −

ln(1/α)

ε
, b̂

}
≥ min {s,b} −

2 ln (1/α)

ε

≥ OPT −
2 ln (1/α)

ε
−
2 ln(V /α)

ε
.

(6)

The first inequality follows from ŝ − ln(1/α )
ε ≤ s by Equation (3). The second inequality follows from

ŝ −
ln(1/α)

ε
≥ s −

2 ln (1/α)

ε
, b̂ ≥ b −

ln(1/α)

ε

by Equation (3). The third inequality is a direct application of Equation (4). On the other hand,

sq̂ = s ·
min

{̂
s − ln(1/α )

ε , b̂
}

ŝ − ln(1/α )
ε

≤
s

s − 2 ln(1/α )
ε

·min

{
s,b +

ln(1/α)

ε

}
≤

s

s − 2 ln(1/α )
ε

·

(
min {s,b} +

ln(1/α)

ε

)
≤

s

s − 2 ln(V /α )
ε

·

(
min {s,b} +

ln(1/α)

ε

)
≤ 3

(
min {s,b} +

ln(1/α)

ε

)
≤ 3

(
OPT +

ln(1/α)

ε

)
.

(7)



The first inequality follows from

s −
ln(1/α)

ε
≤ ŝ ≤ s +

ln(1/α)

ε
, b̂ ≤ b +

ln(1/α)

ε

by Equation (3). The second-to-last inequality follows from the fact that

f : (0,+∞) → R, f (x) =
x

x − 2 ln(V /α )
ε

=
1

1 −
2 ln(V /α )

εx

is a non-increasing function of x , and that by Equation (4),

s ≥ OPT −
2 ln(V /α)

ε
≥

3 ln(V /α)

ε
.

Combining Equations (5), (6), and (7), we obtain that with probability 1 − 4α ,

s̃ ≥ OPT −
2 ln (1/α)

ε
−
2 ln(V /α)

ε
−

√
6

(
OPT +

ln(1/α)

ε

)
ln (1/α). (8)

Symmetrically, we can get the same bound for b̃: with probability 1 − 4α ,

b̃ ≥ OPT −
2 ln (1/α)

ε
−
2 ln(V /α)

ε
−

√
6

(
OPT +

ln(1/α)

ε

)
ln (1/α) (9)

Combining Equations (8) and (9) and noting that Π(M1) = min{̃s, b̃} proves the first part of the
theorem. We conclude the proof by noting that the statements hold with probability at least 1 − 8α
by union bound.

Let us now analyze the inventory of the mechanism. We have by the triangle inequality that

I (M1) =

���̃s − b̃��� ≤ |̃s −min {s,b}| +
���b̃ −min {s,b}

��� (10)

We will provide an upper bound for the first term, and by symmetry, an upper bound on the second

will follow immediately. We have that by the triangle inequality

|̃s −min {s,b}| ≤ |̃s − sq̂ | + |sq̂ −min {s,b}| (11)

First

|̃s − sq̂ | ≤
√
2sq̂(1 − q̂) ln(2/α) +

2 ln(2/α)

3

≤

√
2sq̂ ln(2/α) +

2 ln(2/α)

3

≤

√
6

(
OPT +

ln(1/α)

ε

)
ln(2/α) +

2 ln(2/α)

3

(12)

where the first inequality holds with probability 1 − α and follows from the Bernstein’s inequality

(Fact 2) with σ 2 = q̂(1 − q̂) and taking t = ln(2/α )
3
+

√
ln

2(2/α )
9
+ 2nσ 2

ln(2/α). Notice that t ≤
2 ln(2/α )

3
+

√
2nσ 2

ln(2/α). The last inequality follows from the upper bound developed in Equation

(7). Second,

|sq̂ −min {s,b}| ≤
9 ln(1/α)

ε
. (13)

This is because as we showed in Equation (6),

−
2 ln (1/α)

ε
≤ sq̂ −min {s,b} ,



and as we showed in Equation (7),

sq̂ −min {s,b} ≤
s

s − 2 ln(1/α )
ε

·

(
min {s,b} +

ln(1/α)

ε

)
−min {s,b}

=

(
s

s − 2 ln(1/α )
ε

− 1

)
·min {s,b} +

s

s − 2 ln(1/α )
ε

·
ln(1/α)

ε

≤

(
2 ln(1/α)/ε

s − 2 ln(1/α )
ε

)
· s +

s

s − 2 ln(1/α )
ε

·
ln(1/α)

ε

=
s

s − 2 ln(1/α )
ε

·
3 ln(1/α)

ε

≤
9 ln(1/α)

ε

Because we showed in Equation (7) that
s

s− 2 ln(1/α )
ε
≤ 3.

Putting together Equations (11), (12), and (13) we get that with probability 1 − 3α ,

|̃s −min {s,b}| ≤

√
6

(
OPT +

ln(1/α)

ε

)
ln(2/α) +

2 ln(2/α)

3

+
9 ln(1/α)

ε
.

Swapping the roles of the buyers and a similar proof yields the same bound on

���b̃ −min {s,b}
���.

A union bound completes the proof, by Equation (10). □

D.2 Proof of Theorem 2
Proof. Let us define s̃ =

∑
i ∈S asi and b̃ =

∑
j ∈B abj to be the number of sellers and buyers who

participate in a trade under output allocation a. We have that with probability at least 1 − 3α , by
the accuracy guarantee of the Exponential mechanism (see Theorem 9),

Π
(
p, vs , vb

)
≥ OPT −

2 ln(V /α)

ε
, (14)

and that since minτ s L
s (τ s ,p, vs , vb ) = minτb L

b (τb ,p, vs , vb ) = 0,���̃s − Π(p, vs , vb )��� = Ls (τ s ,p, vs , vb ) ≤
4 ln (ns/α)

ε
=⇒ s̃ ≥ Π(p, vs , vb ) −

4 ln (ns/α)

ε
, (15)

���b̃ − Π(p, vs , vb )��� = Lb (τb ,p, vs , vb ) ≤
4 ln

(
nb/α

)
ε

=⇒ b̃ ≥ Π(p, vs , vb ) −
4 ln

(
nb/α

)
ε

(16)

We therefore have that

Π (M2) = min

{̃
s, b̃

}
≥ OPT −

2 ln(V /α)

ε
−
4 ln(n/α)

ε
(17)



Let’s now analyze the inventory introduced by the private mechanism. We have that

I (M2) =

���̃s − b̃���
≤

���̃s − Π (
p, vs , vb

)��� + ���b̃ − Π (
p, vs , vb

)���
= Ls (τ s ,p, vs , vb ) + Lb (τb ,p, vs , vb )

≤
4 ln (ns/α)

ε
+
4 ln

(
nb/α

)
ε

≤
8 ln(n/α)

ε

where the second inequality holds with probability 1 − 2α by Equations (15) and (16). □

D.3 Proof of Theorem 11
Proof. This theorem follows from Theorems 1 and 2 and conditioning on the accuracy guarantee

of the additional Laplace mechanism used in Algorithm 5:

w.p. 1 − α,
��� f̃ − f

��� ≤ √6 ln1.5(1/α)
ε

(18)

Suppose f̃ < 0. Note that in this case,

OPT − Π (M3) = OPT − Π (M1)

≤
2 ln(V /α)

ε
+
2 ln (1/α)

ε
+

√
6

(
OPT +

ln(1/α)

ε

)
ln (1/α) (⋆)

=
2 ln(V /α)

ε
+
4 ln(n/α)

ε
+ f

≤
2 ln(V /α)

ε
+
4 ln(n/α)

ε
+ f̃ +

√
6 ln

1.5(1/α)

ε

≤
2 ln(V /α)

ε
+
4 ln(n/α)

ε
+

√
6 ln

1.5(1/α)

ε
(⋆⋆)

where the first inequality follows from Theorem 1, with probability 1 − 8α . The second inequality

follows from Equation 18, with probability 1 − α . Combining the bounds given by the second and

the last inequalities (specified by ⋆ and ⋆⋆), we get that with probability 1 − 9α ,

OPT − Π (M3) ≤ min

 2 ln (1/α)ε
+

√
6

(
OPT +

ln(1/α)

ε

)
ln (1/α),

4 ln(n/α)

ε


+
2 ln(V /α)

ε
+

√
6 ln

1.5(1/α)

ε
.

A similar analysis for f̃ ≥ 0 which uses Theorem 2 gives us the same bound and proves the first

part of the theorem.



Now let’s look at the inventory. Suppose f̃ ≤ 0. We have that

I (M3) = I (M1)

≤
18 ln(1/α)

ε
+ 2

√
6

(
OPT +

ln(1/α)

ε

)
ln(2/α) +

4 ln(2/α)

3

≤
18 ln(1/α)

ε
+ 4

√
6

(
OPT +

ln(1/α)

ε

)
ln(1/α) +

4 ln(2/α)

3

(⋆)

= 4

(
f +

4 ln(n/α)

ε

)
+
10 ln(1/α)

ε
+
4 ln(2/α)

3

≤ 4

(
f̃ +

√
6 ln

1.5(1/α)

ε
+
4 ln(n/α)

ε

)
+
10 ln(1/α)

ε
+
4 ln(2/α)

3

≤ 4

(√
6 ln

1.5(1/α)

ε
+
4 ln(n/α)

ε

)
+
10 ln(1/α)

ε
+
4 ln(2/α)

3

(⋆⋆)

where the first inequality follows from Theorem 1, with probability 1 − 6α . The second inequality

follows because α < 1/2 (note we need α < 1/18 to give non-trivial guarantee for the payoff of the

mechanism). The third inequality follows from Equation 18 with probability 1 − α . Looking at the

bounds given by the third and the last lines of the above equation (specified by ⋆ and ⋆⋆), we get
that with probability 1 − 7α ,

I (M3) ≤ 4min

 2 ln (1/α)ε
+

√
6

(
OPT +

ln(1/α)

ε

)
ln (1/α),

4 ln(n/α)

ε


+
4

√
6 ln

1.5(1/α)

ε
+
10 ln(1/α)

ε
+
4 ln(2/α)

3

.

A similar analysis for f̃ ≥ 0 which uses Theorem 2 gives us the same bound and proves the second

part of the theorem. □

E PROOF OF THEOREM 3
Consider the following family of data sets: first, we initializeD0 as the data set that has n sellers with

valuations {1, . . . ,n}, and n buyers with valuations {n, . . . , 2n − 1}. We then recursively construct

Dl for all l . To constructDl+1 fromDl , we increase all valuations inDl by 1, and assign buyers’ (resp.

sellers) identities in Dl+1 such that all buyers (resp. sellers) except one have the same valuation as

in Dl . Equivalently, our construction works as follows: for any l ∈ N,

Dl =

{
vs = {l + 1, . . . , l + n} sellers’ valuations

vb = {l + n, . . . , l + 2n − 1} buyers’ valuations,

up to re-ordering of the agents’ identities. The result will follow from the fact that a differentially

private algorithm should output similar distributions of prices on data sets D0 and Dl , but that at

the same time, for l large enough, D0 and Dl are far enough from each other that no distribution of

prices can perform well over both of them.

We first show the following lemma, which will be of use in the proof of Theorem 3:

Lemma 4. Let {Dl } be the family of data sets described above. If A : Dn → P is an (ε, δ )-DP
algorithm, then for every price p ∈ P and every k,m ∈ N:

Pr [|A(Dk ) − p | < m] ≥ e−2kε Pr [|A(D0) − p | < m] − 2kδ .



Proof. By the definition of (ε, δ )-DP, if D and D ′ are neighboring data sets, we must have that

for any event E,

Pr[A(D) ∈ E] ≤ eε Pr[A(D ′) ∈ E] + δ ,

or equivalently

Pr[A(D ′) ∈ E] ≥ e−ε (Pr[A(D) ∈ E] − δ ) (19)

Notice that for every k , by construction, Dk and Dk+1 differ by only two entries (one buyer’s and

one seller’s valuation). This immediately implies that Dk and D0 differ by at most 2k entries, hence

we can apply inequality (19) recursively 2k times to obtain that for any event E,

Pr[A(Dk ) ∈ E] ≥ e−ε (e−ε . . . (e−ε Pr[A(D0) ∈ E] − δ ) . . . − δ ) − δ

= e−2kε Pr[A(D0) ∈ E] − δ (e
−(2k−1)ε + e−(2k−2)ε + .... + e−ε + 1)

≥ e−2kε Pr[A(D0) ∈ E] − 2kδ

where the last inequality follows from the fact that ex ≤ 1 for x ≤ 0. Fixing the price p and k,m,

and taking E to be the ball of radiusm around p, i.e.

E = {p ′ : |p ′ − p | < m}

concludes the proof. □

We are now ready to prove Theorem 3.

Proof of Theorem 3. In this proof, for any given data set D = (vs , vb ), we let

u(A,D) ≜ min

{∑
i ∈S

1
[
vsi ≤ p

]
,
∑
j ∈S

1
[
vbj ≥ p

]}
where p is drawn according to A(D).

First, we note that in data set D0, at most n trades (where every trading agent gets non-negative

utility) can occur, setting a price of n. Further, n is the unique price that makes n trades possible,

noting that decreasing (resp. increasing) the price leads to strictly less than n sellers (resp. buyers)

willing to trade at that price. We let p∗
0
= n be this (unique) optimal price that clears n shares on

data set D0. For a given (ε, δ )-DP algorithm A : Dn → P that outputs a price p given an input

data set D = (vs , vb ), let us define, for any k,m ∈ N (we will choose these values later on),

q0m := Pr

[
|A(D0) − p

∗
0
| < m

]
, qkm := Pr

[
|A(Dk ) − p

∗
0
| < m

]
.

Notice by Lemma 4 that

qkm ≥ e−2kεq0m − 2kδ . (20)

Now, fixm = ⌈ 1ε ⌉, k = 2⌈ 1ε ⌉, and take n ≥ m. We have that the expected loss of A on D0 is

EA [L(A,D0)] = OPT(D0) − EA [u(A,D0)]

= n − EA [u(A,D0)]

≥ n −
(
q0m · n + (1 − q

0

m) · (n −m)
)

= (1 − q0m) ·m

≥ (1 − q0m) ·

(
1

ε

)
.

(21)



The first inequality follows from a simple application of the law of total expectation on event

E = {p : |p − p∗
0
| < m

2n } and its complement: with probability 1 − q0m the outputted price is outside

E, which implies that it can only clear at most n −m ≥ 0 shares (picking a price that ism away

from n necessarily leads to eitherm fewer buyers orm fewer sellers willing to trade); the rest of

the time, with probability q0m , algorithm A clears at most n shares. The second inequality is an

immediate consequence of the choice ofm. Similarly, on data set Dk ,

EA [L(A,Dk )] = OPTk − u(A,Dk )

= n − EA [u(A,Dk )]

≥ n −
(
qkm · (n − (k −m)) + (1 − q

k
m) · n

)
= qkm · (k −m)

≥

(
e−2kεq0m − 2kδ

)
· (k −m)

≥
(
e−8q0m − 8(δ/ε)

)
·

(
1

ε

)
(22)

where the first inequality follows from another use of the law of total expectation on the event

E and its complement (notice we choose our parameters so that k > m and n ≥ k −m): with

probability qkm , the price is at most n +m, and there are k −m sellers that are willing to trade at

price n +m but not at price n + k , implying that such a price clears at most n − (k −m) shares;
the rest of the time, the number of shares cleared is at most n always. The second follows from

Equation (20) and the last one follows from the choice of k andm and the fact that ε ⌈ 1ε ⌉ ≤ 1+ ε ≤ 2

for 0 ≤ ε ≤ 1. Now let L(A) be the worst-case expected loss of A. We have that

L(A) ≥ max

{
(1 − q0m),

(
e−8q0m − 8(δ/ε)

)}
·

(
1

ε

)
≥

(
e−8 − 8(δ/ε)

1 + e−8

)
·

(
1

ε

)
where the first inequality follows from Equations (21) and (22) and the second is a simple observation

that f (q0m) := max

{
(1 − q0m),

(
e−8q0m − 8(δ/ε)

)}
is minimized at q0m =

1+8(δ/ε )
1+e−8 . Notice the lower

bound is valid only when δ < e−8
8
ε = O(ε). This proves our claim that L(A) = Ω

(
1

ε

)
. □

F PROOFS OF APPROXIMATE TRUTHFULNESS
Our proof of truthfulness for Mechanism 1 will leverage the following lemma, which shows the

output of an (ε, 0)-DP mechanism does not change by much in expectation when the input data set

is changed by at most one element.

Lemma 5. Let Y =M(D) whereM : D → Y is an (ε, 0)-DP mechanism, and let maxy∈Y |y | ≤ K .
Then for any neighboring data sets D ∼ D ′,

| E [Y (D)] − E [Y (D ′)] | ≤ (eε − 1)K

Proof. Y (D) and Y (D ′) are random variables; we represent the possible values they may take

on as y ∈ Y, and represent the probability distribution of Y under D, D ′ as P, P ′, respectively. It
follows that

E [Y (D)] − E [Y (D ′)] = EY∼P Y − EY∼P′ Y =
∑
y∈Y

(
Pr

P
[Y = y] − Pr

P′
[Y = y]

)
y



Therefore,

|E [Y (D)] − E [Y (D ′)]| ≤
∑
y∈Y

����Pr
P
[Y = y] − Pr

P′
[Y = y]

���� |y |
≤

∑
y∈Y

(eε − 1)max

{
Pr

P
[Y = y], Pr

P′
[Y = y]

}
|y |

≤ (eε − 1)K,

where the second inequality follows from the definition of (ε, 0)-differential privacy. □

Proof of Claim 4. We prove the claim for any seller. A similar proof holds for buyers. Fix an

index i , and any reports/bid vector

(
rs
−i , r

b )
for the remaining buyers and sellers. For simplicity of

notation, let us denote (vsi , r
s
−i , r

b ) where i submits his bid truthfully as data set D, and (rsi , r
s
−i , r

b )

for some (other) report rsi as data set D
′
. Notice D and D ′ are neighboring data sets. Writing EM

for the expectation with respect to the mechanismM, we have that:

EM
[
usi (M(D

′))
]
= EM[asi · (p − v

s
i )|D

′]

= EM
[
1
[
p ≥ rsi

]
Bern(qs )(p − vsi )|D

′
]

= EM
[
1
[
p ≥ vsi

]
· 1

[
p ≥ rsi

]
Bern(qs )(p − vsi )|D

′
]

+ EM
[
1
[
p < vsi

]
· 1

[
p ≥ rsi

]
Bern(qs )(p − vsi )|D

′
]

≤ EM
[
1
[
p ≥ vsi

]
Bern(qs )(p − vsi )|D

′
]

≤ EM
[
1
[
p ≥ vsi

]
Bern(qs )(p − vsi )|D

]
+

(
e3ε − 1

)
V

= EM
[
usi (M(D))

]
+

(
e3ε − 1

)
V

where the first inequality follows because the second term appearing in the sum is nonpositive and

that 1
[
p ≥ vsi

]
· 1

[
p ≥ rsi

]
≤ 1

[
p ≥ vsi

]
. The second inequality follows from Lemma 5 and the fact

that the computation of the pair of random variables (p,qs ) combined with any post-processing

of the pair (p,qs ) that is independent of the reported data D ′ = (rs , rb ) satisfies (3ε, 0)-differential
privacy by the Post-processing Lemma 2 and the Composition Theorem 10. Also note that the

price/bids range is {1, 2, . . . ,V }, so we can take K = V in Lemma 5. □

The proofs of approximate truthfulness of Mechanisms 2 and 5 follow the exact same argument

that leverages the stability properties of differential privacy. The only difference comes in the choice

of tie-breaking rule and the level of differential privacy of Mechanisms 2 and 5. Rewriting the above

proofs with the corresponding tie-breaking rules yields the argument.

G PROOFS FOR LEARNING DYNAMICS
G.1 Proof of No-Regret Lemma 1
We first show the claim below:

Claim 6. Let R j ,t be the random variable representing the reward of buyer j in Algorithm 4 at
round t , and let R∗j (T ) be the total reward of buyer j’s best fixed action in hindsight, over T rounds.
Moreover, let ξ ≤ V and η ≤ 1

V . Then, the regret of buyer j over T rounds is bounded as follows:

R∗j (T ) − E

[
T∑
t=1

R j ,t

]
≤ ξT + ηV 2T +

lnV

η
(23)



Proof. We can think of Algorithm 4 as Exponential Weights with a modified utility function:

buyer j’s modified utility at time t for bid k : µbj ,t (k) =

{
ξ · qbt k = vbj and pt = vbj
uj ,t (k) otherwise

where uj ,t (k) is the actual utility of buyer j at time t if he were to bid k . Importantly, we show

that using this modified utility function we can still achieve vanishing regret (with respect to the

original reward R j ,t which is the agent’s true/realized utility).

First, notice that uj ,t is always upper-bounded by µbj ,t : uj ,t ≤ µbj ,t ; but also that µbj ,t ≤ uj ,t + ξ .

Recall R∗j (T ) is the reward of the best fixed action in hindsight, with respect to the sequence of

prices p1, . . . ,pT and probabilities qb
1
, . . . ,qbT as chosen by an adversary. Let r ∗j be the report that

leads to achieving R∗j , i.e.

R∗j (T ) ≜ max

k ∈{1, ...,V }

T∑
t=1

uj ,t (k)

r ∗j ≜ argmax

k ∈{1, ...,V }

T∑
t=1

uj ,t (k)

Our goal will be to show that Equation (23) holds. Our proof technique will mostly follow standard

arguments. In this proof – and this proof only – we letw denote the unnormalized weights that

may not sum to 1, and note they induce probability distributions ρ by normalizing each weight by

the sum of the weights.

First, letWj ,t =
∑V

k=1w j ,t (k). By definition:

Wj ,t+1

Wj ,t
=

∑V
k=1w j ,t+1(k)∑V
k=1w j ,t (k)

=

V∑
k=1

w j ,t (k)e
ηµbj ,t (k )∑V

k=1w j ,t (k)

We will write ρ j ,t (k) ≜ w j ,t (k)/
∑V

k=1w j ,t (k) as the probability distribution induced by weights

w j ,t (k), for all k . We can rewrite the above as

Wj ,t+1

Wj ,t
=

V∑
k=1

ρ j ,t (k)e
ηµbj ,t (k ).

For η ≤ 1

V and ξ ≤ 1, we have ηµ j ,t (k) ≤ 1 for all k . Using the upper bound that ex ≤ 1 + x + x2

for all x ∈ [0, 1], we obtain that

Wj ,t+1

Wj ,t
≤ 1 +

V∑
k=1

ρ j ,t (k) · ηµ
b
j ,t (k) +

V∑
k=1

ρ j ,t (k) · η
2µbj ,t (k)

2

Then

ln

Wj ,t+1

Wj ,t
≤ ln

(
1 + η

V∑
k=1

ρ j ,t (k)µ
b
j ,t (k) + η

2

V∑
k=1

ρ j ,t (k)µ
b
j ,t (k)

2

)
≤ η

V∑
k=1

ρ j ,t (k)µ
b
j ,t (k) + η

2

V∑
k=1

ρ j ,t (k)µ
b
j ,t (k)

2,

(24)

where we have used the fact that ln (1 + x) ≤ x for x > −1 (which holds in this case because payoffs

are nonnegative given buyers (sellers) never bid above (below) their valuations). Now noting that



Wj ,t+1
Wj ,1

=
Wj ,t+1
Wj ,t

Wj ,t
Wt−1
. . .

Wj ,2
Wj ,1

, we can express

ln

Wj ,t+1

Wj ,1
= ln

Wj ,t+1

Wj ,t
. . .

Wj ,2

Wj ,1
=

t∑
τ=1

ln

Wτ+1, j

Wτ , j

And applying Inequality (24), we have that

ln

Wj ,t+1

Wj ,1
≤ η

t∑
τ=1

V∑
k=1

ρ j ,τ (k)µ
b
j ,τ (k) + η

2

t∑
τ=1

V∑
k=1

ρ j ,τ (k)µ
b
j ,τ (k)

2
(25)

On the other hand, sinceWj ,t+1 ≥ w j ,t (k) for all k , including for the best action in hindsight

k = r ∗j , we have that

ln

Wj ,t+1

Wj ,1
≥ ln

w j ,t+1(r
∗
j )

Wj ,1
= ln(eηµ

b
j ,t (r

∗
j )w j ,t (r

∗
j )/Wj ,1)

= ln(eηµ
b
j ,t (r

∗
j )eηµ

b
j ,t−1(r

∗
j )w j ,t−1(r

∗
j )) − lnWj ,1

= ....

= ln

(
t∏

τ=1

eηµ
b
j ,τ (r

∗
j )w j ,1(r

∗
j )

)
− lnWj ,1.

Now, using the fact that the weights can be initialized withw j ,1(k) = 1 ∀k andWj ,1 = V , this gives

ln

Wj ,t+1

Wj ,1
≥ η

t∑
τ=1

µbj ,τ (r
∗
j ) − lnV (26)

But now combining Inequalities (25) and (26) gives:

η
t∑

τ=1

µbj ,τ (r
∗
j ) − lnV ≤ η

t∑
τ=1

V∑
k=1

ρ j ,τ (k)µ
b
j ,τ (k) + η

2

t∑
τ=1

V∑
k=1

ρ j ,τ (k)µ
b
j ,τ (k)

2

Now notice that

∑V
k=1 ρ j ,τ (k)µ

b
j ,τ (k) = Ek [µ

b
j ,τ (k)]. So rearranging and letting t = T , we have that

T∑
τ=1

µbj ,τ (r
∗
j ) −

T∑
τ=1

Ek [µ
b
j ,τ (k)] ≤

lnV

η
+ η

T∑
τ=1

Ek [µ
b
j ,τ (k)

2] ≤
lnV

η
+ ηTV 2

where the inequality follows from the fact that µbj ,t is bounded by max(V , ξ ) = V (remembering

that uj ,t ≤ V ). But since µbj ,τ (k) ≥ uj ,τ (k), we have that

R∗j (T ) −
T∑
τ=1

Ek [µ
b
j ,τ (k)] =

T∑
τ=1

uj ,τ (r
∗
j ) −

T∑
τ=1

Ek [µ
b
j ,τ (k)]

≤

T∑
τ=1

µbj ,τ (r
∗
j ) −

T∑
τ=1

Ek [µ
b
j ,τ (k)]

≤
lnV

η
+ ηTV 2



Further, since µbj ,τ (k) ≤ ubj ,t (k) + ξ , we also have that

R∗j (T ) −
T∑
τ=1

E[µbj ,τ (kj ,τ )] =
T∑
τ=1

uj ,τ (r
∗
j ) −

T∑
τ=1

Ek [µ
b
j ,τ (k)]

≥

T∑
τ=1

µbj ,τ (r
∗
j ) −

T∑
τ=1

Ek [µ
b
j ,τ (k)] − ξT

≥

T∑
τ=1

uj ,τ (r
∗
j ) −

T∑
τ=1

Ek [uj ,τ (k)] − ξT

= R∗j (T ) −
T∑
t=1

E[R j ,t ] − ξT .

Combining the last two inequalities, we get

R∗j (T ) −
T∑
t=1

E
[
R j ,t

]
≤ ξT +

lnV

η
+ ηV 2T ,

as desired. □

We can now conclude the proof, noting that Lemma 6 gives that the total regret of Algorithm 4

over T rounds for agent j is bounded by:

Regret ≤ ξT +
lnV

η
+ ηV 2T

Choose η = 1

V
√
T
and ξ = 1√

T
. Then we have that

Regret ≤
√
T +V lnV

√
T +

1

V
√
T
V 2T =

√
T +V lnV

√
T +V

√
T .

Then average regret can be bounded as:

1

T
Regret ≤

1

√
T
+
V lnV
√
T
+

V
√
T
= O

(
1

√
T

)
.

That is, average regret vanishes as T →∞.

G.2 Proof of Theorem 4
To prove Theorem 4, we will examine how the OPT

′
sellers with the lowest values and the OPT

′

buyers with the highest values update their weights. To do so, we will need the following definition:

Definition 11 (Highest (resp. lowest) value buyers (resp. sellers)). Letnb (v) =
∑nb

i=1 1[v
b
j ≥

v] be the number of buyers with value bigger than or equal tov , and let νb = max{v : nb (v) ≥ OPT′}.
Similarly, let ns (v) =

∑ns
i=1 1[v

b
j ≤ v] be the number of sellers with value smaller than or equal to v ,

and let ν s = min{v : ns (v) ≥ OPT′}.

We note the following property of νb ,ν s :

Claim 7. Suppose OPT′ > 0. Then,
νb ≥ ν s + 2.

Proof. By definition of OPT
′
, there exists a price p⋆ such that at least OPT

′
buyers have value

above or equal to p⋆ + 1 and OPT
′
sellers below or equal to p⋆ − 1. But then, ν s ≤ p⋆ − 1 and

νb ≥ p⋆ + 1, which concludes the proof. □



First of all, we show that if a given price p is picked infinitely many times, every agent j with
vbj > p sees their probability of bidding more than p converge to 1. This is the object of Corollary 1,

whose proof relies on Lemmas 6 and 7 below. We state the Lemmas for a buyer j and note that

similar results hold for a seller i as well.

Lemma 6. For all t , for all p ∈ [V ], for all j ∈ [nb ],

vbj∑
k=p

wb
j ,t+1(k) ≥

vbj∑
k=p

wb
j ,t (k).

Proof. If

∑
k<p w

b
j ,t (k) = 0, the result is immediate: it must be that for all k < p,wb

j ,t (k) = 0, so

by exponential update,wb
j ,t+1(k) = 0, leading to

∑
k<p w

b
i ,t+1(k) = 0. In turn,∑

k≥p

wb
j ,t+1(k) =

∑
k≥p

wb
j ,t (k) = 1.

We now focus on the case when

∑
k<p w

b
j ,t (k) > 0. Remember that pt is the optimal price at time t .

If p ≤ pt ,∑
k≥p w

b
j ,t+1(k)∑

k<p w
b
j ,t+1(k)

=

∑pt−1
k=p wb

j ,t (k) +
∑

k≥pt w
b
j ,t (k) exp(ηq

b
t (v

b
j − pt ))∑

k<p w
b
j ,t (k)

≥

∑
k≥p w

b
j ,t (k)∑

k<p w
b
j ,t (k)

.

When p > pt , ∑
k≥p w

b
j ,t+1(k)∑

k<p w
b
j ,t+1(k)

=

∑
k≥p w

b
j ,t (k) exp(ηq

b
t (v

b
j − pt ))∑

k<pt w
b
j ,t (k) +

∑p−1
k=pt

wb
j ,t (k) exp(ηq

b
t (v

b
j − pt ))

≥

∑
k≥p w

b
j ,t (k) exp(ηq

b
t (v

b
j − pt ))(∑

k<pt w
b
j ,t (k) +

∑p−1
k=pt

wb
j ,t (k)

)
exp(ηqbt (v

b
j − pt ))

=

∑
k≥p w

b
j ,t (k)∑

k<p w
b
j ,t (k)

.

Since ∑
k≥p

wb
j ,t+1(k) +

∑
k<p

wb
j ,t+1(k) = 1,

∑
k≥p

wb
j ,t (k) +

∑
k<p

wb
j ,t (k) = 1,

we have that for all p, ∑
k≥p w

b
j ,t+1(k)

1 −
∑

k≥p w
b
j ,t+1(k)

≥

∑
k≥p w

b
j ,t (k)

1 −
∑

k≥p w
b
j ,t (k)

.

This in particular implies that for all p,∑
k≥p

wb
j ,t+1(k)

©­«1 −
∑
k≥p

wb
j ,t (k)

ª®¬ ≥
∑
k≥p

wb
j ,t (k)

©­«1 −
∑
k≥p

wb
j ,t+1(k)

ª®¬ ,
hence ∑

k≥p

wb
j ,t+1(k) ≥

∑
k≥p

wb
j ,t (k).

□



Lemma 7 (Update moves mass up by a constant amount). Suppose at time t , at least one buyer
and one seller can trade.

There exists a constant C(ε) > 1 such that for any buyer j with vbj > pt and
∑vbj

k=pt
wb
j ,t (k) ≤ 1 − ε ,

we have that ∑vbj
k=pt

wb
j ,t+1(k)∑vbj

k=pt
wb
j ,t (k)

≥ C(ε).

Proof. Let Xt (p) be the probability that buyer j bids at least p on round t . For simplicity of

notations, we omit the j subscripts in the proof.

Trivially:

Xt (pt ) =

vbj∑
k=pt

wb
j ,t (k).

Now, by the definition of exponential weights, we have that

X t+1(pt ) =
eηq

b
t (v

b
j −pt )Xt (pt )

eηq
b
t (v

b
j −pt )Xt (pt ) + (1 − Xt (pt ))

since the buyer updateswb
j ,t (k)with e

ηqbt (v
b
j −pt ) for all bids k above pt up to vbj , and updates weights

on bids k ≤ pt with eηq
b
t ·0 = 1. It immediately follows that

X t+1(pt )

Xt (pt )
=

eηq
b
t (v

b
j −pt )

Xt (pt )(e
ηqbt (v

b
j −pt ) − 1) + 1

Now by assumption, Xt (pt ) < 1 − ε , so

X t+1(pt )

Xt (pt )
>

eηq
b
t (v

b
j −pt )

(1 − ε)(eηq
b
t (v

b
j −pt ) − 1) + 1

=
eηq

b
t (v

b
j −pt )

eηq
b
t (v

b
j −pt ) − εeηq

b
t (v

b
j −pt ) + ε

=
eηq

b
t (v

b
j −pt )

eηq
b
t (v

b
j −pt ) + ε(1 − eηq

b
t (v

b
j −pt ))

=
1

1 − ε(1 − 1

e
ηqbt (v

b
j −pt )
)

Using the fact that qbt ≥
1

nb , as there are at most nb buyers and at least one possible seller to trade

with, and the fact that vbj − pt ≥ 1, we get that

eη/n
b
≤ eηq

b
t (v

b
j −pt ).

In turn,

X t+1(pt )

Xt (pt )
≥

1

1 − ε(1 − e−η/nb )
> 1.

Letting C(ε) = 1

1−ε (1−e−η/nb )
is enough to conclude the proof. □



Corollary 1. Pick any buyer j, and let p < vbj . Let Nt (p) be the number of times price p is picked
by the mechanism so that at least one trade is possible at p, up until time t . In other words,

Nt (p) =
∑
t ′≤t

1
[
Πt ′

(
p, rst ′, r

b
t ′

)
≥ 1

]
If limt→∞ Nt (p) = +∞, then

lim

t→∞
Pr[rbj ,t ≥ p] = 1

Proof. Fix ε > 0. At time t , by applying Lemma 7 and Lemma 6 repeatedly, we have that

Pr[rbj ,t ≥ p] ≥ min{1 − ε,C(ε)Nt (p)
Pr[rbj ,0 ≥ p]}

≥ min{1 − ε,C(ε)Nt (p) 1

V
}

where the last inequality follows because the initial weights are uniform over all bids. By assumption,

there exists T such that for all t ≥ T : Nt (p) ≥
log((1−ε )(V ))

logC(ε ) , and consequently,

Pr[rbj ,t ≥ p] ≥ 1 − ε .

Since this holds for every ε > 0, the limit statement follows. □

We note that a similar Corollary exists for sellers as well. Now, we need to show that there is

a price that clears benchmark OPT
′
and is chosen by the mechanism infinitely often. This is the

object of Lemma 8, whose proof relies on Claim 8. Once again, we state the Claim only for buyers

and note that a similar result for sellers as well.

Claim 8. For every buyer j, for all t , 1

V ≤ wb
j ,t (v

b
j ) ≤

1

2
.

Proof. At time step t , if pt > vbj , agent j does not update any weight. If pt ≤ vbj , it is easy to see

that the weight on vbj cannot decrease in the next round. Indeed, for any k such that pt ≤ k ≤ vbj ,
we have that

wb
j ,t+1(k) = w

b
j ,t (k) ·

exp

(
ηqbt (v

b
j − pt )

)
∑

k<pt w
b
j ,t (k) +

∑
k≥pt w

b
j ,t (k) exp

(
ηqbt (v

b
j − pt )

)
= wb

j ,t (k) ·
1

exp

(
−ηqbt (v

b
j − pt )

) ∑
k<pt w

b
j ,t (k) +

∑
k≥pt w

b
j ,t (k)

= wb
j ,t (k) ·

1

exp

(
−ηqbt (v

b
j − pt )

) ∑
k<pt w

b
j ,t (k) + 1 −

∑
k<pt w

b
j ,t (k)

= wb
j ,t (k) ·

1

1 −

(
1 − exp

(
−ηqbt (v

b
j − pt )

)) ∑
k<pt w

b
j ,t (k)

≥ wb
j ,t (k),

where the last step follows from noting that both 1 − exp

(
−ηqbt (v

b
j − pt )

)
,
∑

k<pt w
b
j ,t (k) ≤ 1. As

such,wb
j ,t (v

b
j ) is non-decreasing in t , sowb

j ,t (v
b
j ) ≥ wb

j ,0(v
b
j ) =

1

V .

Let us now prove the second inequality. Note that at any time step t , let pt be the price chosen
by the mechanism. When pt > vbj , j does not update his weight. Similarly, when pt = vbj , the

exponential update rule is the same forwb
j ,t (v

b
j ) andw

b
j ,t (v

b
j − 1) and given by exp

(
ηqbt (v

b
j − pt )

)
=



exp (0) = 1. When pt < vbj , both wb
j ,t (v

b
j ) and wb

j ,t (v
b
j − 1) are multiplied by the same amount

exp

(
ηqbt (v

b
j − pt )

)
. Therefore, it immediately follows by induction thatwb

j ,t (v
b
j ) = w

b
j ,t (v

b
j − 1) for

all t . In particular, this implieswb
j ,t (v

b
j ) ≤ 1/2, aswb

j ,t (v
b
j ) +w

b
j ,t (v

b
j − 1) ≤ 1. □

Lemma 8 (Good event). Suppose OPT′ > 0, and let

γ ≜

(
1

V

)
1+ |nb (ν s+1) | |ns (νb−1) |

·

(
1

2

)(nb−|nb (ν s+1) |)(ns−|ns (νb−1) |)
> 0.

At any time t , ν s < pt < νb and at least one trade is possible with probability at least γ .

Proof. By Claim 8, we have that with probability at least(
1

V

) |nb (ν s+1) | |ns (νb−1) |
·

(
1

2

)(nb−|nb (ν s+1) |)(ns−|ns (νb−1) |)
= Vγ ,

all buyers with value vbj > ν s bid their value, all buyers with value vbj ≤ ν s bid strictly below their

value, all sellers with value vsi < νb bid their value, and all sellers with vsi ≥ νb bid strictly more

than their value. In particular, since ν s < νb , all buyers with value vbj ≥ νb bid their value and

all sellers with value vsi ≤ ν s bid their value. By definition of νb and ν s , there are at least OPT′

such buyers and sellers, so setting any price p satisfying ν s ≤ p ≤ νb clears OPT
′
shares at least.

On the other hand, any price p > νb and any price p < ν s cannot clear OPT′ shares. Therefore,
ν s ≤ pt ≤ νb . Further, since all buyers with value vbj ≥ νb and all sellers with value vsi ≤ ν s bid

their values, and νb ≥ ν s , at least OPT′ ≥ 1 trades happen at price pt .
When ν s < p < νb for all optimal prices, this is enough to conclude the proof. Now, suppose

p = νb is an optimal price at time t . By construction, no seller bids νb . As such, the number of sellers

with bids under p and the number of sellers with bids under p − 1 are the same, and p − 1 = νb − 1
clears at least as many shares as p, hence is optimal at time t . Because pt is chosen uniformely at

random among the set of optimal prices, and there are at most V optimal prices, p − 1 is picked
with probability at least

1

V , and satisfies ν s < p − 1 < νb by Claim 7. Similarly, if p = ν s is optimal,

then so is p + 1 < νb , and it is picked by the mechanism with probability at least
1

V . This concludes

the proof. □

We are now ready to put everything together, and show Theorem 4.

Proof of Theorem 4. The case when OPT
′ = 0 is immediate. So let us assumeOPT

′ > 0. Lemma

8 shows that at any given round, there is a constant probability γ > 0 to pick pt ∈ (ν
s ,νb ) and

realize at least one trade at that price. As such, as t → +∞, the number of times the mechanism

picks a price in (ν s ,νb ) such that a trade is realized also tends to infinity. In particular, by the

pigeonhole principle, there exists a price p⋆ ∈ (ν s ,νb ) such that

lim

t→∞
Nt (p

⋆) = +∞.

By Corollary 1, for every buyer j ∈ nb (νb ),

lim

t→∞
Pr[rbj ,t ≥ p⋆] = 1,

and similarly, for every seller i ∈ ns (ν s ),

lim

t→∞
Pr[rsi ,t ≤ p⋆] = 1.



Since there are at least OPT
′
buyers in nb (νb ) and OPT

′
sellers in ns (ν s ), we have that

1 ≥ Pr

[
Πt

(
pt , rs , rb

)
≥ OPT

′
]
≥

∏
j ∈nb (νb )

Pr[rbj ,t ≥ p⋆] ·
∏

i ∈ns (ν s )

Pr[rsi ,t ≤ p⋆],

which concludes the proof. □

G.3 Proof of Theorem 5
The proof is similar to that of Theorem 4, and is given below. We start by showing in Corollary 2

that if a price p is picked by the mechanism infinitely many times, every buyer with value at least

p learns to bid higher than p with probability going to 1.

Lemma 9. For all t , for all p ∈ [V ], for all buyers j,

vbj∑
k=p

wb
j ,t+1(k) ≥

vbj∑
k=p

wb
j ,t (k).

Proof. The proof is identical to that of Lemma 6. □

We then characterize by howmuch the weight allocated to bids above the chosen pricept increase
for a buyer j, at every time step t :

Lemma 10 (Update moves mass up by a constant amount). Suppose at time t , at least one
buyer and one seller can trade. There exists a constantC(ε) > 1 such that for any buyer j with vbj ≥ pt

and
∑vbj

k=pt
wb

j ,t (k) ≤ 1 − ε , we have that∑vbj
k=pt

wb
j ,t+1(k)∑vbj

k=pt
wb

j ,t (k)

≥ C(ε).

Proof. Note that when pt < vbj , we have by Lemma 7 that∑vbj
k=pt

wb
j ,t+1(k)∑vbj

k=pt
wb

j ,t (k)

≥
1

1 − ε(1 − e−η/nb )
> 1.

Now, when pt = vbj note that∑vbj
k=pt

wb
j ,t+1(k)∑vbj

k=pt
wb

j ,t (k)

=
wb

j ,t+1(v
b
j )

wb
j ,t (v

b
j )
= exp

(
ηqbt ξ

)
.

In particular, as there is at least one possible trade, we have that qbt ≥ 1/nb , hence∑vbj
k=pt

wb
j ,t+1(k)∑vbj

k=pt
wb

j ,t (k)

≥ exp

(
ηξ

nb

)
.

Letting C(ε) = min

(
1

1−ε (1−e−η/nb )
, exp

(
ηξ
nb

))
is enough to conclude the proof. □



Corollary 2. Pick any buyer j , and let p ≤ vbj . Let Nt (p) be the number of times price p is picked
and at least one trade is possible at price p, up until time t . If limt→∞ Nt (p) = +∞, then

lim

t→∞
Pr[rbj ,t ≥ p] = 1

Proof. This is identical to the proof of Corollary 1. □

Second, we need to show that there is a price that clears benchmark OPT
′
and is chosen by the

mechanism infinitely often.

Lemma 11 (Good event). With probability at least
(
1

V

)nb+ns , all agents bid their valuation.
Proof. By the same proof as Corollary 8, for every agent j and for all t , 1

V ≤ wb
j ,t (v

b
j ). This is

enough to prove the lemma. □

We are now ready to put everything together, and show Theorem 5.

Proof of Theorem 5. Suppose OPT > 0 (otherwise the result is immediate). When all agents

bid their values, the mechanism selects a price that executes OPT ≥ 1 trades. Lemma 11 shows this

happens with constant probability at any given round, and as such happens infinitely often when

the number of rounds goes to infinity. By the pigeonhole principle, there exists a price p⋆ such that

there are at least OPT buyers (resp. sellers) with value at least (resp. at most) p⋆, and such that

lim

t→∞
Nt (p

⋆) = +∞.

By Corollary 2, for any buyer with vbj ≥ p⋆,

lim

t→∞
Pr[rbj ,t ≥ p⋆] = 1,

and similarly, for every seller i with vsi ≤ p⋆,

lim

t→∞
Pr[rsi ,t ≤ p⋆] = 1.

In turn, since

1 ≥ Pr

[
Πt

(
pt , rst , r

b
t

)
≥ OPT

]
≥

∏
j ∈[nb ]: vbj ≥p

⋆

Pr[rbj ,t ≥ p⋆] ·
∏

i ∈[ns ]: vsi ≤p
⋆

Pr[rsi ,t ≤ p⋆],

we have

lim

t→+∞
Pr

[
Πt

(
pt , rst , r

b
t

)
≥ OPT

]
= 1.

□

G.4 Proof of Theorem 6
We start by noting that in the private case, the weights are still non-decreasing over time.

Lemma 12. For all t , for all p ∈ [V ], for all buyers j,

vbj∑
k=p

wb
j ,t+1(k) ≥

vbj∑
k=p

wb
j ,t (k).

One distinction compared to the non-private case arises with respect to the amount by which

the weights above pt are updated. This amount depends on qbt , which is a random variable over

the randomness of private computation of the selection probability. We note that conditionally on
qbt ≥ 1/nb , Lemma 7 carries through, as formalized below:



Lemma 13 (Update moves mass up by a constant amount). Suppose at time t , at least one
buyer and one seller can trade and that qbt > 1/nb . There exists a constant C(ε) > 1 such that for any

buyer j with vbj ≥ pt and
∑vbj

k=pt
wb

j ,t (k) ≤ 1 − ε ,∑vbj
k=pt

wb
j ,t+1(k)∑vbj

k=pt
wb

j ,t (k)

≥ C(ε).

We now fix a price p. We show that for one such p, if the event where p is the price picked by

the mechanism and qbt ≥ 1/n happens infinitely often, then all bidders with valuation equal to or

larger than p learn to bid higher than p with probability that goes to 1.

Lemma 14. Pick any buyer j, and let p ≤ vbj . Let Nt (p) be the number of times price p is picked by
the mechanism so that at least one trade is possible at p and qb > 1/nb , up until time t . In other words,

Nt (p) =
∑
t ′≤t

1
[
Πt ′

(
p, rst ′, r

b
t ′

)
≥ 1,qbt ′ >

1

nb

]
If limt→∞ Nt (p) = +∞, then limt→∞ Pr[rbj ,t ≥ p] = 1.

We note that the event in which all agents bid their valuation and the mechanism (despite the

randomness due to privacy) picks an optimal price p and releases qb ≥ 1/nb , qs ≥ 1/ns happens
with at least constant probability (independent of the time dimension of the problem), hence

infinitely many times when the time horizon goes to infinity:

Lemma 15 (Good event). Suppose OPT ≥ 1. At any round t , with probability at leastC
(
1

V

)nb+ns+1
for some constant C > 0: all buyers bid their valuations, qbt > 1/nb , qst > 1/ns , and the chosen price
pt is an optimal price that clears OPT shares.

Proof. We have shown before in the proof of Lemma 11 that with probability at least V −(n
b+ns )

every agent bids their valuation.

In the rest of the proof, we condition on all agents bidding their valuations in the current round

t . Conditional on this, we show that with constant probability, simultaneously: qbt > 1/nb , and
qst > 1/ns . Recall from Algorithm 1 that in each round t , given the selected price pt , we have

qbt = min

©­­«1,
(̂st )+(

b̂t −
ln(1/α )

ε

)
+

ª®®¬ , qst = min

©­­«1,
(
b̂t

)
+(̂

st −
ln(1/α )

ε

)
+

ª®®¬ .
By the accuracy guarantees of the Laplace mechanism and the fact that Laplace noise has positive

value with probability 1/2, we have that with constant probabilityC (for someC that only depends

on α and ε but not on t ), the 4 following events simultaneously hold:

(1)

(
b̂t −

ln(1/α )
ε

)
+
≤

∑
j ∈B 1

[
vbj ≥ pt

]
≤ nb ,

(2) b̂t ≥
∑

j ∈B 1
[
vbj ≤ pt

]
≥ OPT ≥ 1,

(3)

(̂
st −

ln(1/α )
ε

)
+
≤

∑
i ∈S 1

[
vsi ≤ pt

]
≤ ns ,

(4) ŝt ≥
∑

i ∈S 1
[
vsi ≤ pt

]
≥ OPT ≥ 1, noting that at least one trade is possible at price pt .



Using the above inequalities, we obtain that with probability C ,

qbt = min

©­­«1,
(̂st )+(

b̂t −
ln(1/α )

ε

)
+

ª®®¬ ≥ min

(
1,

1

nb

)
≥

1

nb

qst = min

©­­«1,
(
b̂t

)
+(̂

st −
ln(1/α )

ε

)
+

ª®®¬ ≥ min

(
1,

1

ns

)
≥

1

ns
.

To finish the proof, we just need to show that, conditional on all agents bidding their valuations

in the current round t , with probability at least 1/V , pt – the price selected when every agent bids

their valuation – is an optimal price. Note there exists a price p⋆t that is optimal for round t , i.e.

such that Πt (p
⋆
t , v

s , vb ) ≥ Πt (p, vs , vb ) for all p. By the exponential mechanism, this price p⋆t is

selected with probability

exp

(
εΠt (p

⋆
t , v

s , vb )/2
)∑V

p=1 exp
(
εΠt (p, vs , vb )/2

) ≥ exp

(
εΠt (p

⋆
t , v

s , vb )/2
)∑V

p=1 exp
(
εΠt (p

⋆
t , vs , vb )/2

) = 1

V
.

□

We are now ready to put everything together, and show Theorem 6.

Proof of Theorem 6. Let us for simplicity call:

f (ε,α) ≜
2 ln(V /α)

ε
−
2 ln (1/α)

ε
−

√
6

(
OPT +

ln(1/α)

ε

)
ln (1/α)

Suppose OPT > 0 (otherwise the result is immediate). By Lemma 15 that shows that with constant

probability (independent of time) in every round, the mechanism picks an optimal price and

qb ,qs ≥ 1

n , this event must happen infinitely many times. By the pigeonhole principle, there exists

an optimal price p⋆ such that infinitely many times, p⋆ is picked by the mechanism with qb ,qs ≥ 1

n .

In turn, all buyers j with vbj ≥ p⋆ and all sellers i with vsi ≤ p⋆ (there are at least OPT of them,

since p⋆ is optimal) learn to bid above, respectively below price p⋆ with probability that tends to 1

as t goes to infinity, by Lemma 14. Formally, for every buyer j with vbj ≥ p⋆,

lim

t→∞
Pr[rbj ,t ≥ p⋆] = 1,

and similarly, for every seller i with vsi ≤ p⋆, we have that

lim

t→∞
Pr[rsi ,t ≤ p⋆] = 1.

Hence

lim

t→∞

∏
j ∈[nb ]: vbj ≥p

⋆

Pr[rbj ,t ≥ p⋆] ·
∏

i ∈[ns ]: vsi ≤p
⋆

Pr[rsi ,t ≤ p⋆] = 1

and consequently, there exists N (α) large enough such that for all t ≥ N (α),∏
j ∈[nb ]: vbj ≥p

⋆

Pr[rbj ,t ≥ p⋆] ·
∏

i ∈[ns ]: vsi ≤p
⋆

Pr[rsi ,t ≤ p⋆] ≥ 1 − α .



When all buyers with value at least the price and sellers with value at most the price bid between

their valuation and p⋆, the optimal number of shares that can be cleared is OPT. By the accuracy

guarantee of Mechanism 1, it must then be the case that for all t ≥ N (α),

Pr

[
Πt (pt , rst , r

b
t ) ≥ OPT − f (ε,α)

]
≥ (1 − 8α)

∏
j ∈[nb ]: vbj ≥p

⋆

Pr[rbj ,t ≥ p⋆] ·
∏

i ∈[ns ]: vsi ≤p
⋆

Pr[rsi ,t ≤ p⋆]

≥ (1 − 8α)(1 − α)

≥ 1 − 9α .

This concludes the proof. □

The proof for benchmark OPT ′ follows the same argument, and is omitted for simplicity of

exposition.
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