
Proceedings of Machine Learning Research vol 65:1–28, 2017

Predicting with Distributions

Michael Kearns MKEARNS@CIS.UPENN.EDU and Zhiwei Steven Wu WUZHIWEI@CIS.UPENN.EDU

University of Pennsylvania

Abstract
We consider a new learning model in which a joint distribution over vector pairs (x, y) is determined
by an unknown function c(x) that maps input vectors x not to individual outputs, but to entire
distributions over output vectors y. Our main results take the form of rather general reductions from
our model to algorithms for PAC learning the function class and the distribution class separately,
and show that virtually every such combination yields an efficient algorithm in our model. Our
methods include a randomized reduction to classification noise and an application of Le Cam’s
method to obtain robust learning algorithms.
Keywords: PAC learning, distribution learning, learning with classification noise.

1. Introduction

We consider a new variant of the Probably Approximately Correct (PAC) learning framework. In
our model, a joint distribution over vector pairs (x, y) is determined by an unknown target func-
tion c(x) that maps input vectors x not to individual outputs, but to entire distributions over output
vectors y in some large space. This model generalizes settings such as learning with classification
noise or errors, probablistic concepts (where y is a probabilistic but scalar function of x), multiclass
learning (where y is a multi- or vector-valued but deterministic function of x), and settings in which
the output space associated with a classification may be large and complex. It is an instance of a
more general framework in which the distribution of multiple hidden variables — with unknown
but parametric structural dependencies on observable inputs — determines the distribution of ob-
servable outputs. For the special case of a single binary hidden variable, we provide the first formal
learning guarantees in a PAC framework.

As in the standard PAC model, we begin with an unknown binary function or concept c chosen
from a known class C,1 whose inputs x are distributed according to an unknown and arbitrary dis-
tribution. Now, however, the value c(x) determines which of two unknown probability distributions
Pc(x) govern the distribution of y, where P0 and P1 are chosen from a known class of distribu-
tions P . Thus y is distributed according to a mixture model, but the mixture component is given
by a hidden classifier c. The learner does not see explicit labels c(x), but only the resulting (x, y)
pairs. The goal is to learn a hypothesis model that consists of a hypothesis h that is a {0, 1}-valued
function, and two probability distributions P̂0 and P̂1 from the class P . Given any input x, the
model will predict the vector y to be drawn from the distribution P̂h(x) (and hence predict with
distribution P̂h(x)). Our objective is to minimize the conditional Kullback-Leibler (KL) divergence

Ex
[
KL(Pc(x)||P̂h(x))

]
, rather than simply the KL divergence to the mixture. We thus refer to our

model as Predicting with Distributions (PwD).

1. We leave the consideration of multi- or real-valued functions c(x) to future work.

c© 2017 M. Kearns & Z.S. Wu.

KEARNS WU

One of our primary motivations is composition and reducibility across different learning models
— in this case, models for classification and models for distribution learning. Within the stan-
dard PAC (classification) model, there is a rich theory of reducibility between specific learning
problems (Pitt and Warmuth, 1990; Kearns and Valiant, 1994), between classes of learning prob-
lems (Schapire, 1990; Kearns, 1998), as well as composition theorems allowing the creation of more
complex learning algorithm from simpler ones (Kearns et al., 1994a). Less common are results al-
lowing one to assemble algorithms with provable performance guarantees from constituents that
are solving different types of learning problems. A natural starting point for such an investigation
is with the standard PAC supervised learning model, and its distributional analogue (Kearns et al.,
1994b), since these models are each already populated with a number of algorithms with strong
theoretical guarantees.

Our main technical interest is thus in conditions permitting computationally efficient learning
algorithms composed of extant classification and distribution learning algorithms. Informally, our
results imply that for every concept class C known to be PAC learnable with classification noise (An-
gluin and Laird, 1987), and almost every class P known to be PAC learnable in the distributional
sense of Kearns et al. (1994b), PwD problems given by (C,P) are learnable in our framework.

1.1. Our Results and Techniques

Our results take the form of reductions from our model to algorithms for PAC learning the concept
class C and the distribution class P separately.2 The primary conceptual step is in identifying the
natural technical conditions that connect these two different classes of learning problems. The
centerpiece in this “bridge” is the notion of a distinguishing event for two probability distributions
P0, P1 ∈ P , which is an event whose probability is “signficantly” (inverse polynomially) different
under P0 and P1, provided these distributions are themselves sufficiently different.

Our first result shows that a distinguishing event can be used, via a particular randomized map-
ping, to turn the observed y into a noisy binary label for the unknown concept c. This will serve as a
building block for us to combine efficient PAC learners from classification and distribution learning.

We then use distinguishing events to provide two different reductions of our model to PAC
classification and distribution learning algorithms. In the “forward” reduction, we assume the dis-
tribution class P admits a small set of candidate distinguishing events. We show that such candidate
events exist and can be efficiently constructed for the class of spherical Gaussians and product dis-
tributions over any discrete domain. By searching and verifying this set for such an event, we first
PAC learn c from noisy examples, then use the resulting hypothesis to “separate” P0 and P1 for a
distributional PAC algorithm for the class P . This gives:

Theorem 1 (Informal Statement, Forward Reduction) Suppose that the concept class C is PAC
learnable under classification noise, and the distribution class P is PAC learnable and admits a
polynomial-sized set of distinguishing events. Then the joint class (C,P) is PwD-learnable.

In the “reverse” reduction, we instead first separate the distributions, then use their approxi-
mations to learn c. Here we need a stronger distribution-learning assumption, but no assumption
on distinguishing events. More precisely, we assume that mixtures of two distributions from P

2. Throughout the paper, all PAC learning algorithms (for both concept class C and distribution classP) in our reduction
runs in polynomial time, since we are primarily concerned with computational efficiency (as opposed to sample
complexity).

2

PREDICTING WITH DISTRIBUTIONS

(which is exactly what the unconditioned y is) are PAC learnable. Once we have identified the
(approximate) mixture components, we show they can be used to explicitly construct a specialized
distinguishing event, which in turn lets us create a noisy label for c. This leads our result in the
reverse reduction:

Theorem 2 (Informal Statement, Reverse Reduction) Suppose that the concept class C is PAC
learnable under classification noise, and any mixture of two distributions from P is PAC learnable.
Then the joint class (C,P) is PwD-learnable.

In both reductions, we make central use of Le Cam’s method to show that any PAC concept or
distribution learning algorithm must have a certain “robustness” to corrupted data. Thus in both the
forward and reverse directions, by controlling the accuracy of the model learned in the first step, we
ensure the second step of learning will succeed.

Since practically every C known to be PAC learnable can also be learned with classification
noise (either directly or via the statistical query framework (Kearns, 1998), with parity-based con-
structions being the only known exceptions), and the distribution classes P known to be PAC learn-
able have small sets of distinguishing events (such as product distributions), and/or have mixture
learning algorithms (such as Gaussians), our results yield efficient PwD algorithms for almost all
combinations of PAC classification and distribution learning algorithms known to date.

1.2. Related Works

At the highest level, our model falls under the framework of Haussler (1992), which gives a decision-
theoretic treatment of PAC-style learning (Valiant, 1984) for very general loss functions; our model
can be viewed as a special case in which the loss function is conditional log-loss given the value
of a classifier. Whereas Haussler (1992) is primarily concerned with sample complexity, our focus
here is on computational complexity and composition of learning models.

At a more technical level, our results nicely connect two well-studied models under the PAC
learning literature. First, our work is related to the results in PAC learning under classification
noise (Angluin and Laird, 1987; Decatur, 1997; Kearns, 1998), and makes use of a result by Ralaivola
et al. (2006) that established the equivalence of learning under (standard) classification noise (CN)
and under class-conditional classification noise (CCCN). Our work also relies on the PAC model for
distribution learning (Kearns et al., 1994b), including a long line of works on learning mixtures of
distributions (see e.g. Dasgupta (1999); Arora and Kannan (2001); Vempala and Wang (2004); Feld-
man et al. (2008)). Our new model of PwD learning, in particular, can be viewed as a composition
of these two models.

Our model is also technically related to the one of co-training (Blum and Mitchell, 1998) in
that the input x and the output y give two different views on the data, and they are conditionally
independent given the unknown label z = c(x), which is also a crucial assumption for co-training
(as well as various other latent variable models for inference and learning). However, our model is
also fundamentally different from co-training in two ways. First, in our model, there is not a natural
target Boolean function that maps y to the label z. For example, any outcome y can be generated
from both distributions P0 and P1. In other words, just using y is not sufficient for identifying the
label z. Second, our learning goal is to predict what distribution the outcome y is drawn from given
the input x, as opposed to predicting the unknown label z.

3

KEARNS WU

2. Preliminaries

2.1. Model: PwD-Learning

LetX denote the space of all possible contexts, and Y denote the space of all possible outcomes. We
assume that all contexts x ∈ X are of some common length n, and all outcomes y ∈ Y are of some
common length k. Here the lengths are typically measured by the dimension; the most common
examples for X are the boolean hypercube {0, 1}n and subsets of Rn ({0, 1}k and Rk for Y).

Let C be a class of {0, 1}-valued functions (also called concepts) over the context space X ,
and P be a class of probability distributions over the outcome space Y . We assume an underlying
distribution D over X , a target concept c ∈ C, and target distributions P0 and P1 in P . Together,
we will call the tuple (c, P0, P1) the target model.

Given any target model (c, P0, P1) and underlying distributionD, our learning algorithm is then
given sample access to the following generative example oracle Gen(D, c, P0, P1) (or simply Gen).
On each call, the oracle does the following (see Figure 1 for an illustration):

1. Draws a context x randomly according to D;

2. Evaluates the concept c on x, and draws an outcome y randomly from Pc(x);

3. Returns the context-outcome pair (x, y).

A hypothesis model is a triple T = (h, P̂0, P̂1) that consists of a hypothesis h ∈ C and two
hypothesis distributions P̂0 and P̂1 ∈ P . Given any context x, the hypothesis model predicts the
outcome y to be drawn from the distribution P̂h(x) (or simply predicts with distribution P̂h(x)). The
goal of our learning algorithm is to output a hypothesis model with high accuracy with respect to
the target model, and the error of any model T is defined as

err(T) = E
x∼D

[
KL(Pc(x)||P̂h(x))

]
where KL denotes Kullback-Leibler divergence (KL divergence).

Our model of Predicting with Distributions learning (PwD-learning) is thus defined as follows.

Definition 3 (PwD-Learnable) Let C be a concept class over X , and P be a class of distributions
over Y . We say that the joint class (C,P) is PwD-learnable if there exists an algorithm L such that
for any target concept c ∈ C, any distribution D over X , and target distributions P0, P1 ∈ P over
Y , and for any ε > 0 and 0 < δ ≤ 1, the following holds: if L is given inputs ε, δ as inputs and
sample access from Gen(D, c, P0, P1), then L will halt in time bounded by poly(1/ε, 1/δ, n, k) and
output a triple T = (h, P̂0, P̂1) ∈ C×P×P that with probability at least 1−δ satisfies err(T) ≤ ε.

Observe that the unconditional distribution over y is a mixture of the target distributions P0 and
P1. In our model, it is not enough to learn the mixture distribution (which is a standard problem in
learning mixtures of distributions). Our learning objective is to minimize the expected conditional
KL divergence, which is more demanding and in general requires a good approximation to the target
concept c over X .

Also note that we have stated the definition for the “proper” learning case in which the hypoth-
esis models lie in the target classes C and P . However, all of our results hold for the more general
case in which they lie in potentially richer classes C′ and P ′.

4

PREDICTING WITH DISTRIBUTIONS

y ∼ P0

x ∼ D

y ∼ P1

c(x) = 0 c(x) = 1

Figure 1: The generative model Gen: (1) first draw a context x from the underlying distribution D,
(2) then evaluate the concept c on x and (3) draw the outcome y from distribution Pc(x).

2.2. Related Learning Models

We now discuss two learning models related to our setting (see the appendix for formal definitions).

CN Learning We first introduce PAC learning under classification noise (CN) (Angluin and Laird,
1987). For any noise rate 0 ≤ η < 1/2, consider the example oracle EX η

CN(c,D) that on each
call draws an example (x, c(x)) randomly according to D, then with probability 1 − η returns the
uncorrupted example (x, c(x)), and with probability η returns the erroneous example (x,¬c(x)).
The concept class C is CN learnable if there exists a polynomial-time algorithm that given sample
access to EX η

CN finds a hypothesis h ∈ C that approximately minimizes the classification error:
err(h) = Prx∼D[c(x) 6= h(x)].

CCCN Learning In a more general noise model called Class-Conditional Classification Noise
(CCCN) proposed by Ralaivola et al. (2006), the example oracle EX η

CCCN has class-dependent
noise rates — that is, the noise rate η0 for the negative examples (c(x) = 0) and the noise rate η1
for the positive examples (c(x) = 1) may be different, and both below 1/2. Moreover, Ralaivola
et al. (2006) show that any class that is learnable under CN is also learnable under CCCN. (See the
appendix for a formal statement).

Distribution Learning We also make use of results from for PAC learning probability distri-
butions (Kearns et al., 1994b). A distribution class P is efficiently learnable if there exists a
polynomial-time algorithm that, given sample access to an unknown target distribution P , outputs
an accurate distribution P̂ such that KL(P ||P̂) ≤ ε for some target accuracy ε. For any distribution
P ∈ P and any point y ∈ Y , we assume that we can evaluate the probability (density) of y assigned
by P (referred to as learning with an evaluator in Kearns et al. (1994b); see the appendix for the
formal definition). We will write P (y) to denote the probability (or density) of point y, and write
P (E) to denote Pry∼P [y ∈ E] for any measurable set E ⊂ Y .

To simplify our analysis, for the remainder of the paper we will make the following assumption
on the class P to ensure that the log-likelihood loss (or log-loss) is bounded in the domain Y . While
this condition may not hold for some natural classes of distributions (e.g. Gaussians), it can be
obtained using standard procedures (for instance, by truncating, or mixing with a small amount of
the uniform distribution; see Feldman et al. (2006) for an example).

5

KEARNS WU

Assumption 4 (Boundedness Assumption) There exists a quantity M that is upper bounded by
poly(k) such that for any distribution P ∈ P and any point y ∈ Y , we have log(1/P (y)) ≤M .

3. CN Learning with Identified Distinguishing Events

In this section, we will introduce a central concept to our framework—distinguishing events. In-
formally, an event E ⊂ Y is distinguishing for distributions P0 and P1 if it occurs with different
probabilities under the measures of P0 and P1. As a consequence, these events are informative
about target concept c that determines which distribution the outcome y is drawn from. We will
rely on such events to create a CCCN learning instance for the target concept c. Thus, whenever the
class C is learnable under CN (and hence learnable under CCCN by Ralaivola et al. (2006)), we can
learn the target concept c under the PwD model using a distinguishing event.

Definition 5 (Distinguishing Event) Let P and Q be distributions over the outcome space Y , and
let ξ > 0. An event E ⊆ Y is ξ-distinguishing for distributions P and Q if |P (E) − Q(E)| ≥ ξ.
We will call ξ the separation parameter for such an event.

We will now show that the knowledge of a distinguishing event between P0 and P1 allows us
to simulate an example oracle EX η

CCCN, and therefore we can learn the concept c with a CCCN
learner. The main technical problem here is to assign noisy labels based on the distinguishing event
so that noise rates η0 and η1 of the oracle are strictly less than 1/2.

Our solution is to construct a randomized mapping from the event to the labels.3 Let us first
introduce some parameters. Let E ⊆ Y be a ξ-distinguishing event for the distributions P0 and P1

for some ξ ∈ (0, 1]. We will write p = P0(E) and q = P1(E). Consider the following algorithm
Lab(p̂, q̂, ξ) that takes parameters p̂, q̂ that are estimates for p and q, and the separation parameter
ξ as inputs, and randomly creates noisy labels for (x, y) pair drawn from Gen:

• Draw an example (x, y) from the oracle Gen.

• If y ∈ E, assign label ` = 1 with probability a1 and ` = 0 with probability a0 = 1 − a1;
Otherwise, assign label ` = 1 with probability b1 and ` = 0 with probability b0 = 1 − b1,
where

a0 = 1/2 +
ξ(p̂+ q̂ − 2)

4(q̂ − p̂)
and b0 = 1/2 +

ξ(p̂+ q̂)

4(q̂ − p̂)
(1)

• Output the labeled example (x, `).

It’s easy to check that both vectors (a0, a1) and (b0, b1) form valid probabilities over {0, 1} (see
the appendix for a proof).

As mentioned, we need to ensure the class-conditional noise rates to be below 1/2. As a first
step, we work out the noise rates of Lab in terms of the true probabilities p and q, and show that
the “estimated” noise rates based on p̂ and q̂ are below (1/2− ξ/4).

3. In the work of Blum and Mitchell (1998), the authors showed that any CN learnable class is also learnable when the
class-conditional noise rates satisfy η0 + η1 < 1. Our construction here will imply a more general result—the class
remains learnable when the noise rates satisfy η0 + η1 6= 1.

6

PREDICTING WITH DISTRIBUTIONS

Lemma 6 Given a fixed ξ-distinguishing event E, the class-conditional noise rates of Lab are

η1 = Pr[` = 0 | c(x) = 1] = qa0+(1−q)b0 and η0 = Pr[` = 1 | c(x) = 0] = pa1+(1−p)b1.

Moreover, given any input estimates (p̂, q̂) for (p, q), the parameters a0, a1, b0 and b1 satisfy:

q̂a0 + (1− q̂)b0 = p̂a1 + (1− p̂)b1 ≤ 1/2− ξ/4.

By Lemma 6, we know that as long as the input estimates p̂ and q̂ are sufficiently close to p and
q, the noise rates will be less than 1/2. To obtain such estimates, we will guess the values of p and
q on a grid of size d1/∆e2 in the range of [0, 1]2, where ∆ ∈ [0, 1] is some discretization parameter.
Note that for some pair of values i, j ∈ [d1/∆e] and i 6= j such that the guesses (p̂, q̂) = (i∆, j∆)
satisfies

p̂ ∈ [p−∆, p+ ∆] and q̂ ∈ [q −∆, q + ∆]

Given such accurate guesses p̂ and q̂, we can then guarantee low noise rates as derived below:

Lemma 7 Fix any ∆ ∈ [0, 1]. Suppose that the estimates p̂ and q̂ satisfy |p − p̂| ≤ ∆ and
|q − q̂| ≤ ∆, then the class-conditional noise rates η0 and η1 for Lab(p̂, q̂, ξ) are upper bounded
by 1/2− ξ/4 + ∆.

Thus, if we choose the discretization parameter ∆ to be below ξ/4, then the algorithm Lab(p̂, q̂)
is a valid example oracle EX η

CCCN for some pair of guess estimates. Furthermore, if we apply the
corresponding CCCN learning algorithm to the instantiations of Lab(p̂, q̂) over all guesses (p̂, q̂),
the output list of hypotheses is then guaranteed to contain an accurate one.

Lemma 8 Let ε, δ ∈ (0, 1). Suppose that the concept class C is CN learnable, and there exists
an identified ξ-distinguishing event E for the two target distributions P0 and P1. Then there exists
an algorithm L1 such that when given ε, δ, ξ and E as inputs, it will halt in time bounded by
poly(1/ε, 1/δ, 1/ξ, n), and with probability at least 1− δ, output a list of hypotheses that contains
some h such that err(h) ≤ ε.

In the next two sections, we will use the algorithm in Lemma 8 as a subroutine for learning the
target concept c in the PwD framework.

4. Forward Reduction

Now we will give our forward algorithmic reduction: first use a CN learner to approximate the target
concept c sufficiently well to separate the distributions P0 and P1, then learn each distribution using
a distribution learner.4 We will rely on the result in Section 3 to learn c with a CCCN learner, but
we do not assume the learner has a priori identified a distinguishing event. Instead, we will assume
that the distribution class P admits a parametric class of distinguishing events of polynomial size,
which allows us to distinguish any two distributions in P with large KL-divergence.

4. We use the term “forward” to indicate that the reduction decomposes the learning process into the steps suggested by
the generative model depicted in Figure 1.

7

KEARNS WU

Assumption 9 (Parametric Class of Distinguishing Events) There exists a parametric class of
events E(·) for the distribution class P such that for any γ > 0 and for any two probability distri-
butions P and Q in P with KL(P ||Q) ≥ γ, the class of events E(γ) contains a ξ-distinguishing
event E for P and Q, where ξ ≥ 1/ poly(k, 1/γ). Furthermore, E(γ) can be computed in time
poly(k, 1/γ) and the cardinality |E(γ)| ≤ poly(k, 1/γ).

To illustrate the intuition of how to construct such class of distinguishing events, we will give
a simple example here. In the appendix, we will extend the construction to work for the class of
spherical Gaussian distributions and product distributions over discrete domains.

Simple Example Consider the outcome space Y = {0, 1}k and the class of full-support product
distributions P over Y . Let P,Q ∈ P be two distribution such that KL(P ||Q) ≥ γ. Under the
boundedness condition in Assumption 4, it can be shown that there exists some coordinate l such
that |P l−Ql| ≥ 1/ poly(k, 1/γ), where P l = Pry∼P [yl = 1] andQl = Pry∼Q[yl = 1]. Therefore,
for each coordinate l, the event that the coordinate yj is 1 is a candidate distinguishing event, so the
class of events is simply E = {1[yl = 1] | l ∈ [k]}.

Here is our main result in the forward reduction.

Theorem 10 ((Formal version of Theorem 1)) Under the Assumption 9 thatP admits a paramet-
ric class of events E , the joint class (C,P) is PwD-learnable as long as the concept class C is CN
learnable, and the distribution class P is efficiently learnable.

We will present our reduction in three key steps.

1. First, as a simple extension to Section 3, we can learn a hypothesis h with sufficiently small
error assuming the class of events E contains a distinguishing event for the distributions P0

and P1.

2. Suppose we have learned an accurate hypothesis h from the first step, we can then use h
to separate outcomes y drawn from P0 and P1, and apply the distribution learner to learn
accurate distributions P̂0 and P̂1. This creates an accurate hypothesis model T̂ = (h, P̂0, P̂1).

3. Finally, we need to handle the case where the distributions P0 and P1 are arbitrarily close,
and there is no distinguishing event for us to learn the concept c. We will show in this case it
is not necessary to learn the target concept, and we can directly learn the distributions without
relying on an accurate hypothesis h.

The main technical challenge lies in the second and third steps, where we will apply the distri-
bution learner (for single distributions in P) on samples drawn from a mixture of P0 and P1. To
tackle this issue, we will prove a robustness result for any distribution learner — as long as the
input distribution is sufficiently close to the target distribution, the output distribution by the learner
remains accurate. 5

5. Our result actually extends to any PAC learning algorithm, and we omit the simple details.

8

PREDICTING WITH DISTRIBUTIONS

4.1. CN Learning with a Class of Events

As a first step in our reduction, we will simply extend Lemma 8: for each event E in the event class
E , run the CCCN learner using E as a candidate distinguishing event. If the two target distributions
P0 and P1 have large KL divergence, then one of the output hypotheses h will be accurate with
respect to c:

Lemma 11 Let ε, δ ∈ (0, 1) and γ > 0. Suppose that the class C is CN learnable, the class P
admits a parametric class of events E (as in Assumption 9). If the two distributions P0 and P1 satisfy
max{KL(P0||P1),KL(P1||P0)} ≥ γ, then there exists an algorithm L2 that given sample access
to Gen and ε, δ, γ as inputs, runs in time poly(1/ε, 1/δ, 1/γ, n), and with probability at least 1− δ
outputs a list of hypotheses H that contains a hypothesis h with error err(h) ≤ ε.

4.2. Robustness of Distribution Learner

Before we proceed to the next two steps of the reduction, we will briefly digress to give a useful
robustness result showing that the class P remains efficiently learnable even if the input distribution
is slightly perturbed. Our result relies on the well-known Le Cam’s method, which is a powerful
tool for giving lower bounds in hypothesis testing. We state the following version for our purpose.6

Lemma 12 [Le Cam’s method (see e.g. Le Cam (1986); Yu (1997))] Let Q0 and Q1 be two prob-
ability distributions over Y , and let A : Ym → {0, 1} be a mapping from m observations in Y to
either 0 or 1. Then

Pr
A,Ym∼Qm

0

[A(Y m) 6= 0] + Pr
A,Ym∼Qm

1

[A(Y m) 6= 1] ≥ 1−
√
mKL(Q0||Q1)/2

where Y m ∼ Qmθ denotes an i.i.d. sample of size m drawn from the distribution Qθ.

The lemma above shows that any statistical procedure that determines whether the underlying
distribution is Q0 or Q1 based on m independent observations must have high error if the two
distributions are too close. In particular, if their KL divergence satisfies KL(Q0||Q1) ≤ 1/m, then
the procedure has at least constant error probability under measure Q0 or Q1. Now let’s construct
such a procedure A using any distribution learner L for the class P . Suppose the learner is ε-
accurate with high probability when given sample of size m, and the distribution Q0 is in the class
P . Consider the following procedure A:

• Run the learning algorithm L on sample S of size m. If the algorithm fails to output a
hypothesis distribution, output 1. Otherwise, let Q̂ be the output distribution by L.

• If KL(Q0||Q̂) ≤ ε, output 0; otherwise output 1.

Note that if the sample S is drawn from the distribution Q0, then A will correctly output 0
with high probability based on the accuracy guarantee of L. This means the procedure has to err
when S is drawn from the slightly perturbed distribution Q1, and so the learner will with constant
probability output an accurate distribution Q̂ such that KL(Q0||Q̂) ≤ ε. More formally:

6. In the usual statement of Le Cam’s method, the right-hand side of the inequality is in fact 1−‖Qm
0 −Qm

1 ‖tv , where
‖ · ‖tv denotes total variation distance. We obtain the current bound by a simple application of Pinsker inequality.

9

KEARNS WU

Lemma 13 Let ε > 0, δ ∈ (0, 1/2) and m ∈ N. Suppose there exists a distribution learner L
such that for any unknown target distribution P ∈ P , when L inputs m random draws from P , it
with probability at least 1 − δ outputs a distribution P̂ such that KL(P ||P̂) ≤ ε. Then for any
Q0 ∈ P and any distribution Q1 over the same range Y , if the learner L inputs a sample of size m
drawn independently from Q1, it will with probability at least 1 − δ′ output a distribution Q̂ such
that KL(Q0||Q̂) ≤ ε, where δ′ = δ +

√
mKL(Q0||Q1)/2.

Proof Consider the procedure A constructed above that uses the learner L as a subroutine. By the
guarantee of the algorithm, we know that PrL,Ym∼Qm

0
[KL(Q0||Q̂) ≤ ε] ≥ 1− δ. This means

Pr
A,Ym∼Qm

0

[A(Y m) 6= Q0] ≤ δ.

By Lemma 12, we have

Pr
A,Ym∼Qm

1

[A(Y m) 6= Q1] ≥ 1−
√
m

2
KL(Q0||Q1)− δ.

This in turn implies that with probability at least (1 − δ −
√

m
2 KL(Q0||Q1)) over the draws of

Y m ∼ Qm1 and the internal randomness of L, the output distribution Q̂ satisfies KL(P ||Q̂) ≤ ε.

Therefore, if the KL divergence between the target distribution and the input distribution is
smaller than inverse of the (polynomial) sample size, the output distribution by the learner is accu-
rate with constant probability. By using a standard amplification technique, we can guarantee the
accuracy with high probability:

Lemma 14 Suppose that the distribution class P is PAC learnable. There exist an algorithm L2
and a polynomial mP(·, ·, ·) such that that for any target unknown distribution P , when given any
ε > 0 and 0 < δ ≤ 1/4 as inputs and sample access from a distribution Q such that KL(P ||Q) ≤
1/(2mP(1/ε, 1/δ, k)), runs in time poly(1/ε, 1/δ, k) and outputs a list of distributions P ′ that with
probability at least 1− δ contains some P̂ ∈ P ′ with KL(P ||P̂) ≤ ε.

As a consequence, even when input sample distribution is slightly “polluted”, we can still learn
the target distribution accurately with a small blow-up in the computational and sample complexity.

4.3. Learning the Distributions with an Accurate Hypothesis

Now we will return to the second step of our reduction: use an accurate hypothesis h and distribution
learner for P to learn the two distributions P0 and P1. For any observation (x, y) drawn from the
example oracle Gen, we can use the hypothesis h to determine whether the outcome y is drawn from
P0 or P1, which allows us to create independent samples from both distributions. However, because
of the small error of h with respect to the target concept c, the input sample is in fact drawn from a
mixture between P0 and P1. To remedy this problem, we will choose a sufficiently small error rate
for hypothesis h (but still an inverse polynomial in the learning parameters), which guarantees that
the mixture is close enough to either one of single target distributions. We can then apply the result
in Lemma 14 to learn each distribution, which together gives us a hypothesis model (h, P̂0, P̂1).

10

PREDICTING WITH DISTRIBUTIONS

Lemma 15 Suppose that the distribution class P is efficiently learnable. Let ε > 0, 0 < δ ≤ 1
and h ∈ C be an hypothesis. Then there exists an algorithm L3 and a polynomial r(·, ·, ·) such that
when given ε, δ and h as inputs, L3 runs in time bounded by poly(1/ε, 1/δ, k), and outputs a list
of probability models T such that with probability at least 1− δ there exists some T̂ ∈ T such that
err(T̂) ≤ ε, as long as the hypothesis h satisfies err(h) ≤ 1/r(1/ε, 1/δ, k).

4.4. Directly Applying the Distribution Learner

In the last step of our forward reduction, we will consider the case where the two target distributions
P0 and P1 are too close to admit a distinguishing event, and so we will not be able to learn the target
concept c as in the first step. We show that in this case learning c is not necessary for obtaining
an accurate probability model — we can simply run the robust distribution learner developed in
Lemma 14 over the samples drawn from the mixture to learn single distribution.

We will first define the following notion of healthy mixture, which captures the mixture distri-
butions with non-trivial weights on two sufficiently different components. This will also facilitate
our discussion in the reverse reduction.

Definition 16 (Healthy Mixture) Let Q be mixture of two distributions Q0 and Q1 from the class
P , and let w0 and w1 be the weights on the two components respectively. Then Q is an η-healthy
mixture if both min{w0, w1} ≥ η and max{KL(P0||P1),KL(P1||P0)} ≥ η hold. If one of the two
conditions does not hold, we will call Q an η-unhealthy mixture.

We now show that whenever the mixture distribution P is unhealthy, we can use the robust
learner in Lemma 14 to directly learn a distribution P̂ for our prediction purpose (simply always
predict with P̂ regardless of the context x). Note that this not only includes the case where P0 and
P1 are arbitrarily close, but also the one where the weight on one component is close to 0, which
will be useful in Section 5.

Lemma 17 Suppose that the distribution class P is PAC learnable. Let P be the unconditional
mixture distribution over the outcomes Y under the distribution Gen. Let ε > 0 and δ ∈ (0, 1). Then
there exists an algorithm L4 and a polynomial g(·, ·, ·) such that when L4 is given sample access
to Gen and ε, δ as inputs, it runs in time bounded by poly(1/ε, 1/δ, k) and it will with probability
at least 1 − δ, output a list of distributions P ′ that contains P̂ with Ex∼D

[
KL(Pc(x)||P̂)

]
≤ ε, as

long as P is an η-unhealthy mixture for some η ≤ 1/g(k, 1/ε, 1/δ).

We will now combine the all the tools to provide a proof sketch for Theorem 10 (see the ap-
pendix for details).
Proof [Proof Sketch for Theorem 10] Our algorithm for PwD learning the joint class (C,P) is
roughly the following. First, we will make use of Assumption 9 and obtain a set of candidate
distinguishing events for the target distributions P0 and P1. We will run the CCCN learner to learn
c using each candidate event E to generate noisy labels. This generates a list of hypotheses. We
will use the hypotheses h to separate the two distributions P0 and P1 and apply the algorithm in
Lemma 15 to learn each distribution individually. This will give polynomially many hypothesis
models T̂ = (h, P̂0, P̂1). By Lemma 11 and Lemma 15, we know at least one of the models is
accurate when P0 and P1 are sufficiently different.

11

KEARNS WU

To cover the case where the two distributions are too close, we will use the algorithm in
Lemma 17 to learn a list of distributions over Y . In particular, the model (h′, P̂ , P̂) is accurate
for at least one of the output distribution P̂ .

Together, the two procedures above will give a list of polynomially many hypothesis models, at
least one of which is guaranteed to be accurate. We will use the standard maximum likehood method
to output the model that minimizes empirical log-loss, and with high probability, this will be an
accurate model.7

We previously gave examples (such as product distributions and special cases of multivariate
Gaussians) that admit small classes of distinguishing events, and to which Theorem 10 can be ap-
plied. There are other important cases — such as general multivariate Gaussians — for which we do
not know such classes.8 However, we now describe a different, “reverse” reduction that instead as-
sumes learnability of mixtures, and thus is applicable to more general Gaussians via known mixture
learning algorithms (Dasgupta, 1999; Arora and Kannan, 2001; Feldman et al., 2006).

5. Reverse Reduction

In our reverse reduction, our strategy is to first learn the two distributions P0 and P1 sufficiently
well, and then construct a specialized distinguishing event to learn the target concept cwith a CCCN
learner.9 We will make a stronger learnability assumption on the distribution class P — we assume
a parametrically correct learner for any healthy mixture of two distributions in P .

Assumption 18 (Parametrically Correct Mixture Learning) There exists a mixture learner LM
and a polynomial ρ such that for any ε > 0, 0 < δ ≤ 1, and for any Z that is an η-healthy mixture
of two distributions Y0 and Y1 from P , the following holds: if LM is given sample access to Z and
ε, δ > 0 as inputs, LM runs in time poly(k, 1/ε, 1/δ) and with probability at least 1− δ, outputs a
mixture Ẑ of distributions Ŷ0 and Ŷ1 such that max{KL(Y0||Ŷ0),KL(Y1||Ŷ1)} ≤ ε.

We remark that the assumption of parametric correctness is a mild condition, and is satisfied
by almost all mixture learning algorithms in the literature (see e.g. Dasgupta (1999); Feldman et al.
(2006, 2008); Hsu and Kakade (2013)). Also note that we only require this condition when the
healthy mixture condition in Theorem 16 is met. If the two either the two distributions Y0 and
Y1 are arbitrarily close or the mixture is extremely unbalanced, we are not supposed to learn both
components correctly.

Theorem 19 (Formal Version of Theorem 2) Suppose the class C is CN learnable, the distribu-
tion class P is efficiently learnable and satisfies the parametrically correct mixture learning as-
sumption (Assumption 18). Then the joint class (C,P) is PwD-learnable.

With the tools we develop for the forward reduction, the proof for reverse reduction is straight-
forward. There are essentially two cases we need to deal with. In the first case where the mixture
distribution over Y is healthy, we can use the parametrically correct mixture learner to learn the two

7. See the appendix for the details and analysis of the maximum likelihood method in the PwD model.
8. We conjecture that Gaussians do indeed have a small set of distinguishing events, but have not been able to prove it.
9. We use the term “reverse” to indicate that the reduction decomposes the learning process into the steps suggested by

the inverted generative model depicted in Figure 2.

12

PREDICTING WITH DISTRIBUTIONS

x ∼ Dl

l ∼ (w0, w1)

y ∼ Pl

Draw x Draw y

Figure 2: An alternative view of the generative model Gen: first draw a Bernoulli label l with bias
w1 = PrD[c(x) = 1], then draw a context x from the conditional distribution Dl on
c(x) = l, and an outcome y from the distribution Pl. In the forward reduction, we first
learn the concept c over X (which determines the label l), so we can separate the data and
learn each distribution using a (single) distribution learner. In the reverse reduction, we
will first use the mixture learner to learn both P0 and P1, and then use such information
to obtain estimates for the label l for learning the concept c.

target distributions, we can then use the accurate approximations P̂0 and P̂1 to find a distinguishing
event for P0 and P1, which allows us to learn the concept c with a CCCN learner. In the case where
the mixture distribution is unhealthy and we cannot learn the components accurately, we can again
appeal to the robustness result we show using Le Cam’s method — we can directly apply the learner
for single distributions and learn P0 or P1.

5.1. CN Learning with a Mixture Learner

Given any two distributions P , Q over Y and a parameter τ , consider the event (or subset)

E(P,Q, τ) = {y ∈ Y | P (y) ≥ 2τ Q(y)}

We will first show that such subset is a distinguishing event for the input distributions P and Q as
long as the distributions P and Q are sufficiently different.

Lemma 20 Fix any γ ∈ (0, 1]. Suppose that KL(P ||Q) ≥ γ, then E(P,Q, γ/2) is a (γ2/(8M))-
distinguishing event for the distributions P and Q.

Next, we show that even if we only have access to the approximate distributions P̂ and Q̂, we
can still identify a distinguishing event for P and Q, as long as the approximations are accurate.

Lemma 21 Suppose that the distributionsP, P̂ ,Q, Q̂ overY satisfy that KL(P ||P̂) ≤ α, KL(Q||Q̂) ≤
α, and KL(P ||Q) ≥ γ for some α, γ ∈ (0, 1]. Then the event E(P̂ , Q̂, (γ2/(8M) −

√
2α)2) is a

ξ-distinguishing event with ξ ≥ 1/ poly(1/γ, 1/α, k) as long as γ > 8M(
√

2α+ (8M2α)1/8).

Given these structural lemmas, we now know a way to construct a distinguishing event based
on approximations to the target distributions P0 and P1. We can then create a and use the algorithm
in Lemma 8 to learn the concept c, and in turn compute a list of hypothesis models, one of which is
guaranteed to be accurate when the mixture distribution is healthy.

13

KEARNS WU

Lemma 22 Suppose the class P satisfies the parametric mixture learning assumption (Assump-
tion 18), the class C is CN learnable, and mixture distribution over Y is γ-healthy for some γ > 0.
Then there exists an algorithm L that given ε, δ and γ as inputs and sample access from Gen, halts
in time bounded by poly(1/ε, 1/δ, 1/γ, n, k), and with probability at least 1 − δ, outputs a list of
probability models T that contains some T̂ with err(T̂) ≤ ε.

Finally, to wrap up and prove Theorem 19, we also need to handle the case where healthy
mixture condition in Theorem 16 does not hold. We will again appeal to the robust distribution
learner in Lemma 17 to learn the distributions directly, and construct hypothesis models based on
the output distributions. To guarantee that the output hypothesis model is accurate, we will again use
the maximum likelihood method to select the model with the minimum empirical log-loss (formal
proof deferred to the appendix).

6. Future Work

Despite the generality of our results and reductions, there remain some appealing directions for
further research. These include allowing the conditioning event to be richer than a simple binary
function c(x), for instance multi- or even real-valued. This might first entail the development of
theories for noisy learning in such models, which is well-understood primarily in the binary setting.

We also note that our study has suggested an interesting problem in pure probability theory,
namely whether general Gaussians permit a small class of distinguishing events.

Acknowledgments

We thank We thank Akshay Krishnamurthy and Shahin Jabbari for helpful discussions.

References

Dana Angluin and Philip D. Laird. Learning from noisy examples. Machine Learning, 2
(4):343–370, 1987. doi: 10.1007/BF00116829. URL http://dx.doi.org/10.1007/
BF00116829.

Sanjeev Arora and Ravi Kannan. Learning mixtures of arbitrary gaussians. In Proceedings of
the Thirty-third Annual ACM Symposium on Theory of Computing, STOC ’01, pages 247–257,
New York, NY, USA, 2001. ACM. ISBN 1-58113-349-9. doi: 10.1145/380752.380808. URL
http://doi.acm.org/10.1145/380752.380808.

Avrim Blum and Tom M. Mitchell. Combining labeled and unlabeled data with co-training. In
Proceedings of the Eleventh Annual Conference on Computational Learning Theory, COLT 1998,
Madison, Wisconsin, USA, July 24-26, 1998., pages 92–100, 1998. doi: 10.1145/279943.279962.
URL http://doi.acm.org/10.1145/279943.279962.

Sanjoy Dasgupta. Learning mixtures of gaussians. In 40th Annual Symposium on Foundations
of Computer Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA, pages 634–644,
1999. doi: 10.1109/SFFCS.1999.814639. URL http://dx.doi.org/10.1109/SFFCS.
1999.814639.

14

http://dx.doi.org/10.1007/BF00116829
http://dx.doi.org/10.1007/BF00116829
http://doi.acm.org/10.1145/380752.380808
http://doi.acm.org/10.1145/279943.279962
http://dx.doi.org/10.1109/SFFCS.1999.814639
http://dx.doi.org/10.1109/SFFCS.1999.814639

PREDICTING WITH DISTRIBUTIONS

Scott E. Decatur. PAC learning with constant-partition classification noise and applications to
decision tree induction. In Proceedings of the Fourteenth International Conference on Ma-
chine Learning, ICML ’97, pages 83–91, San Francisco, CA, USA, 1997. Morgan Kaufmann
Publishers Inc. ISBN 1-55860-486-3. URL http://dl.acm.org/citation.cfm?id=
645526.657273.

Jon Feldman, Rocco A. Servedio, and Ryan O’Donnell. PAC learning axis-aligned mixtures of
Gaussians with no separation assumption. In Learning Theory, 19th Annual Conference on Learn-
ing Theory, COLT 2006, Pittsburgh, PA, USA, June 22-25, 2006, Proceedings, pages 20–34,
2006. doi: 10.1007/11776420 5. URL http://dx.doi.org/10.1007/11776420_5.

Jon Feldman, Ryan O’Donnell, and Rocco A. Servedio. Learning mixtures of product distributions
over discrete domains. SIAM J. Comput., 37(5):1536–1564, 2008. doi: 10.1137/060670705.
URL http://dx.doi.org/10.1137/060670705.

David Haussler. Decision theoretic generalizations of the PAC model for neural net and other
learning applications. Inf. Comput., 100(1):78–150, 1992. doi: 10.1016/0890-5401(92)90010-D.
URL http://dx.doi.org/10.1016/0890-5401(92)90010-D.

Daniel J. Hsu and Sham M. Kakade. Learning mixtures of spherical gaussians: moment methods
and spectral decompositions. In Innovations in Theoretical Computer Science, ITCS ’13, Berke-
ley, CA, USA, January 9-12, 2013, pages 11–20, 2013. doi: 10.1145/2422436.2422439. URL
http://doi.acm.org/10.1145/2422436.2422439.

Michael Kearns and Leslie Valiant. Cryptographic limitations on learning boolean formulae and
finite automata. J. ACM, 41(1):67–95, January 1994. ISSN 0004-5411. doi: 10.1145/174644.
174647. URL http://doi.acm.org/10.1145/174644.174647.

Michael Kearns, Ming Li, and Leslie Valiant. Learning boolean formulas. J. ACM, 41(6):1298–
1328, November 1994a. ISSN 0004-5411. doi: 10.1145/195613.195656. URL http://doi.
acm.org/10.1145/195613.195656.

Michael J. Kearns. Efficient noise-tolerant learning from statistical queries. J. ACM, 45(6):
983–1006, 1998. doi: 10.1145/293347.293351. URL http://doi.acm.org/10.1145/
293347.293351.

Michael J. Kearns, Yishay Mansour, Dana Ron, Ronitt Rubinfeld, Robert E. Schapire, and Linda
Sellie. On the learnability of discrete distributions. In Proceedings of the Twenty-Sixth Annual
ACM Symposium on Theory of Computing, 23-25 May 1994, Montréal, Québec, Canada, pages
273–282, 1994b. doi: 10.1145/195058.195155. URL http://doi.acm.org/10.1145/
195058.195155.

Lucien Marie Le Cam. Asymptotic methods in statistical decision theory. Springer series in statis-
tics. Springer-Verlag, New York, 1986. ISBN 0-387-96307-3. URL http://opac.inria.
fr/record=b1093333.

Leonard Pitt and Manfred K. Warmuth. Prediction-preserving reducibility. J. Comput. Syst. Sci.,
41(3):430–467, December 1990. ISSN 0022-0000. doi: 10.1016/0022-0000(90)90028-J. URL
http://dx.doi.org/10.1016/0022-0000(90)90028-J.

15

http://dl.acm.org/citation.cfm?id=645526.657273
http://dl.acm.org/citation.cfm?id=645526.657273
http://dx.doi.org/10.1007/11776420_5
http://dx.doi.org/10.1137/060670705
http://dx.doi.org/10.1016/0890-5401(92)90010-D
http://doi.acm.org/10.1145/2422436.2422439
http://doi.acm.org/10.1145/174644.174647
http://doi.acm.org/10.1145/195613.195656
http://doi.acm.org/10.1145/195613.195656
http://doi.acm.org/10.1145/293347.293351
http://doi.acm.org/10.1145/293347.293351
http://doi.acm.org/10.1145/195058.195155
http://doi.acm.org/10.1145/195058.195155
http://opac.inria.fr/record=b1093333
http://opac.inria.fr/record=b1093333
http://dx.doi.org/10.1016/0022-0000(90)90028-J

KEARNS WU

Liva Ralaivola, François Denis, and Christophe Nicolas Magnan. CN = CPCN. In Machine Learn-
ing, Proceedings of the Twenty-Third International Conference (ICML 2006), Pittsburgh, Penn-
sylvania, USA, June 25-29, 2006, pages 721–728, 2006. doi: 10.1145/1143844.1143935. URL
http://doi.acm.org/10.1145/1143844.1143935.

Robert E. Schapire. The strength of weak learnability. Mach. Learn., 5(2):197–227, July 1990. ISSN
0885-6125. doi: 10.1023/A:1022648800760. URL http://dx.doi.org/10.1023/A:
1022648800760.

Leslie G. Valiant. A theory of the learnable. In Proceedings of the 16th Annual ACM Symposium on
Theory of Computing, April 30 - May 2, 1984, Washington, DC, USA, pages 436–445, 1984. doi:
10.1145/800057.808710. URL http://doi.acm.org/10.1145/800057.808710.

Santosh Vempala and Grant Wang. A spectral algorithm for learning mixture models. J. Comput.
Syst. Sci., 68(4):841–860, 2004. doi: 10.1016/j.jcss.2003.11.008. URL http://dx.doi.
org/10.1016/j.jcss.2003.11.008.

Bin Yu. Assouad, fano, and le cam. In Festschrift for Lucien Le Cam, pages 423–435. Springer
New York, 1997.

16

http://doi.acm.org/10.1145/1143844.1143935
http://dx.doi.org/10.1023/A:1022648800760
http://dx.doi.org/10.1023/A:1022648800760
http://doi.acm.org/10.1145/800057.808710
http://dx.doi.org/10.1016/j.jcss.2003.11.008
http://dx.doi.org/10.1016/j.jcss.2003.11.008

PREDICTING WITH DISTRIBUTIONS

Appendix A. Missing Details and Proofs

A.1. Missing Details in Section 2

Definition 23 (CN Learnability (Angluin and Laird, 1987)) Let C be a concept class over X . We
say that C is efficiently learnable with noise (CN learnable) if there exists a learning algorithm L
such that for any c ∈ C, any distribution D over X , any noise rate 0 ≤ η < 1/2, and for any 0 <
ε ≤ 1 and 0 < δ ≤ 1, the following holds: if L is given inputs ηb (where 1/2 > ηb ≥ η), ε, δ, n, and
is given access to EX η

CN(c,D), then L will halt in time bounded by poly(1/(1− 2ηb), 1/ε, 1/δ, n)
and output a hypothesis h ∈ C that with probability at least 1− δ satisfies err(h) ≤ ε.

Lemma 24 (CN = CCCN (Ralaivola et al., 2006)) Suppose that the concept class C is CN learn-
able. Then there exists an algorithm LC and a polynomial mC(·, ·, ·, ·) such that for every target
concept c ∈ C, any ε, δ ∈ (0, 1], for any noise rates η0, η1 ≤ ηb < 1/2, if L is given inputs ε, δ, ηb
and access to EX η

CCCN(c,D), then L will halt in time bounded by mC(1/(1 − 2ηb), 1/ε, 1/δ, n),
and output with probability at least 1 − δ a hypothesis h with error err(h) ≤ ε. We will say that
LC is an (efficient) CCCN learner for C with sample complexity mC .

Definition 25 (Evaluator (Kearns et al., 1994b)) Let P be a class of distributions over the out-
come space Y . We say that P has a efficient evaluator if there exists a polynomial p such that for
any n ≥ 1, and for any distribution P ∈ P , there exists an algorithm EP with runtime bounded
by poly(k) that given an input y ∈ Y outputs the probability (density) assigned to y by P . Thus, if
y ∈ Y , then EP (y) is the weight of y under P . We call EP an evaluator for P .

A.2. Missing Proofs in Section 3

Claim 26 The values of a0 and b0 satisfy a0, b0 ∈ [0, 1].

Proof Without loss of generality, let’s assume that q ≥ p + ξ. Since p + q ∈ [0, 2], we know that
a0 ≤ 1/2 and we can write

a0 = 1/2 +
ξ(p+ q − 2)

4(q − p)
≥ 1/2− ξ

2(q − p)
≥ 1/2− 1/2 ≥ 0

Similarly, we know that b0 ≥ 1/2 and we can write

b0 = 1/2 +
ξ(p+ q)

4(q − p)
≤ 1/2 +

ξ/2

ξ
= 1

This proves our claim.

Lemma 27 Given a fixed ξ-distinguishing event E, the class-conditional noise rates of Lab are

η1 = Pr[` = 0 | c(x) = 1] = qa0+(1−q)b0 and η0 = Pr[` = 1 | c(x) = 0] = pa1+(1−p)b1.

Moreover, given any input estimates (p̂, q̂) for (p, q), the parameters a0, a1, b0 and b1 satisfy:

q̂a0 + (1− q̂)b0 = p̂a1 + (1− p̂)b1 ≤ 1/2− ξ/4.

17

KEARNS WU

Proof We can derive the probabilities as follows

Pr[` = 0 | c(x) = 1] = Pr[(` = 0) ∧ (y ∈ E) | c(x) = 1] + Pr[(` = 0) ∧ (y /∈ E) | c(x) = 1]

= Pr
Gen

[y ∈ E | c(x) = 1] Pr
Lab

[` = 0 | (y ∈ E) ∧ (c(x) = 1)]

+ Pr
Gen

[y /∈ E | c(x) = 1] Pr
Lab

[` = 0 | (y /∈ E) ∧ (c(x) = 1)]

= Pr
Gen

[y ∈ E | c(x) = 1]a0 + Pr
Gen

[y /∈ E | c(x) = 1]b0

= q a0 + (1− q)b0

Similarly, we can also show that Pr[` = 1 | c(x) = 0] = pa1 + (1 − p)b1. For the second part of
the statement, we can show

q̂a0 + (1− q̂)b0 =
q̂

2
+
ξ(p̂+ q̂ − 2)q̂

4(q̂ − p̂)
+

(1− q̂)
2

+
ξ(p̂+ q̂)(1− q̂)

4(q̂ − p̂)
= 1/2− ξ/4

p̂a1 + (1− p̂)b1 =
p̂

2
− ξ(p̂+ q̂ − 2)p̂

4(q̂ − p̂)
+

(1− p̂)
2

− ξ(p̂+ q̂)(1− p̂)
4(q̂ − p̂)

= 1/2− ξ/4

which recovers our claim.

Lemma 28 Fix any ∆ ∈ [0, 1]. Suppose that the estimates p̂ and q̂ satisfy |p − p̂| ≤ ∆ and
|q − q̂| ≤ ∆, then the class-conditional noise rates η0 and η1 for Lab(p̂, q̂, ξ) are upper bounded
by 1/2− ξ/4 + ∆.

Proof Since a0, a1, b0, b1 ∈ [0, 1], and by our assumption on the accuracy of p̂ and q̂, we have

η1 − (q̂a0 + (1− q̂)b0) = (qa0 + (1− q)b0)− (q̂a0 + (1− q̂)b0) = (q − q̂)(a0 − b0) ≤ ∆

η0 − (q̂a1 + (1− q̂)b1) = (qa1 + (1− q)b1)− (q̂a1 + (1− q̂)b1) = (q − q̂)(a1 − b1) ≤ ∆

The result of Lemma 6 tells us that

q̂a0 + (1− q̂)b0 = p̂a1 + (1− p̂)b1 ≤ 1/2− ξ/4

Therefore, we must also have η0, η1 ≤ 1/2− ξ/4 + ∆.

Lemma 29 Let ε, δ ∈ (0, 1). Suppose that the concept class C is CN learnable, and there exists
an identified ξ-distinguishing event E for the two target distributions P0 and P1. Then there exists
an algorithm L1 such that when given ε, δ, ξ and E as inputs, it will halt in time bounded by
poly(1/ε, 1/δ, 1/ξ, n), and with probability at least 1− δ, output a list of hypotheses that contains
some h such that err(h) ≤ ε.

Proof Since the concept class C is CN learnable, by the result of Ralaivola et al. (2006) we know
there exists an efficient algorithm A that when given access to some example oracle EX η

CCCN with
η0, η1 ≤ 1/2 − ξ/8, outputs a hypothesis h with error bounded ε with probability at least 1 − δ,
halts in time poly(1/ε, 1/δ, 1/ξ, n).

18

PREDICTING WITH DISTRIBUTIONS

Now let parameter ∆ = ξ/8, and consider the algorithm: for each pair of values (p̂, q̂) =
(i∆, j∆) such that i, j ∈ [d1/∆e] and i 6= j, use the Lab(p̂, q̂, ξ) to generate labeled examples,
and run the algorithm A with sample access to Lab; if the algorithm halts in time p and outputs an
hypothesis ĥ, store the hypothesis in a the list H . In the end, output the hypothesis list.

By Lemma 7, we know for some guessed values of p′ and q′, the algorithm Lab(p′, q′, ξ) is an
CCCN oracle with noise rates η0, η1 ≤ 1/2− ξ/8. Then by the guarantee of the learning algorithm,
we know with probability at least 1 − δ, the algorithm will output an ε-accurate hypothesis under
these guesses.

A.3. Missing Proofs in Section 4

Lemma 30 Let ε, δ ∈ (0, 1) and γ > 0. Suppose that the class C is CN learnable, the class P
admits a parametric class of events E (as in Assumption 9). If the two distributions P0 and P1

satisfy max{KL(P0||P1),KL(P1||P0)} ≥ γ, then there exists an algorithm L2 that given sample
access to Gen and ε, δ, γ as inputs, runs in time poly(1/ε, 1/δ, 1/γ, n), and with probability at least
1− δ outputs a list of hypotheses H that contains a hypothesis h with error err(h) ≤ ε.

Proof Consider the following algorithm. We will first use the oracle E with input parameter γ to
obtain a class of events E(γ) that contains a ξ-distinguishing eventE∗ with ξ ≥ poly(γ, 1/n). Then
for each event E ∈ E(γ), we will run the algorithm A in Lemma 8 with accuracy parameters ε, δ,
separation parameter ξ, and E as an hypothetical distinguishing event as input. For each event, the
instantiation of algorithm A will halt in polynomial time. Furthermore, when the input event is E∗

it will with probability at least 1−δ outputs a list of hypothesesH that contains a hypothesis h such
that err(h) ≤ ε by the guarantee of Lemma 8.

Lemma 31 Suppose that the distribution class P is PAC learnable. There exist an algorithm L2
and a polynomial mP(·, ·, ·) such that that for any target unknown distribution P , when given any
ε > 0 and 0 < δ ≤ 1/4 as inputs and sample access from a distribution Q such that KL(P ||Q) ≤
1/(2mP(1/ε, 1/δ, k)), runs in time poly(1/ε, 1/δ, k) and outputs a list of distributions P ′ that with
probability at least 1− δ contains some P̂ ∈ P ′ with KL(P ||P̂) ≤ ε.

Proof Let L be a distribution learner that given a independent sample of size m drawn from the
unknown target distribution P , runs in time bounded by poly(1/ε, 1/δ, n) with probability at least
1 − δ, outputs a distribution P ′ such that KL(P ||P ′) ≤ ε. By Lemma 13, we know that with
probability at least (1/2 − δ) ≥ 1/4, the algorithm can also output a distribution P ′′ such that
KL(P ||P ′′) ≤ ε if the algorithm is given a sample of size m drawn from the distribution Q.

Let r = log3/4(1/δ). Now we will run the algorithm r times on r independent samples, each of
size m. Let P ′ be the list of output hypothesis distributions in these runs. We know that with prob-
ability at least 1−(1−1/4)r = 1−δ, there exists a distribution P̂ ∈ P ′ such that KL(P ||P̂) ≤ ε.

The following is a technical lemma that allows us to bound the KL divergence between between
a mixture distribution and one of its component.

19

KEARNS WU

Lemma 32 Let P and Q be two distributions over Y and R be a mixture of P and Q with weights
wp and wq respectively. Then we have KL(P ||R) ≤ wqKL(P ||Q).

Proof Let wp and wq be the weights associated with P and Q respectively in the mixture R.

KL(P ||R) =

∫
y
P (y) log

(
P (y)

R(y)

)
dy

=

∫
y
(wpP (y) + wqP (y)) log

(
wpP (y) + wqP (y)

wpP (y) + wqQ(y)

)
dy

(by the log-sum inequality) ≤
∫
y

(
wpP (y) log

(
wpP (y)

wpP (y)

))
dy +

∫
y

(
wqP (y) log

(
wqP (y)

wqQ(y)

))
dy

= wqKL(P ||Q)

which proves our claim.

Lemma 33 Suppose that the distribution class P is efficiently learnable. Let ε > 0, 0 < δ ≤ 1
and h ∈ C be an hypothesis. Then there exists an algorithm L3 and a polynomial r(·, ·, ·) such that
when given ε, δ and h as inputs, L3 runs in time bounded by poly(1/ε, 1/δ, k), and outputs a list
of probability models T such that with probability at least 1− δ there exists some T̂ ∈ T such that
err(T̂) ≤ ε, as long as the hypothesis h satisfies err(h) ≤ 1/r(1/ε, 1/δ, k).

Proof Our algorithm will first call the oracle Gen for N = Cm2(2/ε, 4/δ, k)
(
M2

ε2
log(1/δ)

)
times, where C is some constant (to be determined in the following analysis) and m2 is the polyno-
mial upper bound for the runtime of the algorithm defined in Lemma 14. Then the algorithm will
separate these data points (x, y)’s into two samples, one for h(x) = 0 and the other for h(x) = 1.
For each sample corresponding to h(x) = j, if the sample size is at least m = m2(2/ε, 4/δ), the
run the learning algorithm L2 in Lemma 14 to the sample with target accuracy ε/2 and failure prob-
ability δ/4 and obtain a polynomial list of distributions Pj ; otherwise, simply output a singleton list
containing any arbitrary distribution in P .

Let j ∈ {0, 1} and πj = Prx∼D[h(x) = j]. Let us first consider the case where πj ≥
ε/(2M). In order to invoke Lemma 32, we will upper bound the quantity wjKL(Pj ||P̂j), where
wj = Prx∼D[c(x) = j]. We know that for some large enough constant C, we can guarantee with
probability at least 1−δ/4, we will collect at leastm observations with h(x) = j. Let εh = err(h),
note that when we instantiate the learner L2 on the sample with h(x) = j, the input distribution Ij
is a (εh, 1 − εh)-mixture of the distributions P1−j and Pj . Then there exists a polynomial r such
that if err(h) ≤ 1/r(1/ε, 1/δ, k), we can have the following based on Lemma 32

KL(Pj ||Ij) ≤ εhKL(P ||Q) ≤ 1/mP(2/ε, 4/δ, k)

where mP is the polynomial defined in Lemma 14. This means, the learning algorithm L2 will with
probability at least 1− δ/4, returns some distribution P̂j in the output list such that KL(Pj ||P̂j) ≤
ε/2, which implies that wjKL(Pj ||P̂j) ≤ ε/2.

Suppose that πj < ε/(2M), then we know that no matter what the distribution P̂j is, we have
wjKL(Pj ||P̂j) ≤ ε

2M M = ε/2 by Assumption 4.

20

PREDICTING WITH DISTRIBUTIONS

Finally, our algorithm will output a list of probability models T = {(h, P̂0, P̂1) | P̂0 ∈ P0, P̂1 ∈
P1}, such that with probability at least 1 − δ, there exists some model T̂ = (h, P̂0, P̂1) ∈ T such
that

err(T) = w0KL(P0||P̂0) + w1KL(P1||P̂1) ≤ ε,

which recovers our claim.

Lemma 34 Suppose that the distribution class P is PAC learnable. Let P be the unconditional
mixture distribution over the outcomes Y under the distribution Gen. Let ε > 0 and δ ∈ (0, 1). Then
there exists an algorithm L4 and a polynomial g(·, ·, ·) such that when L4 is given sample access
to Gen and ε, δ as inputs, it runs in time bounded by poly(1/ε, 1/δ, k) and it will with probability
at least 1 − δ, output a list of distributions P ′ that contains P̂ with Ex∼D

[
KL(Pc(x)||P̂)

]
≤ ε, as

long as P is an η-unhealthy mixture for some η ≤ 1/g(k, 1/ε, 1/δ).

Proof We first consider the case where the weight on one component is small, and without loss of
generality assume that w1 ≤ ε/(4Mm). By Lemma 32 and Assumption 4, we know that

KL(P0||R) ≤ w1KL(P0||P1) ≤
ε

2Mm
M ≤ 1/(2m).

By instantiating the algorithm in Lemma 14 with parameters (ε/2, δ), we know with probability
1− δ, there exists a hypothesis distribution P̂ in the output list such that KL(P0||P̂) ≤ ε/2. Again
by our Assumption 4, we know KL(P1||P̂) ≤M , so it follows that

E
x∼D

[
KL(Pc(x)||P̂)

]
= w0KL(P0||P̂) + w1KL(P1||P̂) ≤ ε

2
+
εKL(P1||P̂)

2Mm
≤ ε.

Next suppose that we are in the second case where KL(P0||P1),KL(P1||P0) ≤ 1/(2m). We know
from Lemma 32 that

KL(P0||R) ≤ w1KL(P0||P1) ≤ 1/(2m) and, KL(P1||R) ≤ w0KL(P1||P0) ≤ 1/(2m)

We will also apply the algorithm in Lemma 14 which guarantees with probability at least 1− δ
that there exists a hypothesis distribution P̂ in the output listP ′ such that KL(P0||P̂),KL(P1||P̂) ≤
ε/2, which implies that

E
x∼D

[
KL(Pc(x)||P̂)

]
= w0KL(P0||P̂) + w1KL(P1||P̂) ≤ ε.

Therefore, there exists a distribution P̂ in the output list that satisfies our claim as long as we choose
the polynomial g such that g(1/ε, 1/δ, k) ≥ max{2Mm/ε, 2m} for all ε, δ and m.

21

KEARNS WU

Proof of Theorem 10 We will now combine the all the tools to prove Theorem 10. First, consider
the class of events E(γ) with γ = 1/g(1/ε, 1/δ, k) (specified in Lemma 17). Then we will apply
the CN algorithm L2 in Lemma 11 to obtain a list H of polynomially many hypotheses. For each
h ∈ H , run the algorithm L3 with h as a candidate hypothesis. This will generate a list of a list
of probability models T . If max{KL(P0||P1),KL(P1||P0)} ≥ γ, then T is guaranteed to contain
an ε-accurate model with high probability (based on Lemma 11 and Lemma 15). Next, apply the
distribution learner in Lemma 17 over the mixture distribution over Y . If the algorithm outputs
a distribution P̂ , create a model T ′ = (h0, P̂ , P̂), where hypothesis h0 labels every example as
negative. If max{KL(P0||P1),KL(P1||P0)} < γ, we know T ′ is ε-accurate with high probability
(based on Lemma 17). Finally, apply the maximum likelihood method to the list of models T ∪{T ′}:
draw a sample of polynomial size from Gen, then for each model T ∈ T ∪ {T ′}, compute the
empirical log-loss over the sample, and output the model with the minimum log loss. By standard
argument, we can show that the output model is accurate with high probability.

A.4. Missing Proofs in Section 5

Lemma 35 Fix any γ ∈ (0, 1]. Suppose that KL(P ||Q) ≥ γ, then E(P,Q, γ/2) is a (γ2/(8M))-
distinguishing event for the distributions P and Q.

Proof Note that for any y ∈ E such that P (E) > 0, we have log P (y)
Q(y) ≤ M by Assumption 4, and

for any y /∈ E, we also have log
(
P (y)
Q(y)

)
< γ/2.

KL(P ||Q) =

∫
y∈Y

P (y) log
P (y)

Q(y)
dy

=

∫
y∈E

P (y) log
P (y)

Q(y)
dy +

∫
y/∈E

P (y) log
P (y)

Q(y)
dy

< P (E)M + (1− P (E))
γ

2

=
γ

2
+ (M − γ/2)P (E) <

γ

2
+M P (E)

Since we know that KL(P ||Q) ≥ γ, it follows that P (E) > γ
2M . Furthermore,

P (E)−Q(E) = P (E)

(
1− Q(E)

P (E)

)
≥ P (E)

(
1− sup

y∈E

Q(y)

P (y)

)

≥ P (E)
(

1− 2−γ/2
)
≥ γ P (E)

4

where the last step follows from the fact that 1− 2−a ≥ a/2 for any a ∈ [0, 1]. It follows that

P (E)−Q(E) >
γ P (E)

4
>

γ

2M

γ

4
=

γ2

8M
,

which proves our statement.

22

PREDICTING WITH DISTRIBUTIONS

Lemma 36 Suppose that the distributionsP, P̂ ,Q, Q̂ overY satisfy that KL(P ||P̂) ≤ α, KL(Q||Q̂) ≤
α, and KL(P ||Q) ≥ γ for some α, γ ∈ (0, 1]. Then the event E(P̂ , Q̂, (γ2/(8M) −

√
2α)2) is a

ξ-distinguishing event with ξ ≥ 1/ poly(1/γ, 1/α, k) as long as γ > 8M(
√

2α+ (8M2α)1/8).

Proof Since we have both KL(P ||P̂),KL(Q||Q̂) ≤ α, by Pinsker’s inequality, we can bound the
total variation distances

‖P − P̂‖tv ≤
√
α/2 and, ‖Q− Q̂‖tv ≤

√
α/2.

By Lemma 20 and the definition of total variation distance, we know that

‖P −Q‖tv = sup
E⊂Y
|P (E)−Q(E)| ≥ γ2/(8M)

By triangle inequality, the above implies

‖P̂ − Q̂‖tv ≥
γ2

8M
−
√

2α ≡ b

By Pinsker’s inequality, we know that ‖P̂ − Q̂‖tv ≤
√

KL(P̂ ||Q̂)/2. It follows that KL(P̂ ||Q̂) ≥
2b2. Consider the event E = E(P̂ , Q̂, b2). We know by Lemma 20 that E is a (b4/(2M))-
distinguishing event for distributions P̂ and Q̂. Since both KL(P ||P̂),KL(Q||Q̂) ≤ α, we have

|P (E)−P̂ (E)| ≤ ‖P (E′)−P̂ (E′)‖tv ≤
√
α/2 and, |Q(E)−Q̂(E)| ≤ ‖Q(E′)−P̂ (E′)‖tv ≤

√
α/2.

Since E is a (b4/(2M))-distinguishing event for the distributions P̂ and Q̂, this means |P̂ (E) −
Q̂(E)| ≥ (b4/(2M)), and by triangle inequality, we have

|P (E)−Q(E)| = |(P (E)− P̂ (E)) + (P̂ (E)− Q̂(E)) + (Q̂(E)−Q(E))|
≥ |P̂ (E)− Q̂(E)| − |P (E)− P̂ (E)| − |Q̂(E)−Q(E)|
≥ (b4/(2M))−

√
2α

Note that if we have γ > 8M(
√

2α + (8M2α)1/8), then we can guarantee both b > 0 and
(b4/(2M))−

√
2α > 0.

Lemma 37 Suppose the class P satisfies the parametric mixture learning assumption (Assump-
tion 18), the class C is CN learnable, and mixture distribution over Y is γ-healthy for some γ > 0.
Then there exists an algorithm L that given ε, δ and γ as inputs and sample access from Gen, halts
in time bounded by poly(1/ε, 1/δ, 1/γ, n, k), and with probability at least 1 − δ, outputs a list of
probability models T that contains some T̂ with err(T̂) ≤ ε.

Proof We will first invoke the algorithm LM in Assumption 18 so that with probability at least 1−
δ/2, the output approximations for the two components satisfy KL(P0||P̂0) ≤ α and KL(P1||P̂1) ≤
α for someα that satisfies γ > 8M(

√
2α+(8M2α)1/8). This process will halt in time poly(1/α, 1/δ, 1/γ, k).

By Lemma 20, we know that the either event E(P̂0, P̂1, γ/2) is a ξ-distinguishing event for
P0 and P1 for some ξ ≥ 1/poly(1/γ, n, k). Then we can use the CN learning algorithm L1 in

23

KEARNS WU

Lemma 8 with the distinguishing eventE to learn a list of hypothesesH under polynomial time, and
there exists some h ∈ H that is ε1 accurate, with ε1 = 1/r(1/ε, 1/δ, k) (specified in Lemma 15).
For each hypothesis h′ ∈ H , run the algorithm L3 with h′ as the candidate hypothesis and ε as the
target accuracy parameter. By Lemma 15, this will halt in polynomial time, and outputs a list of
probability models T such that one of which has error err(T̂) ≤ ε.

Proof of Theorem 19 The algorithm consists of three steps. First, we will run the algorithm
in Lemma 22 by setting γ = 1/g(1/ε, δ, k) (specified in Lemma 15) and other parameters in a
way to guarantee that whenever max{KL(P0||P̂0),KL(P1||P̂1)} ≥ γ and min{w0, w1} ≥ γ both
hold, the output list of models T contains some T that has error at most ε. Next, we will directly
apply the distribution learner in Lemma 17 so that when the healthy mixture condition is not met,
the algorithm outputs a distribution P̂ such that Ex∼D

[
KL(Pc(x)||P̂)

]
. Lastly, similar to the final

step in the forward reduction, we run the maximum likelihood algorithm to output the model in
T ∪ {(h0, P̂ , P̂)} with the smallest empirical log-loss.

Appendix B. Maximum Likelihood Algorithm

In this section, we will formally define the maximum likelihood algorithm, which is a useful sub-
routine to select an accurate probability model from a list of candidate models. First, to give some
intuition, we show that the objective of minimizing Ex∼D

[
KL(Pc(x)||P̂h(x))

]
is equivalent to min-

imizing the expected log-losses. For any distribution P̂ over Y and a point r ∈ Y , the log likelihood
loss (or simply log-loss) is defined as loss(y, P̂) = − log P̂ (y). The entropy of a distribution P
over range Y , denoted H(P), is defined as

H(P) =

∫
y∈Y

P (y) log
1

P (y)
dy

For any two distributions P and P̂ over Y , we could write KL-divergence as

KL(P ||P̂) =

∫
y∈Y

P (y) log
1

P̂ (y)
dy −H(P) = E

y∼P

[
− log P̂ (y)

]
−H(P) (2)

which will be useful for proving the next lemma.

Lemma 38 Given any hypothesis h : X → {0, 1}, and hypothesis distributions P̂0 and P̂1, we have

E
x∼D

[
KL(Pc(x)||P̂h(x))

]
= E

x∼D

[
H(Pc(x))

]
− E

(x,y)∼Gen

[
log(P̂h(x)(y))

]
Proof We can write the following

E
x∼D

[
KL(Pc(x)||Ph(x))

]
= Pr
D

[c(x) = 1, h(x) = 1] KL(P1||P̂1) + Pr
D

[c(x) = 1, h(x) = 0] KL(P1||P̂0)

+ Pr
D

[c(x) = 0, h(x) = 1] KL(P0||P̂1) + Pr
D

[c(x) = 0, h(x) = 0] KL(P0||P̂0)

(apply Equation (2)) = E
x∼D

[
H(Pc(x))

]
−

∑
(i,j)∈{0,1}2

Pr
D

[c(x) = i, h(x) = j] E
y∼Pi

[
log(P̂j(y))

]
= E

x∼D

[
H(Pc(x))

]
− E

(x,y)∼Gen

[
log(P̂h(x)(y))

]
24

PREDICTING WITH DISTRIBUTIONS

which proves our claim.

Therefore, we could write err(T) = Ex∼D
[
H(Pc(x))

]
− E(x,y)∼Gen

[
log(P̂h(x)(y))

]
for any

model T = (h, P̂0, P̂1). Observe that Ex∼D
[
H(Pc(x))

]
is independent of the choices of (h, P̂0, P̂1),

so our goal can also be formulated as minimizing the expected log-loss E(x,y)∼Gen

[
log(P̂h(x)(y))

]
.

To do that, we will use the following maximum likelihood algorithm: given a list of probability
models T as input, draw a set of S of samples (x, y)’s from Gen, and for each T = (h, P̂0, P̂1) ∈ T ,
compute the log-loss on the sample

loss(S, T) =
∑

(x,y)∈S

loss(y, Ph(x)),

and lastly output the probability model T̂ ∈ T with the smallest loss(S, T).
Our goal is to show that if the list of models T contains an accurate model T , the maximum

likelihood algorithm will then output an accurate model with high probability.

Theorem 39 Let ε > 0. Let T be a set of probability models such that at least one model T ∗ ∈ T
has error err(T ∗) ≤ ε. Suppose that the class P also satisfies bounded assumption (in Assump-
tion 4).

If we run the maximum likelihood algorithm on the list T using a set S of independent samples
drawn from Gen. Then, with probability at least 1 − δ, the algorithm outputs some model T̂ ∈ T
such that err(T̂) ≤ 4ε with

δ ≤ (|T |+ 1) exp

(
−2mε2

M2

)
.

To prove this result, we rely on the Hoeffding concentration bound.

Theorem 40 Let x1, . . . , xn be independent bounded random variables such that each xi falls into
the interval [a, b] almost surely. Let X =

∑
i xi. Then for any t > 0 we have

Pr[X − E [X] ≥ t] ≤ exp

(
−2t2

n(b− a)2

)
and Pr[X − E [X] ≤ −t] ≤ exp

(
−2t2

n(b− a)2

)
Proof Our proof essentially follows from the same analysis of Feldman et al. (2008) (Theorem 17).
We say that a probability model T is good if err(T) ≤ 4ε, and bad otherwise. We know that T is
guaranteed to contain at least one good model. In the following, we will write H(Gen) to denote
Ex∼D

[
H(Pc(x))

]
.

The probability δ that the algorithm fails to output some good model is at most the probability
the best model T ∗ has loss(S, T) ≥ m (H(Gen) + 2ε) or some bad model T ′ has loss(S, T ′) ≤
m (H(Gen) + 3ε). Applying union bound, we get

δ ≤ |T | Pr[loss(S, T ′) ≤ m (H(Gen)+3ε) | err(T) ≥ 4ε]+Pr[loss(S, T ∗) ≥ m (H(Gen)+2ε)]

25

KEARNS WU

For each bad model T ′ with err(T ′) > 4ε, we can write

Pr[loss(S, T ′) ≤ m(H(Gen) + 3ε)] = Pr[loss(S, T ′) ≤ m(H(Gen) + 4ε)− εm]

(because err(T ′) ≥ 0) ≤ Pr[loss(S, T ′) ≤ m(H(Gen) + err(T ′))− εm]

= Pr[loss(S, T ′) ≤ E
S∼Genm

[
loss(S, T ′)− ε

]
]

≤ exp

(
−2mε2

M2

)
where the last step follows from Theorem 40. Similarly, for the best model T ∗ with err(T ∗) ≤ ε,
we have the following derivation:

Pr[loss(S, T ∗) ≥ m (H(Gen) + 2ε)] = Pr[loss(S, T ∗) ≥ m (H(Gen) + ε) +mε]

≤ Pr[loss(S, T ∗) ≥ m (H(Gen) + err(T ∗) +mε)]

= Pr[loss(S, T ∗) ≥ E
S∼Genm

[loss(S, T ∗)] +mε]

≤ exp

(
−2mε2

M2

)
Combining these two probabilities recovers the stated bound.

In other words, as long as we have an ε-accurate model in the list, we can guarantee with
probability at least 1− δ that the output model has error O(ε) using a sample of size no more than
poly(k/ε) · log(1/δ).

Appendix C. Examples of Distinguishing Events

In this section, we give two distribution classes that admit distinguishing event class of polynomial
size.

C.1. Spherical Gaussian

We consider the class of spherical Gaussian in Rk with fixed covariance and bounded means. In
particular, let

P = {N (µ,Σ) | µ ∈ [0, 1]k}

where Σ is some diagonal covariance matrix in Rk×k such that the variance in each coordinate
satisfy 0 < σ2j ≤ σ2 for some constant σ > 1.

Theorem 41 There exists a parametric class of events E(·) for the distribution class P of k-
dimensional Spherical Gaussian such that for any γ > 0 and for any two probability distributions
P and Q in the class P such that KL(P ||Q) ≥ γ, the class of events E(γ) contains an event E that
is an ξ-distinguishing event, where max{1/ξ, |E(γ)|} ≤ poly(k, 1/γ).

Proof Recall that the KL divergence of two multivariate Gaussian distributions P andQwith means
µ, µ′ and covariance matrices Σp,Σq can be written as

KL(P ||Q) =
1

2

(
tr(Σ−1q Σp) + (µ′ − µ)ᵀΣq(µ

′ − µ)− k + log

(
det Σq

det Σp

))
.

26

PREDICTING WITH DISTRIBUTIONS

For any two distributions P and Q in our class P , we can simplify the KL divergence as

KL(P ||Q) ≤ σ2

2
‖µ− µ′‖22.

Then KL(P ||Q) ≥ γ implies that there exists some coordinate j ∈ [k] such that |µj − µ′j | ≥√
2γ/(kσ2). Note that the marginal distributions of Pj and Qj over the j-the coordinate are
N (µj , σ

2
j) and N (µ′j , σ

2
j) respectively. Without loss of generality, assume that µ′j < µj . Then

for any value t ∈ [µ′j , µj], we have

Pj [y ≥ t]−Qj [y ≥ t] ≥ Pj [y ∈ [t, µj]]. (3)

Let ∆ =
√

2γ/(kσ2), and consider the discretized set L(γ) = {0,∆, . . . , b1/∆c∆}. Then we
know there exists a value t′ ∈ L such that t′ ∈ L(γ) such that t′ ∈ [µ′j , µj] and µj − t′ ≥ ∆.
By Equation (3), we can write

Pj [y ≥ t′]−Qj [y ≥ t′] ≥
1

2
erf(∆/(

√
2σj)) ≥

1

2
erf(∆/(

√
2σ))

where erf denotes the Gauss error function with erf(x) = 2√
π

∫ x
0 e
−a2 da for every x ∈ R. The

Taylor expansion of the function is

erf(x) =
2√
π

∞∑
i=0

(−1)ix2i+1

n!(2i+ 1)
=

2√
π

(
x− x3

3
+
x5

10
− x7

42
. . .

)
Therefore, for any x ∈ [0, 1), there exists a constant C such that erf(x/(

√
2σ))/2 ≥ C x. It follows

that
Pj [y ≥ t′]−Qj [y ≥ t′] ≥ C∆.

This means that the event of (yj ≥ t′) is a (C∆)-distinguishing event for the two distributions P
and Q. Therefore, for any γ > 0, we can construct the following class of distinguishing events

E(γ) = {1[yj ≥ t′] | j ∈ [k], t′ ∈ L(γ)}.

Note that both 1/(C∆) and |E(γ)| is upper bounded by poly(1/γ, k), which recovers our claim.

C.2. Product Distributions over Discrete Domains

Consider the space of b-ary cube Y = {0, . . . , b − 1}k, and the class of full-support product dis-
tributions P over Y: distributions whose k coordinates are mutually independent distributions over
{0, . . . , b − 1}. In particular, we assume that there exists some quantity M ≤ poly(k, b) such that
for each P ∈ P and each coordinate j and yj ∈ {0, 1, . . . b − 1}, we have log(1/Pj(yj)) ≤ M .
Now let’s show that this class of distributions admits a small class of distinguishing events as well.

Theorem 42 There exists a parametric class of events E(·) for the production distribution class
over the b-ary cube such that for any γ > 0 and for any two probability distributions P and Q
in the class P such that KL(P ||Q) ≥ γ, the class of events E(γ) contains an event E that is an
ξ-distinguishing event, where max{1/ξ, |E(γ)|} ≤ poly(k, b, 1/γ).

27

KEARNS WU

Proof In the following, we will write P = P1 × . . .× Pk and Q = Q1 × . . .×Qk. Note that

KL(P ||Q) =
∑
j′∈[k]

KL(Pj′ ||Qj′).

Therefore KL(P ||Q) ≥ γ implies that there exists some coordinate j such that KL(Pj ||Qj) ≥ γ/k.
This means ∑

y′j∈{0,...,b−1}

Pj(y
′
j) log

(
Pj(y

′
j)

Qj(y′j)

)
≥ γ/k.

This means there exists some t ∈ {0, . . . , b−1} such that Pj(t) log(Pj(t)/Qj(t)) ≥ γ/(kb). Recall
that log (Pj(t)/Qj(t)) ≤M , then we must have Pj(t) ≥ γ/(kbM). Furthermore, since Pj(t) ≤ 1,
we must also have log(Pj(t)/Qj(t)) ≥ γ/(kb). It follows that

Pj(t)−Qj(t) ≥ Pj(t)
(

1− Qj(t)

Pj(t)

)
≥ γ

kbM

(
1− 2−γ/(kb)

)
≥ γ

kbM

γ

2kb
=

γ2

2(kb)2M

where the last inequality follows from the fact that 1− 2−z ≥ z/2 for any z ∈ [0, 1]. Therefore, for
any γ > 0, the following class of events

E(γ) = {1[yj = t] | t ∈ {0, 1, . . . , b− 1}, j ∈ [k]}

would contain a ξ-distinguishing event, and max{1/ξ, |E(γ)|} ≤ poly(k, b, 1/γ).

28

	Introduction
	Our Results and Techniques
	Related Works

	Preliminaries
	Model: PwD-Learning
	Related Learning Models

	CN Learning with Identified Distinguishing Events
	Forward Reduction
	CN Learning with a Class of Events
	Robustness of Distribution Learner
	Learning the Distributions with an Accurate Hypothesis
	Directly Applying the Distribution Learner

	Reverse Reduction
	CN Learning with a Mixture Learner

	Future Work
	Missing Details and Proofs
	Missing Details in sec:prelim
	Missing Proofs in sec:cnlearn
	Missing Proofs in sec:forward
	Missing Proofs in sec:rev

	Maximum Likelihood Algorithm
	Examples of Distinguishing Events
	Spherical Gaussian
	Product Distributions over Discrete Domains

