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Censored Exploration  
and the Dark Pool Problem
By Kuzman Ganchev, Yuriy Nevmyvaka, Michael Kearns, and Jennifer Wortman Vaughan

Abstract
Dark pools are a recent type of stock exchange in which 
information about outstanding orders is deliberately hid-
den in order to minimize the market impact of large-vol-
ume trades. The success and proliferation of dark pools 
have created challenging and interesting problems in algo-
rithmic trading—in particular, the problem of optimizing 
the allocation of a large trade over multiple competing 
dark pools. In this work, we formalize this optimization as 
a problem of multi-venue exploration from censored data, 
and provide a provably efficient and near-optimal algo-
rithm for its solution. Our algorithm and its analysis have 
much in common with well-studied algorithms for man-
aging the exploration–exploitation trade-off in reinforce-
ment learning. We also provide an extensive experimental 
evaluation of our algorithm using dark pool execution data 
from a large brokerage.

1. INTRODUCTION
Dark pools are a relatively new type of exchange designed to 
address the problems that arise from the transparent (or 
“light”) nature of a typical stock exchange—namely, the diffi-
culty of minimizing the impact of large-volume trades.3, 5, 7 In 
a typical exchange, the revelation that there is a large- volume 
buyer (seller) in the market can cause prices to rise (fall) at 
the buyer’s (seller’s) expense. If the volume is sufficiently 
large, and the trading period sufficiently short, such market 
impacts remain even if one attempts to fragment the trade 
over time into smaller transactions. As a result, there has 
been increasing interest in recent years in execution mecha-
nisms that allow full or partial concealment of large trades.

In a typical dark pool, buyers and sellers submit orders 
that simply specify the total volume of shares they wish to 
buy or sell, with the price of the transaction determined 
exogenously by “the market”.a Upon submitting an order 
to buy (or sell) v shares, a trader is put in a queue of buyers 
(or sellers) awaiting transaction. Matching between buy-
ers and sellers occurs in sequential arrival of orders, simi-
lar to a light exchange. However, unlike a light exchange, 
no information is provided to traders about how many 
parties or shares might be available in the pool at any 
given moment. Thus in a given time period, a submission 
of v shares results only in a report of how many shares up 
to v were executed.

While presenting their own trading challenges, dark pools 
have become tremendously popular exchanges, responsible 

for executing 10–20% of the overall US equity volume. In fact, 
they have been so successful that there are now approxi-
mately 40+ dark pools for the US Equity market alone. The 
popularity of these exchanges has left large- volume traders 
and brokerages facing a novel problem: How should one 
optimally distribute a large trade over the many indepen-
dent dark pools?

To answer this question, we analyze a framework and 
algorithm for a more general multi-venue exploration prob-
lem. We consider a setting in which at each time period, 
we have some exogenously determined volume of V units of 
an abstract good (for example, shares of a stock that a cli-
ent would like to sell). Our goal is to “sell” or “consume” 
as many of these units as possible at each step, and there 
are K abstract “venues” (for example, various dark pools) in 
which this selling or consumption may occur. We can divide 
our V units into any way we like across the venues in service 
of this goal. What differentiates this problem from most 
standard learning settings is that if vi units are allocated to 
venue i, and all of them are consumed, we learn only that 
the total demand at venue i was at least vi, not the precise 
number of units that could have been consumed there. This 
important aspect of our framework is known as censoring in 
the statistics literature.

In this work, we make the natural and common assump-
tion that the maximum amount of consumption available 
in venue i at each time step (or the total liquidity available, 
in the dark pool problem) is drawn according to a fixed but 
unknown distribution Pi. Formally speaking, this means 
that when vi units are submitted to venue i, a value si is drawn 
randomly from Pi and the observed (and possibly censored) 
amount of consumption is min{si, vi}.

A learning algorithm in our framework receives a 
sequence of volumes V1, V2, … and must decide how to dis-
tribute the V t units across the venues at each time step t. Our 
goal is to efficiently (in time polynomial in the parameters of 
the model) learn a near-optimal allocation policy. There is a 
distinct between-venue exploration component to this prob-
lem, since the best number of shares to submit to venue i 
may depend on both Vt and the distributions for the other 
venues, and the only mechanism by which we can discover 
the distributions is by submitting allocations. If we routinely 
submit too-small volumes to a venue, we receive censored 
observations and are underutilizing the venue; if we submit 

The original version of this paper was published in 
the Proceedings of the 25th Conference on Uncertainty in 
Artificial Intelligence, 2009.a For our purposes, we can think of the price as the midpoint between the bids 

and ask in the light exchanges, though this is a slight oversimplification.
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from a fixed but unknown distribution Pi. If r t
i  =  vt

i , we say 
that the algorithm receives a censored observation because 
it is possible to infer only that r t

i   £ s t
i . If r t

i   < vt
i , we say that 

the algorithm receives a direct observation because it must 
be the case that r t

i   = st
i .

The goal of the learner is to discover a near-optimal 
one-step allocation policy, that is, an allocation policy that 
approximately optimizes the expected number of units out 
of Vt consumed at each time step t. (We briefly discuss other 
objectives at the end of Section 4.4.)

Throughout the remainder of the paper, we use the short-
hand Ti for the tail probabilities associated with Pi. That 
is, Ti(s) = ås¢ ³ s  Pi(s¢). 

c Clearly Ti(0) = 1 for all i. We use T̂i
t(s) for 

an empirical estimate of Ti(s) at time t.

3. A GREEDY ALLOCATION SCHEME
Before tackling the full exploration–exploitation problem, 
we must examine a more basic question: Given estimates T̂i 
of the tail probabilities Ti for each venue i, how can we maxi-
mize the (estimated) expected number of units consumed 
on a single time step? It turns out that this can be accom-
plished using a simple greedy allocation scheme. The greedy 
algorithm allocates one unit at a time. The venue to which 
the next unit is allocated is chosen to maximize the esti-
mated probability that the unit will be consumed. It is easy 
to see that if vi units have already been allocated to venue i, 
then the estimated probability that the next allocated unit 
will be consumed is simply T̂i(vi + 1). A formal description of 
the Greedy algorithm is given in Figure 1.

Theorem 1. The allocation returned by Greedy maximizes 
the expected number of units consumed in a single time step, 
where the expectation is taken with respect to the estimated tail 
probabilities {T̂i}i

K
 = 1.

The proof of this theorem is fairly simple. Using the fact 
that tail probabilities must satisfy T̂i(s) ³ T̂i(s¢) for all s £ s¢, it 
is easy to verify that by greedily adding units to the venues in 
decreasing order of T̂i(s), the algorithm returns

The remainder of the proof involves showing that the 
expression being maximized here equivalent to the 
expected number of units consumed. This can be done 
algebraically.d

4. THE CENSORED EXPLORATION–EXPLOITATION 
ALGORITHM
We now present our main theoretical result, which is a 

too-large volumes, we receive uncensored observations but 
have excess inventory.

Our main theoretical contribution is a provably polyno-
mial-time algorithm for learning a near-optimal policy for any 
unknown venue distributions Pi. This algorithm takes a par-
ticularly natural and appealing form, in which allocation and 
distribution reestimation are repeatedly alternated. More pre-
cisely, at each time step we maintain estimates of the distri-
butions Pi; pretending that these estimates are in fact exactly 
correct, we allocate the current volume V accordingly. These 
allocations generate observed consumptions in each venue, 
which in turn are used to update the estimates. We show 
that when the estimates are “optimistic tail modifications” 
of the classical Kaplan–Meier maximum likelihood estima-
tor for censored data, this estimate–allocate loop has prov-
ably efficient between-venue exploration behavior that yields 
the desired result. Venues with smaller available volumes are 
gradually given smaller allocations in the estimate–allocate 
loop, whereas venues with repeated censored observations 
are gradually given larger allocations, eventually settling on a 
near-optimal overall allocation distribution.

Finally, we present an extensive experimental evaluation 
of our model and algorithm on the dark pool problem, using 
trading data from a large brokerage.

The closest problem to our setting is the widely stud-
ied newsvendor problem from the operations research 
literature. In this problem, at each time period a player 
(representing a newsstand owner) chooses a quantity V 
of newspapers to purchase at a fixed per-unit price, and 
tries to optimize profit in the face of demand uncertainty 
at a single venue (their newsstand).b Huh et al.10 were the 
first to consider the use of the Kaplan–Meier estimator in 
this class of problems. They use an estimate–allocate loop 
similar to ours, and show asymptotic convergence to near-
optimal behavior in a single venue. Managing the distribu-
tion of an exogenously specified volume V across multiple 
venues (which are the important aspects of the dark pool 
problem, where the volume to be traded is specified by a 
client, and there are many dark pools) and the attendant 
exploration–exploitation trade-off between venues are key 
aspects and differentiators of our algorithm and analy-
sis. We also obtain stronger (polynomial time rather than 
asymptotic) bounds, which require a modification of the 
classical Kaplan–Meier estimator.

2. THE FORMAL MODEL
Formally, we consider the following problem. At each time 
t, a learner is presented with a quantity or volume V t Î {1, 
…, V} of units, where V t is sampled from an unknown dis-
tribution Q. The learner must decide on an allocation v®t of 
these shares to a set of K known venues, with vt

i    Î {0, …, V t} 
for each i Î{1, …, K}, and åk

i = 1 vt
i    = V t. The learner is then 

told the number of units r t
i  consumed at each venue i. Here 

r t
i   = min{s t

i , v t
i }, where st

i  is the maximum consumption 
level of venue i at time t, which is sampled independently 

b In our setting, it is important that we view V as given exogenously by the 
client and not under the trader’s control, which distinguishes our setting 
somewhat from the prior works.

c In the early literature on censored estimation, these tail probabilities were 
referred to as survival probabilities, as T(s) usually represented the probability 
that a patient in a particular medical study survived for at least s years past the 
start of the study. In this setting, observations were frequently censored when 
researchers lost track of a patient midway through the study and knew only 
that the patient lived at least until the point at which contact was broken.1

d The curious reader can find more details of this and other omitted proofs 
in the original version of this paper.9



MAY 2010  |   VOL.  53  |   NO.  5   |   COMMUNICATIONS OF THE ACM     101

 

for every value of s up to the cut-off is guaranteed to be 
close to the true tail probability. We then define a lightly 
modified version of the Kaplan–Meier estimates in which 
the tail probability of the next unit above the cut-off is 
modified in an optimistic manner. We show that in con-
junction with the greedy allocation scheme, this minor 
modification leads to increased exploration, since the next 
unit beyond the cut-off always looks at least as good as the 
cut-off itself.
Step 2: We next prove our main Exploitation Lemma (Lemma 
3). This lemma shows that at any time step, if it is the case 
that the number of units allocated to each venue by the 
greedy algorithm is strictly below the cut-off for that venue 
(which can be thought of as being in a known state in the 
parlance of reinforcement learning) then the allocation is 
provably e -optimal.
Step 3: We then prove our main Exploration Lemma (Lemma 
4), which shows that on any time step at which the allocation 
made by the greedy algorithm is not e-optimal, it is possible 
to lower bound the probability that the algorithm explores. 
Thus, any time we cannot ensure a near-optimal allocation, 
we are instead assured of exploring.
Step 4: Finally, we show that on any sufficiently long 
sequence of time steps (where sufficiently long is polyno-
mial in the parameters of the model), it must be the case 
that either the algorithm has already implemented a near-

polynomial-time, near-optimal algorithm for multi-venue 
exploration from censored data. The analysis of our algo-
rithm bears strong resemblance to the exploration–exploi-
tation arguments common in the E3 and RMAX family of 
algorithms for reinforcement learning.4, 12 In particular, 
there is an analogy to the notion of a known state inherent in 
those earlier algorithms, along with an exploitation lemma 
(proving that expected payoffs from known states are high) 
and an exploration lemma (proving that extended periods of 
low payoffs must result in more states becoming known). 
In our setting, however, the number of states is exponential 
and thus the special structure of our problem is required 
to obtain a polynomial time algorithm. We first provide an 
overview of the algorithm and its analysis before examining 
it in more detail.

At the highest level, the algorithm is quite simple and 
natural. It maintains estimates T̂i

t for the true unknown 
tail probabilities Ti for each venue i. These estimates 
improve with time in a particular quantifiable sense which 
drives between-venue exploration. At any given time t, the 
current volume Vt is allocated across the venues by simply 
calling the optimal greedy allocation scheme from Figure 
1 on the current set of estimated tail probabilities T̂i

t. This 
results in new censored observations from each venue, 
which in turn are used to update the estimates T̂i

t + 1 used at 
the next time step. Thus the algorithm, which is formally 
stated in Figure 2, implements a continuous allocate–
reestimate loop.

Note that we have not yet described the algorithm’s 
subroutine OptimisticKM, which specifies how we esti-
mate T̂i

t from the observed data. The most natural choice 
would be the maximum likelihood estimator on the data. 
This estimator is well-known in the statistics literature 
as the Kaplan–Meier estimator. In the following section, 
we describe Kaplan–Meier and derive a new convergence 
result that suits our particular needs. This result in turn 
lets us define an optimistic tail modification of Kaplan–
Meier that becomes our choice for OptimisticKM. Figure 3 
shows the full subroutine.

The analysis of our algorithm, which is developed in more 
detail over the next few sections, proceeds as follows:

Step 1: We first review the Kaplan–Meier maximum like-
lihood estimator for censored data and provide a new 
finite sample convergence bound for this estimator. This 
bound allows us to define a cut-off for each venue i such 
that the Kaplan–Meier estimate of the tail probability Ti(s) 

Input: Volume sequence V1, V 2, V 3,...
Arbitrarily initialize T̂ i

1  for each i;
for t ¬ 1, 2, 3, ... do
  %  Al locat ion Step:
  vÆt ¬ Greedy (Vt, T̂ t

1,...,T̂
t

K);
  for i ¬ {1,...,K} do
    Submit V ti  units to venue i;
    Let r t

i  be the number of shares sold;
    %  Reest imat ion Step:
    T̂ t

i
   + 1 ¬ OptimisticKM ({(v t

i, r
t
i )}t

t = 1);
  end
end

Figure 2. Main algorithm.

Figure 1. Optimal allocation algorithm Greedy.

Input: Volume V, tail probability estimates {T̂i }
K
i=1

Output: An allocation vÆ

vvÆ ¬ 0
Æ

;

for ! ¬ 1 to V do
  i ¬ argmaxi T̂i(vi + 1);
  vi ¬ vi + 1;
end
return vvÆ

Input: Observed data ({(v t
i, r

t
i )} t

t = 1) for venue i
Output: Modified Kaplan–Meier estimators for i
% Calculate the cut-off :
c t

i ¬ max{s : s = 0 or N t
i,s–1 ³ 128 (sV/e )2 ln(2V/d )};

%  Compute Kaplan–Meier  tai l  probabi l i t ies:
T̂ t

i   (0) = 1;
for s = 1 to V do
 T̂ t

i  (s) ¬ Õ
s

s¢ =

 - 1

 0 (1–(M t
i,s¢/N

t
i,s¢));

end
%  Make the opt imist ic modif icat ion:
if ct

i  < V then
 T̂ t

i  (c
t
i + 1) ¬ T̂ t

i (c t
i   );

return T̂ t
i    ;

Figure 3. Subroutine OptimisticKM. Let Mt
i,s' and Nti,s' be defined in 

Section 4.1, and assume that e, d > 0 are fixed parameters.
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of the tail probability for s shares rapidly improves.
To prove this theorem, we must first show that the esti-

mates ẑ t
i,s converge to the true probabilities zi,s. In an i.i.d. 

setting, this could be accomplished easily using standard 
concentration results such as Hoeffding’s inequality. 
In our setting, we instead appeal to Azuma’s inequality 
(see, for example, Alon and Spencer2), a tool for bound-
ing  martingales, or sequences X1, X2, … such that for each 
n, |Xn – Xn+1| £ 1 and E [Xn+1|Xn] = Xn. In particular, we show 
that the value Nt

i,s(zi,s -  ẑi,
t
s) can be expressed as the final term 

of a martingale sequence, allowing us to bound its abso-
lute value. This in turn implies that bound on |zi,s -  ẑi,

t
s| that 

we need, and all that remains is to show that these bounds 
imply a bound on the discrepancy between Ti(s) and the 
estimator T̂i(s).

4.2. Modifying Kaplan–Meier
In Figure 3, we describe the minor modification of Kaplan–
Meier necessary for our analysis. As described above 
(Step 1), the value ct

i in this algorithm can intuitively be 
viewed as a cut-off up to which we are guaranteed to have 
sufficient data to accurately estimate the tail probabilities 
using Kaplan–Meier; this is formalized in Lemma 1. Thus 
for every quantity s < ct

i, we simply let T̂i
t(s) be precisely the 

Kaplan–Meier estimate as in Equation 1.
However, to promote exploration, we set the value  

of T̂i
t(ct

i + 1) optimistically to the Kaplan–Meier estimate of 
the tail probability at ct

i  (not at ct
i  + 1). This optimistic modi-

fication is necessary to ensure that the greedy algorithm 
explores (i.e., has a chance of making progress towards 
increasing at least one cut-off value) on every time step for 
which it is not already producing an e -optimal allocation. 
In particular, suppose that the current greedy solution 
allocated no more than ct

i units to any venue i and exactly 
ct

j  units to some venue j. Using the standard Kaplan–Meier 
tail probability estimates, it could be the case that this 
allocation is suboptimal (there is no way to know if it 
would have been better to include unit ct

i  + 1 from venue j 
in place of a unit from another venue since we do not have 
an accurate estimate of the tail probability for this unit), 
and yet no exploration is taking place. By optimistically 
modifying the tail probability T̂i

t(ct
j  + 1) for each venue, we 

ensure that no venue remains unexplored simply because 
the algorithm unluckily observes a low demand a small 
number of times.

We now formalize the idea of ct
i as a cut-off up to which 

the Kaplan–Meier estimates are accurate. In the results that 
follow, we think of e > 0 and d  > 0 as fixed parameters of the 
algorithm.e

Lemma 1. For any s £ V, let T̂i
t(s) be the Kaplan–Meier estimator 

for Ti(s) returned by OptimisticKM. With probability at least 
1 – d,  for all s £ ct

i , |Ti(s) - T̂i
t(s)| £ e /(8V).

Proof. It is always the case that Ti(0) = T̂i
t(0) = 1, so the result 

optimal solution at almost every time step (and thus will 
continue to perform well in the future), or the algorithm has 
explored sufficiently often to learn accurate estimates of 
the tail distributions out to V units on every venue. In either 
case, we can show that with high probability, at the end of 
the sequence, the current algorithm achieves an e -optimal 
solution at each time step with probability at least 1 – e.

4.1. Convergence of Kaplan–Meier estimators
We begin by describing the standard Kaplan–Meier maxi-
mum likelihood estimator for censored data,11, 13 restricting 
our attention to a single venue i. Let zi,s be the true probabil-
ity that the demand in this venue is exactly s units given that 
the demand is at least s units. Formally,

It is easy to verify that for any s > 0,

At a high level, we can think of Kaplan–Meier as first com-
puting a separate estimate of zi,s for each s and then using 
these estimates to compute an estimate of Ti  (s).

More specifically, let Mt
i,s be the number of direct obser-

vations of s units up to time t, that is, the number of time 
steps at which strictly more than s units were allocated to 
venue i and exactly s were consumed. Let Nt

i,s be the number 
of either direct or censored observations of at least s units 
on time steps at which strictly more than s units were allo-
cated to venue i. We can then naturally define our estimate 
ẑ t

i,s = Mt
i,s /Nt

i,s, with ẑ t
i,s = 0 if Nt

i,s = 0. The Kaplan–Meier estima-
tor of the tail probability for any s > 0 after t time steps can 
then be expressed as

 T̂i
t(s) = Õ

s–1

  
s¢= 0 (1 - ẑ t

i,s¢), (1)

with T̂i
t(0) = Ti (0) = 1 for all t.

Previous work has established convergence rates for the 
Kaplan–Meier estimator to the true underlying distribution in 
the case that each submission in the sequence v1

i ,...,v
t
i is inde-

pendently and identically distributed (i.i.d.),8 and asymptotic 
convergence for non-i.i.d. settings.10 We are not in the i.i.d. 
case, since the submitted volumes at one venue are a function 
of the entire history of allocations and executions across all 
venues. In the following theorem, we give a new finite sample 
convergence bound applicable to our setting.

Theorem 2. Let T̂i
t be the Kaplan–Meier estimate of Ti as given 

in Equation 1. For any d > 0, with probability at least 1 – d, for 
every s Î {1, …, V},

This result shows that as we make more and more direct 
or censored observations of at least s – 1 units on time steps 
at which at least s units are allocated to venue i, our estimate 

e In particular, e corresponds to the value e specified in Theorem 3, and d 
corresponds roughly to that d divided by the polynomial upper bound on 
time steps.
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probability; in particular, the algorithm is not overestimating 
this probability too much. If the second condition holds, then 
the algorithm’s estimate of the probability of the share being 
consumed is so small that, again, the algorithm cannot pos-
sibly be overestimating it too much (because the lowest the 
probability could be is zero). This follows from Lemma 2.

Now consider the venue j to which unit was allocated by 
the optimal allocation. If the number of units vt

j allocated to 
this venue by the algorithm is strictly less than the cut-off ct

j, 
then by Lemma 1, the algorithm could not have underesti-
mated the probability of additional units being consumed 
by too much. Furthermore, because of the optimistic tail 
modification of the Kaplan–Meier estimator, this also holds 
if vt

j = ct
j. Finally, if it is instead the case that the second con-

dition in the lemma statement holds for venue j, then the 
algorithm again could not possibly have underestimated the 
probability of the unit being consumed too much because 
the true probability is so low.

Putting these pieces together, we can argue that for each 
pair in the matching (of which there are no more than V), 
since the algorithm did not overestimate the probability of 
unit it chose being consumed by too much (in this case, too 
much means more than e /(2V) ) and did not underestimate 
the probability of the corresponding unit in the optimal 
allocation by too much (again, by e /(2V) ), the difference in 
expected units consumed between the optimal allocation 
and the algorithm’s is at most e . !

Finally, Lemma 4 presents the main exploration lemma 
(Step 3), which states that on any time step at which the allo-
cation is not e -optimal, the probability of obtaining a useful 
observation is at least e /(8V).

Lemma 4 (Exploration Lemma). Assume that at time t, the 
high probability event in Lemma 1 holds. If the allocation is 
not e -optimal, then for some venue i, with probability at least 
e /(8V), .

Proof. Suppose the allocation is not e -optimal at time 
t. By Lemma 3, it must be the case that there exists some 
venue i for which vt

i  > ct
i  and T̂i

t(ct
i ) > e /(4V), i.e., a venue in 

which the algorithm has allocated units past the cut-off 
but for which the tail probability at the cut-off is not too 
close to zero. Let  be a venue for which this is true. Since 
vt
! > ct

!, it will be the case that the algorithm obtains a useful 
observation for exploration of this venue (i.e., an observa-
tion causing Nt

!,ct
!
 to be incremented) if the number of units 

consumed at this venue is sufficiently high (specifically, if 
r t
!  > ct

!). Since T̂!
t(ct
!) > e /(4V), Lemma 1 implies that T!(ct

!) > 
e /(8V), which in turn implies that the number of units 
consumed is high enough to constitute a useful observa-
tion with probability at least e /(8V). !

4.4. Putting it all together
With the exploitation and exploration lemmas in place, we 
are finally ready to state our main theorem.
Theorem 3 (Main Theorem). For any e > 0 and d > 0, with 
probability 1 − d (over the randomness of draws from Q and 
{Pi}), after running for a time polynomial in K, V, 1/ e , and 
ln(1/d ), the algorithm in Figure 2 makes an e-optimal allocation 

holds trivially unless ct
i  > 0. Suppose this is the case. Recall that 

Nt
i,s is the number of direct or censored observations of at least 

s units on time steps at which strictly more than s units were 
allocated to venue i. By definition, it must be the case that 
Nt

i,s ³ Nt
i,s, whenever s £ s¢. Thus by definition of the cut-off ct

i  in 
Figure 3, for all s < ct

i , N
t
i,s 128(sV /e)2 ln(2V/e ). The lemma then 

follows immediately from an application of Theorem 2. !
Lemma 2 shows that it is also possible to achieve additive 

bounds on the error of tail probability estimates for quanti-
ties s much bigger than ct

i  as long as the estimated tail prob-
ability at ct

i  is sufficiently small. Intuitively, this is because 
the tail probability at these large values of s must be smaller 
than the true tail probability at ct

i , which, in this case, is 
known to be very small already.

Lemma 2. If T̂i
t (ct

i ) £ e /(4V) and the high probability 
event in Lemma 1 holds, then for all s such that ct

i  < s £ V, 
|Ti (s) - T̂i

t (s)| £ e /(2V).

4.3. Exploitation and exploration lemmas
We are now ready to state our main Exploitation Lemma 
(Step 2), which formalizes the idea that once a sufficient 
amount of exploration has occurred, the allocation out-
put by the greedy algorithm is e -optimal. The proof of 
this lemma is where the optimistic tail modification to 
the Kaplan–Meier estimator becomes important. In par-
ticular, because of the optimistic setting of T̂i

t(ct
i  + 1), we 

know that if the greedy  policy allocates exactly ct
i  units to 

a venue i, it could not gain too much by reallocating addi-
tional units from another venue to venue i instead. In this 
sense, we create a buffer above each cut-off, guaranteeing 
that it is not necessary to continue exploring as long as one 
of the two conditions in the lemma statement is met for 
each venue.

The second condition in the lemma may appear mysteri-
ous at first. To see why it is necessary, notice that the rate at 
which the estimate T̂i

t(ct
i  + 1) converges to the true tail proba-

bility Ti(ct
i  + 1) implied by Theorem 2 depends on the number 

of times that we observe a consumption of ct
i  or more units. If 

Ti(ct
i ) is very small, then the consumption of this many units 

does not frequently occur. Luckily, if this is the case, then 
we know that Ti(ct

i  + 1) must be very small as well, and more 
exploration of this venue is not needed.

Lemma 3 (Exploitation Lemma). Assume that at time t, the 
high probability event in Lemma 1 holds. If for each venue i, 
either (1), vt

i  £ ct
i  or (2), T̂i

t(ct
i ) £ e/(4V), the difference between the 

expected number of units consumed under allocation v®t and the 
expected number of units consumed under the optimal alloca-
tion is at most e.

Proof Sketch. The proof begins by creating an arbitrary 
one-to-one mapping between the units allocated to different 
venues by the algorithm and an optimal allocation. Consider 
any such pair in this mapping.

If the first condition in the lemma holds for the venue 
i to which the unit was allocated by the algorithm, we can 
use Lemma 1 to show that the algorithm’s estimate of the 
probability of this unit being consumed is close to the true 
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stock–pool data sets. The average daily trading volume 
of these stocks across all exchanges (light and dark) 
ranges from 1 to 60 million shares, with a median vol-
ume of 15 million shares. Energy, Financials, Consumer, 
Industrials, and Utilities industries are represented. Our 
data set spans 30 trading days. For every stock–pool pair 
we have on average 1,200 orders (from 600 to 2,000), which 
corresponds to 1.3 million shares (from 0.5 to 3 million). 
Individual order sizes range from 100 to 50,000 shares, 
with 1,000 shares being the median. Sixteen percent of 
orders are filled at least partially (meaning that fully 84% 
result in no shares executed), 9% of the total submitted 
volume was executed, and 11% of all observations were 
censored.

5.2. Parametric models for dark pools
The theory and algorithm we have developed for censored 
exploration permit a very general form for the venue dis-
tributions Pi. The downside of this generality is that we are 
left with the problem of learning a very large number of 
parameters. More parameters generally mean that more 
data is necessary to guarantee that the model will generalize 
well, which means more rounds of exploration are needed 
before the algorithm’s future performance is near-optimal. 
In some applications, it is therefore advantageous to employ 
a less general but more simple parametric form for these 
distributions.

We experimented with a variety of common parametric 
forms for the distributions. For each such form, the basic 
methodology was the same. For each of the 4 × 12 = 48  
venue–stock pairs, the data for that pair was split evenly 
into a training set and a test set. The training data was 
used to select the maximum likelihood model from the 
parametric class. Note that we can no longer directly apply 
the nonparametric Kaplan–Meier estimator—within each 
model class, we must directly maximize the likelihood on 
the censored training data. This is a relatively straight-
forward and efficient computation for each of the model 
classes we investigated. The test set was then used to mea-
sure the generalization performance of each maximum 
likelihood model.

Our investigations revealed that the best models main-
tained a separate parameter for the probability of zero 
shares being available (that is, Pi(0) is explicitly estimated)—
a zero bin or ZB parameter. This is due to the fact that the 
vast majority of submissions (84%) to dark pools result in 
no shares being executed. We then examined various para-
metric forms for the nonzero portions of the venue dis-
tributions, including uniform (which of course requires 
no additional parameters), and Poisson, exponential and 
power law forms (each of which requires a single additional 
parameter); each of these forms were applied up to the larg-
est volume submitted in the data sets, then normalized.

The generalization results strongly favor the power law 
form, in which the probability of s shares being available 
is proportional to 1/sb for real b—a so-called heavy-tailed 

on each subsequent time step with probability at least 1 – e .

Proof Sketch. Suppose that the algorithm runs for R time 
steps, where R is a (specific, but unspecified for now) poly-
nomial in the model parameters K, V, 1/e , and ln(1/d ). If it 
is the case that the algorithm was already e -optimal on a 
fraction (1 – e ) of the R time steps, then we can argue that 
the algorithm will continue to be e -optimal on at least a frac-
tion (1 – e ) of future time steps since the algorithm’s perfor-
mance should improve on average over time as estimates 
become more accurate.

On the other hand, if the algorithm chose sub-optimal 
allocations on at least a fraction e  of the R time steps, then 
by Lemma 4, the algorithm must have incremented Nt

i,ct
i
 for 

some venue i and cut-off ct
i  approximately e 2R/(8V) times. By 

definition of the ct
i , it can never be the case that Nt

i,ct
i
 was incre-

mented too many times for any fixed values of i and ct
i  (where 

too many is a polynomial in V, 1/e , and ln(1/d )); otherwise the 
cut-off would have increased. Since there are only K venues 
and V possible cut-off values to consider in each venue, the 
total number of increments can be no more than KV times 
this polynomial, another polynomial in V, 1/e , ln(1/d ), and 
now K. If R is sufficiently large (but still polynomial in all of 
the desired quantities) and approximately e 2 R/(8V) incre-
ments were made, we can argue that every venue must have 
been fully explored, in which case, again, future allocations 
will be e -optimal. !

We remark that our optimistic tail modifications of the 
Kaplan–Meier estimators are relatively mild. This leads us to 
believe that using the same estimate–allocate loop with an 
unmodified Kaplan–Meier estimator would frequently work 
well in practice. We investigate a parametric version of this 
learning algorithm in the experiments described below.

5. THE DARK POOL PROBLEM
The remainder of this article is devoted to the application 
of our techniques to the dark pool problem. We begin with 
a description of the trading data we used, and go on to 
describe a variety of experiments we performed.

5.1. Summary of the dark pool data
Our data set is from the internal dark pool order flow for a 
major US broker–dealer. Each (possibly censored) observa-
tion is of the form discussed throughout the paper—a triple 
consisting of the dark pool name, the number of shares 
sent to that pool, and the number of shares subsequently 
executed within a short time interval. It is important to high-
light some limitations of the data. First, note that the data set 
conflates the policy the brokerage used for allocation across 
the dark pools with the liquidity available in the pools them-
selves. For our data set, the policy in force was very similar 
to the bandit-style approach we discuss below. Second, the 
“parent” orders determining the overall volumes to be allo-
cated across the pools were determined by the brokerage’s 
trading needs, and are similarly out of our control.

The data set contains submissions and executions 
for four active dark pools: BIDS Trading, Automated 
Trading Desk, D.E. Shaw, and NYFIX, each for a dozen of 
relatively actively-traded stocks,f thus yielding 48 distinct 

f Tickers represented are AIG, ALO, CMI, CVX, FRE, HAL, JPM, MER, MIR, 
NOV, XOM, and NRG.
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the simulator for stock S. This simulator accepts allocation 
vectors (v1, v2, v3, v4) indicating how many shares some algo-
rithm wishes to submit to each venue, draws a “true liquid-
ity” value si from Pi for each i, and returns the vector (r1, r2, r3, 
r4), where ri = min(vi, si) is the possibly censored number of 
shares filled in venue i.

Across all 12 stocks, we compared the performance of 
four different allocation algorithms. The (obviously unre-
alistic) ideal allocation is given the true parameters of the 
ZB + Power Law distributions used by the simulator and 
allocates shares optimally (greedily) with respect to these 
distributions. The uniform allocation divides any order 
equally among all four venues. Our learning algorithm 
implements the repeated allocate–reestimate loop as in 
Figure 2, using the maximum likelihood ZB + Power Law 
model for the reestimation step. Finally, the simple (and 
fairly naive) bandit-style algorithm maintains a weighting 
over the venues and chooses allocations proportional to 
the weights. It begins with equal weights assigned to all 
venues, and each allocation to a venue which results in 
any nonzero number of shares being executed causes that 
venue’s weight to be multiplied by a constant factor a. 
(Optimizing a over all stock–pool pairs resulted in a value 
of a = 1.05.)

Some remarks on these algorithms are in order. First, 
note that the ideal and uniform allocation methods are 
nonadaptive and are meant to serve as baselines—one of 
them the best performance we could hope for (ideal), and 
the other the most naive allocation possible (uniform). 
Second, note that our algorithm has a distinct advantage in 
the sense that it is using the correct parametric form, the 
same being used by the simulator itself. Thus our evalua-
tion of this algorithm is certainly optimistic compared to 
what should be expected in practice. Finally, note that the 
bandit algorithm is the crudest type of weight-based alloca-
tion scheme of the type that abounds in the no-regret litera-
ture6; we are effectively forcing our problem into a 0/1 loss 
setting corresponding to “no shares” and “some shares” 
being executed. Certainly more sophisticated bandit-style 
approaches can and should be examined.

distribution when b > 0. Nonparametric models trained 
with Kaplan–Meier are best on the training data but over-
fit badly due to their complexity relative to the sparse 
data, while the other parametric forms cannot accom-
modate the heavy tails of the data. This is summarized 
in Table 1. Based on this comparison, for our dark pool 
study we investigate a variant of our main algorithm, in 
which the estimate–allocate loop has an estimation step 
using maximum likelihood estimation within the ZB + 
Power Law model, and allocations are done greedily on 
these same models.

In terms of the estimated ZB + Power Law parameters 
themselves, we note that for all 48 stock–pool pairs the 
Zero Bin parameter accounted for most of the distribu-
tion (between a fraction 0.67 and 0.96), which is not sur-
prising considering the aforementioned preponderance 
of entirely unfilled orders in the data. The vast majority 
of the 48 exponents b fell between b = 0.25 and b = 1.3—so 
rather long tails indeed—but it is noteworthy that for one 
of the four dark pools, 7 of the 12 estimated exponents 
were actually negative, yielding a model that predicts 
higher probabilities for larger volumes. This is likely an 
artifact of our size- and time-limited data set, but is not 
entirely unrealistic and results in some interesting behav-
ior in the simulations.

5.3. Data-based simulation results
As in any control problem, the dark pool data in our posses-
sion is unfortunately insufficient to evaluate and compare 
different allocation algorithms. This is because of the afore-
mentioned fact that the volumes submitted to each venue 
were fixed by the specific policy that generated the data, 
and we cannot explore alternative choices—if our algo-
rithm chooses to submit 1000 shares to some venue, but in 
the data only 500 shares were submitted, we simply cannot 
infer the outcome of our desired submission.

We thus instead use the raw data to derive a simulator 
with which we can evaluate different approaches. In light of 
the modeling results of Section 5.2, the simulator for stock S 
was constructed as follows. For each dark pool i, we used all 
of the data for i and stock S to estimate the maximum likeli-
hood Zero Bin + Power Law distribution. (Note that there is 
no need for a training-test split here, as we have already sep-
arately validated the choice of distributional model.) This 
results in a set of four venue distribution models Pi that form 

Table 1. Average per-sample log-loss (negative log likelihood) for 
each venue distribution models. The “Wins” column shows the num-
ber of stock-venue pairs where a given model beats the other four on 
the test data.

Model Train Loss Test Loss Wins

Nonparametric 0.454 0.872 3

ZB + Uniform 0.499 0.508 12

ZB + Power Law 0.467 0.484 28

ZB + Poisson 0.576 0.661 0

ZB + Exponential 0.883 0.953 5
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Figure 4. Sample learning curves. For the stock AIG (left panel), 
the naive bandits algorithm (labeled blue curve) beats uniform 
allocation (dashed horizontal line) but appears to asymptote short 
of ideal (solid horizontal line). For the stock NRG (right panel), 
the bandits algorithm actually deteriorates with more episodes, 
underperforming both the uniform and ideal allocations. For both 
stocks (and the other 10 in our data set), our algorithm (labeled red 
curve) performs nearly optimally.
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repeated resubmission of any remaining shares to get the 
total number executed above V/2. Despite the fact that 
our algorithm is not designed to optimize this criterion 
and that our theory does not directly apply to it, we see the 
same broad story on this metric as well—our algorithm 
competes with ideal, dominates uniform allocation and 
beats the bandit approach on large orders. The average 
order half-life for large (small) orders is 7.2 (5.3) for uni-
form allocation and 5.9 (4.4) for the greedy algorithm on 
the true distributions. Our algorithm requires on average 
6.0 (4.9) steps, while bandits uses 7.0 (4.4) to trade the large 
(small) orders.

Each algorithm was run in simulation for some num-
ber of episodes. Each episode consisted of the allocation 
of a fixed number V of shares—thus the same number of 
shares is repeatedly allocated by the algorithm, though 
of course this allocation will change over time for the 
two adaptive algorithms as they learn. Each episode of 
simulation results in some fraction of the V shares being 
executed. Two values of V were investigated—a smaller 
value V = 1000, and the larger and potentially more dif-
ficult V = 8000.

We begin by showing full learning curves over 2000 
 episodes with V = 8000 for a couple of representative stocks 
in Figure 4. Here the average performance of the two non-
adaptive allocation schemes (ideal and uniform) are rep-
resented as horizontal lines, while learning curves are 
given for the adaptive schemes. Due to high variance of the 
heavy-tailed venue distributions used by the simulator, a 
single trial of 2000 episodes is extremely noisy, so we both 
average over 400 trials for each algorithm, and smooth the 
resulting averaged learning curve with a standard exponen-
tial decay temporal moving average.

We see that our learning algorithm converges towards 
the ideal allocation (as suggested by the theory), often 
 relatively quickly. Furthermore, in each case this ideal 
asymptote is significantly better than the uniform allo-
cation strawman, meaning that optimal allocations 
are highly nonuniform. Learning curves for the bandit 
approach exhibit one of the three general behaviors over 
the set of 12 stocks. In some cases, the bandit approach 
is quite competitive with our algorithm, though converg-
ing to ideal perhaps slightly slower (not shown in Figure 
4). In other cases, the bandit approach learns to outper-
form uniform allocation but appears to asymptote short 
of the ideal allocation. Finally, in some cases the bandit 
approach appears to actually “learn the wrong thing”, with 
performance decaying significantly with more episodes. 
This happens when one venue has a very heavy tail, but 
also a relatively high probability of executing zero shares, 
and occurs because the very naive bandit approach that we 
use does not have an explicit representation of the tails of 
the distribution.

The left column of Figure 5 shows more systematic 
head-to-head comparisons of our algorithm’s perfor-
mance versus the other allocation techniques after 2000 
episodes for both small and large V. The values plotted are 
averages of the last 50 points on learning curves similar to 
Figure 4. These scatterplots show that across all 12 stocks 
and both settings of V, our algorithm competes well with 
the optimal allocation, dramatically outperforms uni-
form, and significantly outperforms the naive bandit allo-
cations (especially with V = 8000). The average completion 
rate across all stocks for the large (small) order sequences 
is 10.0% (13.1%) for uniform and 13.6% (19.4%) for opti-
mal allocations. Our algorithm performs almost as well as 
optimal—13.5% (18.7%)—and much better than bandits at 
11.9% (17.2%).

In the right column, we measure performance not by 
the fraction of V shares filled in one step, but by the natu-
ral alternative of order half-life—the number of steps of 

Figure 5. Comparison of our learning algorithm to the three 
baselines. In each plot, the performance of the learning  
algorithm is plotted on the y-axis, and the performance of one 
of the baselines on the x-axis. Left column: Evaluated by the 
fraction of submitted shares executed in a single time step;  
higher values are better, and points above the diagonal are wins 
for our algorithm. Right: Evaluated by order half-life; lower  
values are better, and points below the diagonal are wins for  
our algorithm. Each point corresponds to a single stock and  
order size; small orders (red plus signs) are 1000 shares, large 
orders (blue squares) are 8000 shares.
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6. CONCLUSION
While there has been longstanding interest in quantita-
tive finance in the use of models from machine learn-
ing and related fields, they are often applied towards the 
attempt to predict directional price movements, or in the 
parlance of the field, to “generate alpha” (outperform the 
market). Here we have instead focused on a problem in 
what is often called algorithmic trading—where one seeks 
to optimize properties of a specified trade, rather than 
decide what to trade in the first place—in the recently 
introduced dark pool mechanism. In part because of the 
constraints imposed by the mechanism and the structure 
of the problem, we have been able to adapt and blend 
methods from statistics and reinforcement learning 
in the development of a simple, efficient, and provably 
effective algorithm. We expect there will be many more 
applications of machine learning methods in algorithmic 
trading in the future.
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