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1 Introduction

In their extensive survey of the liquidity literature, Amihud, Mendelson, and Pedersen (2005) write

“Liquidity varies over time. This means that investors are uncertain what transactions

cost they will incur in the future when they need to sell an asset. Further, since liquidity

affects the level of prices, liquidity fluctuations can affect the asset price volatility itself.”

This paper joins the growing body of research that studies the effect of liquidity risk on expected

returns, but it begins with an investigation of the effect of liquidity fluctuations on asset price

volatility. Amihud (2002) reports that negative shocks to liquidity lower asset prices. Acharya and

Pedersen (2005) report a negative relationship between unexpected market illiquidity and asset

returns, and between unexpected asset illiquidity and market returns. How much of an asset’s

volatility can be attributed to these liquidity fluctuations?

A similar question can be, and has been, asked about dividend fluctuations. Campbell (1991)

answers the question by decomposing the unexpected contemporaneous return into two components,

new information about the dividend stream and new information about future discount rates. Even

though uncertainty about contemporaneous cash flows is relatively low, using the decomposition,

Campbell (1991) reports that new information about future cash flows accounts for almost half

the variation of contemporaneous returns. I extend the Campbell (1991) return decomposition to

include a liquidity component in two ways. The first decomposition considers revisions in expected

per share fixed costs and the second decomposition considers new information about proportional

costs. Each measure captures the resolved uncertainty about contemporaneous liquidity costs as

well as the price impact of new information about future fixed and proportional costs.

I estimate the two decompositions for an equal-weight aggregate portfolio of NYSE and AMEX

stocks over the period January 1964 to December 2001 using the proportional cost proxy imple-

mented by Acharya and Pedersen (2005), which is a variation of the Amihud (2002) illiquidity

measure. I find that the price impact of new information about future liquidity is a larger source of

portfolio risk than uncertainty about contemporaneous proportional costs. Although proportional

cost news has roughly 7 times the volatility of contemporaneous proportional costs, its volatility

is about 100 times smaller than that of contemporaneous returns. Hence, liquidity risk, from the
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proportional cost perspective, does not appear to be an economically significant source of portfolio

risk. Fixed cost news, on the other hand, is approximately 122 times more volatile than con-

temporaneous proportional costs and has 17 percent the volatility of contemporaneous returns. I

derive an explicit relationship between news about fixed costs, proportional costs, and dividends.

The relationship suggests that fixed cost news is primarily driven by new information about future

dividends. Positive dividend news leads to a capital gain – if proportional costs do not adjust, the

increased price results in higher fixed costs.

In addition to the aggregate portfolio, I study the properties of fixed and proportional cost news

across the cross-section by forming quintile-ranked portfolios after sorting assets on market capital-

ization, illiquidity levels, and turnover. The liquidity news components of these portfolio’s returns

have similar properties to those of the aggregate portfolio. Proportional cost and fixed cost news are

significantly more volatile than contemporaneous proportional costs and fixed cost news is substan-

tially more volatile than proportional cost news. I report that small and illiquid stocks have more

volatile proportional and fixed cost news and low turnover stocks have more volatile proportional

cost news and less volatile fixed cost news.

There is growing evidence that systematic liquidity risk is priced. Pastor and Stambaugh (2003)

report that assets with returns that are sensitive to market liquidity earn a risk premium. Sorting

assets by their return sensitivities to the aggregate liquidity measure, the portfolio that is long stocks

in the highest decile and short stocks in the lowest decile has annualized returns of 8.5 percent after

adjusting for the Fama-French factors. Acharya and Pedersen (2005) derive a Liquidity-Adjusted

CAPM (LACAPM) that includes a market beta and three liquidity betas. They report that total

liquidity risk premium is approximately 1.1 percent when all sources of portfolio systematic risk

are restricted to have the same market price of risk. Allowing the prices of the three liquidity

risks to differ from gross return risk, depending on the specification, Acharya and Pedersen (2005)

report the estimated price of liquidity risk to be between 6 and 22 times larger than that of gross

return risk. Sadka (2006) reports a positive and statistically significant liquidity risk premium

using the Fama-French model augmented by a liquidity factor. His liquidity factor is the average

permanent market impact coefficient after decomposing a measure of Kyle’s λ into permanent and

transitory effects. The sensitivity Sadka (2006) measures is similar to that measured by Pastor and
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Stambaugh (2003) and is related to one of the three liquidity betas in the Acharya and Pedersen

(2005) model.

The second half of the paper explores the relationship between expected returns and liquidity news

risk by applying the two net return decompositions to the Acharya and Pedersen (2005) LACAPM.

A simple description of LACAPM is that it is CAPM, except the gross return is replaced by the

net return. An asset’s expected excess net return is its net return beta times the market expected

excess net return. The final version of their model is obtained by substituting in the relationship

that net return equals gross return minus proportional costs. I estimate the LACAPM using the

proportional and fixed cost decompositions. The primary finding is that the explanatory of the

LACAPM under the two decompositions investigated in this paper is similar to that of their original

specification, but the market price of liquidity news risk is not statistically different than that of

non-liquidity news risk. Thus, including the price impact of changes in expected liquidity levels as

a component of liquidity risk appears to help resolve the puzzle associated with the large price of

liquidity risk reported by the above studies.

The rest of the paper is as follows. The next section provides the decomposition of asset net

returns into their three components. Section 3 sets up the vector autoregression and relates the

VAR to the variance decomposition provided in section 2. In section 4, I describe the data, the data

inclusion requirements, and the construction of the cross-sectional portfolios analyzed in the paper.

Section 5 reports the results of the variance decomposition for the aggregate and characteristic-

sorted portfolios. Section 6 estimates the price of liquidity news risk. Section 7 concludes and the

Appendix includes details on the jackknife resampling technique used in this paper.

2 Decomposing Asset Returns

My decompositions begin with the Campbell (1991) log-linear approximation of unexpected returns:

rt − Et−1rt ≈ ∆Et

∞
∑

i=0

ρi∆cft+i − ∆Et

∞
∑

i=1

ρirt+i, (1)
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where rt is the log stock return, cft is the log cash flow paid by the stock, ∆ denotes a one-period

change, Et denotes a rational expectation at time t, and ρ ≡ P/(P + D) is a discount coefficient

defined at long-horizon means. Equation (1) is the result of a first-order approximation of an

accounting identity and not an economic or behavioral model. It says that a capital gain today

requires that expected future cash flow growth be higher, or expected future asset returns be lower,

or both.

In the Campbell (1991) model, a stock’s cash flows are its dividend stream. The notation is

simplified by defining dividend news (ηd,t), discount rate news (ηr,t), and unexpected returns (νt)

as follows:

ηd,t ≡ ∆Et

∞
∑

i=0

ρi∆dt+i ηr,t ≡ ∆Et

∞
∑

i=1

ρirt+i νt ≡ rt − Et−1rt. (2)

Then (1) can be rewritten in compact form as νt ≈ ηd − ηr.

I introduce illiquidity by considering the net or spread-adjusted return in a manner similar to

Amihud and Mendelson (1986), Jones (2002), and Acharya and Pedersen (2005):

R̃t ≡
Pt +Dt − Ct

Pt−1
= Rt −Kt, (3)

where Ct is the contemporaneous per share fixed cost incurred each period for holding the illiquid

asset and Kt ≡ Ct/Pt−1 is the contemporaneous proportional cost. Amihud, Mendelson, and

Pedersen (2005) describe the following four sources of illiquidity: exogenous transactions costs

(commissions, taxes, etc.), demand pressure and inventory risk1, asymmetric information about

asset fundamentals or order flow2, and search frictions3. I assume the fixed cost is exogenous and

captures the four illiquidity sources. I also assume that the cost is incurred each period regardless

1See Stoll (1978), Garman (1976), Amihud and Mendelson (1980), Ho and Stoll (1981), Ho and Stoll (1983),
Grossman and Miller (1988), and Brunnermeier and Pedersen (2005b).

2Some papers that investigate how information is revealed in prices are Akerlof (1970), Grossman (1976), Grossman
and Stiglitz (1980), Hellwig (1980), and Admati (1985). Research on the cost associated with strategic use of
information about fundamentals is presented by Bagehot (1971), Copeland and Galai (1983), Glosten and Milgrom
(1985), Kyle (1985), and Mendelson and Tunca (2004). Madrigal (1996), Vayanos (2001), Gallmeyer, Hollifield, and
Seppi (2004), Attari, Mello, and Ruckes (2005), and Brunnermeier and Pedersen (2005a) investigate the strategic use
of information about order flow.

3See Longstaff (1995), Hopenhayn and Werner (1996), Longstaff (2001), Duffie, Garleanu, and Pedersen (2002),
Vayanos and Wang (2002), Weill (2002), Duffie, Garleanu, and Pedersen (2003), Brunnermeier and Pedersen (2005a),
Lagos (2005), Duffie, Garleanu, and Pedersen (2005), and Vayanos and Weill (2005).
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of whether a transaction takes place. The per period cost includes the monetized opportunity cost

associated with holding the illiquid asset, which may be due to second-best portfolio optimization

or the inability to profit from small informational asymmetries. It also amortizes over the holding

period the illiquidity cost incurred when the asset is liquidated.

2.1 Fixed Cost Decomposition

To the marginal investor, the realized cash flow at time t is the dividend paid by the stock minus

liquidity costs. The log cash flow may be written cft ≡ log(edt − ect). Note that log dividends (dt)

and log costs (ct) enter (1) nonlinearly through cft. A first-order Taylor expansion around long run

means gives the following approximation of cash flow growth rates

∆cft ≈ ωd∆dt − ωc∆ct, (4)

where ωd and ωc are defined to be long run means of the following ratios:

ωd =
D

D − C
ωc =

C

D − C
. (5)

Substituting (4) into (1), I obtain4

r̃t − Et−1r̃t ≈ ωd∆Et

∞
∑

i=0

ρi∆dt+i − ωc∆Et

∞
∑

i=0

ρi∆ct+i − ∆Et

∞
∑

i=1

ρir̃t+i, (6)

which may be written in compact form to simplify notation

ν̃t ≈ ωdηd,t − ωcηc,t − ηr̃,t (7)

= η̈d,t − η̈c,t − ηr̃,t, (8)

4An exact substitution of the log cash flow approximation into the Campbell (1991) decomposition would lead to
ρ = P

P+D−C
. Expanding the price-cash flow ratio in the Campbell and Shiller (1988) approximation around the long

run mean price-dividend ratio instead of the price-cash flow ratio leads to ρ = P
P+D

as defined in this paper.
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where η̈d,t ≡ ωdηd,t, η̈c,t ≡ ωcηc,t, and fixed cost news is defined by

ηc,t = ∆Et

∞
∑

i=0

ρi∆ct+i. (9)

Equations (6) through (8) relate the unexpected component of net returns to revisions in expec-

tations about future dividend growth, fixed cost growth, and net discount rates. New information

about higher than expected future fixed costs negatively influences contemporaneous prices. News

about dividends and discount rates have the same effect on unexpected returns as in the Campbell

(1991) model. Dividend and fixed cost news are multiplied by ωd and ωc respectively in order to

account for their relative importance on prices. The natural assumption that long-run dividends

are greater than long-run transactions costs dictates that the coefficient on dividend news is greater

than that on fixed cost news. News that future dividends will increase by ten percent is more im-

portant than news that future costs will increase by ten percent. Both coefficients increase as the

long-run mean of the cost-dividend ratio increases and achieve their minimum values when trading

costs are absent. Cross-sectionally, these coefficients are important; for example, small firms tend

to have low yields and high trading costs and large firms have high yields and low trading costs.

2.2 Proportional Cost Decomposition

An alternate decomposition considers revisions in expected proportional rather than fixed costs.

The log gross return of a stock may be approximated by rt ≈ r̃t +Kt. Substituting the log gross

return approximation into the Campbell (1991) decomposition provided by equation (1), I obtain

r̃t − Et−1r̃t ≈ ∆Et

∞
∑

i=0

ρi∆dt+i − ∆Et

∞
∑

i=0

ρiKt+i − ∆Et

∞
∑

i=0

ρir̃t+i (10)

which may be written in compact form to simplify notation

ν̃t ≈ ηd,t − ηK,t − ηr̃,t, (11)
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where proportional cost news, ηK,t is defined as follows:

ηK,t = ∆Et

∞
∑

i=0

ρiKt+i = ∆EtKt +

∞
∑

i=1

ρiKt+i. (12)

In the proportional cost decomposition, cash flows are the dividend stream so that transactions costs

are not double counted. Equations (10) and (11) relate the unexpected net return to changes in

expected dividend growth, proportional costs, and net returns. Negative contemporaneous returns

occur when proportional cost estimates are revised upwards. From equation (12), we see that

proportional cost news includes the unexpected contemporaneous proportional cost, which is the

source of liquidity risk identified by Acharya and Pedersen (2005). In addition, proportional cost

news also contains the newly acquired information about future proportional costs. This additional

component is the price impact of changes in forecasted liquidity levels and is another source of

liquidity risk.

Fixed costs and proportional costs are obviously related. Equations (8) and (11) may be combined

to relate the two liquidity news terms. Two equivalent forms of the relationship follow

ηc,t = ηd,t + η̈K,t (13)

ηK,t = ωc(ηc,t − ηd,t), (14)

where η̈K,t ≡ ηK,t/ωc. Proportional costs link information about dividends to information about

fixed costs. If proportional costs are time-invariant or there is no newly acquired information about

proportional costs, then η̈K,t = 0 and ηc,t = ηd,t. With no change in proportional costs, a 10

percent increase in dividends implies a 10 percent increase in fixed costs. Proportional cost news

is primarily driven by price changes. When expected future fixed costs are higher (ηc,t > 0) or

dividends are lower (ηd,t < 0), prices drop and expected proportional costs increase (ηK,t > 0). A

similar equation may be derived for yield news:

ηY,t ≡ ∆Et

∞
∑

i=0

ρiYt+i = ωd(ηc,t − ηd,t). (15)

The contemporaneous yield is defined to be the contemporaneous dividend divided by lag price:
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Yt ≡ Dt/Pt−1. As is the case for proportional cost news, yield news is also primarily driven by

price changes. Positive fixed cost news or negative dividend news lowers price and increases the

yield. Yield and proportional cost news are related as follows:

ηY,t =
ωd
ωc
ηK,t =

D

C
ηK,t. (16)

Equation (16) predicts that the dividend yield should be more volatile than the proportional cost,

a prediction that is consistent with the findings of Jones (2002). Using annual data for the entire

twentieth century, Jones (2002) regresses yield on proportional costs and reports that a one unit

increase in proportional costs is associated with a 5.3 unit increase in yield. Although the regression

does not translate perfectly to the relationship given by equation (16), the estimate suggests that

dividends are approximately 5.3 times larger than costs. Chalmers and Kadlec (1998) report that

between 1983 and 1992 the equal-weight amortized spread was approximately 0.51 percent per year.

The equal-weight yield over the same period was approximately 2.82 percent per year. Hence, the

dividend-cost ratio during the ten year period was approximately 5.5. Together, the findings suggest

that fixed costs are roughly 18 percent the size of dividends. Ceteris paribus, new information about

fixed costs should have 18
1.18 = 15.3 percent the effect on returns as new information about dividends.

Although the three-term decompositions distinguish the three sources of return information and

risk, the primary purpose of this paper is to investigate the properties of the liquidity component.

In Section 6, I estimate the market prices of fixed cost versus non-fixed cost news risk and of

proportion cost versus non-proportional cost news risk. In order to do so, I aggregate the non-

liquidity components in each decomposition to provide two-term decompositions that simplify the

analysis and exposition considerably. Defining η⋆c,t ≡ η̈d,t − ηr̃,t to be non-fixed cost news and

η⋆K,t ≡ ηd,t − ηr̃,t to be non-proportional cost news, the unexpected component of net returns may

be rewritten ν̃t ≈ η⋆c,t − ηc,t and ν̃t ≈ η⋆K,t − ηK,t.
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2.3 Decomposing the Net Return Variance

The three-term return decompositions result in six-term variance decompositions:

var(ν̃t) =var(η̈d,t) + var(η̈c,t) + var(ηr̃,t)

− 2 cov(η̈d,t, η̈c,t) − 2 cov(η̈d,t, ηr̃,t) + 2 cov(η̈c,t, ηr̃,t)

(17)

for the fixed cost decomposition and

var(ν̃t) =var(ηd,t) + var(ηK,t) + var(ηr̃,t)

− 2 cov(ηd,t, ηK,t) − 2 cov(ηd,t, ηr̃,t) + 2 cov(ηK,t, ηr̃,t)

(18)

for the proportional cost decomposition. The goal of the above variance decompositions is to deter-

mine liquidity’s influence on portfolio volatility. The task is ambiguous because liquidity enters the

above variance decompositions in three places, through one variance term and two covariance terms.

There are many possible measures that aggregate the variance and covariance terms in different

ways in order to capture different aspects of liquidity’s influence on return volatility. I report the

following three measures for each decomposition. The first measure is the ratio of cost volatility to

return volatility: R̈c ≡ σ(η̈c,t)/σ(ν̃t) for fixed costs and RK ≡ σ(ηK,t)/σ(ν̃t) for proportional costs.

The measure is a relative measure of liquidity news volatility and does not take into account any re-

lationship between liquidity news and the other two news terms. The relative volatilities of dividend

news and discount rate news are similarly defined by R̈d ≡ σ(η̈d,t)/σ(ν̃t) for dividend news in the

fixed cost decomposition, Rd ≡ σ(ηd,t)/σ(ν̃t) for dividend news in the proportional cost decomposi-

tion, and Rr̃ ≡ σ(ηr̃,t)/σ(ν̃t) for net discount rate news. The second measure I report is the regres-

sion coefficient of liquidity news on unexpected contemporaneous returns: B̈c ≡ cov(ν̃t, η̈c,t)/var(ν̃t)

for fixed costs and BK ≡ cov(ν̃t, ηK,t)/var(ν̃t) for proportional costs. When the measure is posi-

tive, unexpected contemporaneous returns are less volatile than non-liquidity news because of the

positive comovement between liquidity and non-liquidity news. Similarly, I calculate the regression

coefficients for dividend and net return news: B̈d ≡ cov(ν̃t, η̈d,t)/var(ν̃t), Bd ≡ cov(ν̃t, ηd,t)/var(ν̃t)

and Br̃ ≡ cov(ν̃t, ηr̃,t)/var(ν̃t). By definition, B̈d − B̈c − Br̃ = 1 and Bd − BK − Br̃ = 1. These

regression coefficients are similarly defined as the measures of dividend and discount rate contribu-
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tion to portfolio variance reported by Campbell (1991) and can be interpreted as the percentage

of conditional return volatility attributable to the respective return component. The final measure

is the ratio of cost volatility to contemporaneous proportional cost volatility: P̈c ≡ σ(η̈c,t)/σ(Kt)

for proportional costs and PK ≡ σ(ηK,t)/σ(Kt). The measure captures how large the volatility

of liquidity news is relative to that of uncertainty about contemporaneous proportional costs, the

traditional measure of liquidity risk and may be interpreted as a measure of liquidity’s persistence.

Campbell and Shiller (1988) report a similar persistence measure of discount rate news, which they

provide as evidence of long horizon return predictability.

Equation (13) provides the decomposition of fixed cost news into proportional cost news and divi-

dend news. Using the decomposition, the fixed cost news variance may be written:

var(ηc,t) = var(ηd,t) + var(η̈K,t) + 2(ηd,t, η̈K,t) (19)

Is new information about future fixed costs primarily due to changes in expected future proportional

costs or dividends? In order to determine the relative volatility contributions of the two fixed cost

news components, I calculate the following three measures for the above decomposition. The

first measure is the relative volatilities of the two components: R∗
d ≡ σ(ηd,t)/σ(ηc,t) and R̈∗

K ≡

σ(η̈K,t)/σ(ηc,t). The second measure is the respective regression coefficients obtained by regressing

dividend and scaled proportional cost news on fixed cost news: B∗
d ≡ cov(ηc,t, ηd,t)/var(ηc,t) for

dividend news and B̈∗
K ≡ cov(ηc,t, η̈K,t)/var(ηc,t) for proportional cost news.

3 Vector Autoregressions

Campbell and Shiller (1988) show that using a vector autoregression (VAR) is a convenient way to

implement the return and return variance decomposition and estimate the news series. I assume

that the data are generated by a first-order VAR model,

zt = a + Γzt−1 + wt, (20)

where zt is a m-by-1 portfolio-specific vector of state variables describing a portfolio at time t,
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a and Γ are, respectively, an m-by-1 vector and an m-by-m matrix of parameters, and wt is an

m-by-1 vector of i.i.d. shocks. This formulation is not restrictive and allows for higher-order

representation by including additional lags in the vector of state variables. The VAR coefficient

matrix may differ across portfolios but is assumed to be time invariant. The error vector wt

has portfolio dependent covariance matrix Σ. Writing the VAR in companion form simplifies

forecasting. For example, the change in expectations at time t of the state variables i periods

ahead is Et[zt+i|zt] − Et−1[zt+i|zt−1] = Γiwt.

The vector of state variables includes the log gross return and proportional cost, which are required

for calculating the news components, and additional variables that aid in forecasting. The additional

state variables included for their forecasting abilities are described in the next section.

I define ej to be the jth row of an appropriately sized identity matrix. The vector ej extracts jth

variable of the vector zt. For instance, the unexpected net return at date t is ν̃t = (e1 − e2)wt,

the unexpected contemporaneous proportional cost is approximately ∆EtKt = e2wt, and the net

discount rate news is calculated as follows:

ηr̃,t = ∆Et

∞
∑

i=1

ρir̃t+i = (e1 − e2)

∞
∑

i=1

ρiΓiwt

= (e1 − e2)Γ(I − ρΓ)−1wt

= (e1 − e2)Λwt, (21)

where Λ is defined by Λ ≡ ρΓ(I − ρΓ)−1, a nonlinear function of the VAR coefficients. The term

(I−ρΓ)−1, which is equal to (I + Λ), gives more persistent variables a higher weight. The derivation

of proportional cost news is similar with the following resulting expression:

ηK,t = e2(I + Λ)wt (22)

η̈K,t =
1

ωc
e2(I + Λ)wt. (23)
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As is the case in the Campbell (1991) implementation, dividend news is estimated as a residual:

ηd,t = e1(I + Λ)wt (24)

η̈d,t = ωde1(I + Λ)wt. (25)

Fixed cost news is estimated using equation (13):

ηc,t = (e1 +
1

ωc
e2)(I + Λ)wt (26)

η̈c,t = (ωce1 + e2)(I + Λ)wt. (27)

The above expressions may be used, along with the coefficient matrix Γ and the innovation co-

variance matrix Σ, to estimate the desired news covariance matrix and other statistics of interest.

For instance, the three previously introduced measures of fixed cost news’s influence on portfolio

volatility are calculated using the following equations:

Rc =

√

(ωce1 + e2)(I + Λ)Σ(I + Λ)′(ωce1 + e2)′

(e1 − e2)Σ(e1 − e2)′
(28)

Bc =
(ωce1 + e2)(I + Λ)Σ(e1 − e2)′

(e1 − e2)Σ(e1 − e2)′
(29)

Pc =

√

(ωce1 + e2)(I + Λ)Σ(I + Λ)′(ωce1 + e2)′

e2Σe′2
. (30)

The VAR coefficient matrix Γ is estimated using OLS and is reported with its OLS standard errors.

Robust standard errors and small-sample bias corrected estimates are obtained for all relevant

statistics, such as the news’ covariances, using the delete-an-observation jackknife method.5 The

jackknife method was selected over the traditional bootstrap because the random sampling of

errors often led to ill-conditioned (I − ρΓ) matrices.6 Details on the jackknife bias-correction and

the estimation of jackknife standard errors are included in the Appendix.

5Vuolteenaho (2002) employs Rogers (1993)’s robust estimation of asymptotic standard errors and Shao and Rao
(1993)’s delete-a-crossection jackknife in his panel data estimation. Rogers (1993) and Shao and Rao (1993) simplify
to White (1984)’s standard errors and the delete-a-group jackknife in the case of a single series of data.

6Ill-conditioned matrices occurred approximately 20 percent of the time. Rather than set an arbitrary rule for
removing these outliers, I choose the more structured jackknife approach, which eliminates the problem.
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4 State Variables, Data Set, and Illiquidity Proxy

As shown in the previous section, two variables are needed to estimate the three news series: log

gross returns and proportional costs. Because the news series are changes in forecasts of their

respective variables, variables that aid in forecasting should also be included in the VAR. For this

reason, the state vector also includes the log yield and its two lags, lagged proportional costs, and

the log first difference of monthly turnover.

The price-dividend’s (or its inverse) forecasting ability is well-established in the return forecasting

literature. The Campbell and Shiller (1988) log-linear approximation of the price-dividend ratio

shows why the log yield would have predictive power for returns. Various forms of the dividend-

price ratio are typically included in the return decomposition framework. Campbell (1991) includes

the ratio of dividends paid over the previous year to the current stock price. Campbell and Ammer

(1993) include the log of of the Campbell (1991) measure. Campbell and Vuolteenaho (2004) choose

to include the ratio of earnings paid over the previous year to the current stock price. Chen and Zhao

(2006) investigate the robustness of the return decomposition to the choice of the price-earnings vs.

price-dividend ratio. They estimate the model with the PE measure employed by Campbell and

Vuolteenaho (2004) and a smoothed yield and find that the results of the two specifications differ

substantially, which they partially attribute to the fact that the unit root test is rejected for the

yield, but not for the PE ratio. In order to avoid the persistence problems associated with smoothed

variables, I do not smooth dividends like the above papers. Instead, I include the contemporaneous

log yield and 2 additional lags of the log yield to account for the quarterly seasonality in dividend

payout.

The proportional cost is a required state variable in my decompositions, but it also helps to forecast

returns. Two papers that investigate the time-series return-liquidity relationship, Amihud (2002)

and Jones (2002), report that high returns are predicted when liquidity is low. Acharya and

Pedersen (2005) and Pastor and Stambaugh (2003) predict illiquidity using an AR(2) specification.

In their spirit and because I use the Acharya and Pedersen (2005) proportional cost proxy, I include

an additional lag of proportional costs in the state vector.

The final variable included in the state vector is the log first difference of monthly turnover, ∆ψt =
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ψt − ψt−1. Jones (2002) reports that high turnover predicts low returns and low trading costs.

Because turnover is persistent, I choose to include its logged first difference instead to ensure

stationarity.

The price, return, dividend, and volume data are from the Center for Research in Security Prices

(CRSP) tape from July 1, 1962 until December 31, 2002 for all common shares (share codes 10

and 11) listed on the NYSE and AMEX (data with exchange codes 3 and 33 are omitted). The

risk-free rate used to calculate excess returns are the one month Treasury-bill returns supplied by

Ibbotson Associates. Monthly turnover is calculated as the monthly trading volume divided by

the number of shares outstanding at the end of the current month. CRSP reports returns both

inclusive and exclusive of dividend payout over the period. The log yield is calculated as the log

of the equal-weight average single-period yield of the portfolio assets. The Fama-French factors,

which are used to sort portfolios on their respective market factor loadings and idiosyncratic risk

levels, are taken from Kenneth French’s website.

4.1 A Measure of Trading Costs

Unfortunately, illiquidity is not an observable variable and the data that measures certain aspects

of liquidity, such as the bid-ask spread, are limited. For example, CRSP provides bid and ask

prices for stocks listed on the NASDAQ only after 1982. As a result, researchers have proposed and

investigated a number of liquidity proxies.7 I choose to proxy for trading costs using the methods

of Acharya and Pedersen (2005), which are based on the following Amihud (2002) measure of

illiquidity:

ILLIQit =
1

Daysit

Daysit
∑

d=1

|R̃itd|
V i
td

, (31)

where Daysit is the number of valid observation days for asset i in month t and V i
td is the dollar

volume in millions on day d in month t. Given the specification of ILLIQit, one may be concerned

that ILLIQit is proxying for return volatility. Amihud (2002) shows that the correlation between

7See Goyenko, Holden, Lundblad, and Trzcinka (2005) for a comprehensive overview of some of the common
proxies for liquidity.
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his illiquidity measure and asset volatility is low, approximately 0.22. Also, Acharya and Pedersen

(2005) test for this effect as a robustness check and find that including volatility as a state variable

in their estimation does not significantly change their results. For a more complete discussion on

the merits of using ILLIQit in this setting, see Acharya and Pedersen (2005).

The Amihud (2002) illiquidity measure cannot be used without modification because ILLIQit is

measured in percent per dollar whereas my model requires a proportional measure of transactions

costs in terms of dollar cost per dollar invested. This problem is addressed by relating ILLIQit to

Ki
t , the proportional monthly trading costs:

Ki
t = 0.048min

(

0.0025 + 0.0030ILLIQitΛt−1, 0.30
)

, (32)

where Λt−1 is the ratio of the capitalizations of the market portfolio at the end of month t− 1 and

of the market portfolio at the end of July 1962. Acharya and Pedersen (2005) select the coefficients

0.0025 and 0.0030 to match the cross-sectional distribution of Ki
t for size-decile ranked portfolios

to the effective half-spread reported by Chalmers and Kadlec (1998)8. Because I consider the cost

incurred each period rather than that paid specifically at liquidation, I multiply by 0.048, the

equal-weight average monthly turnover in my sample, to transform the full effective spread into

a monthly amortized measure.9 Proportional trading costs are capped at 30 percent annually to

limit the impact of extreme observations of ILLIQit.

4.2 Inclusion Requirements

My inclusion requirements closely resemble those imposed by Amihud (2002), Pastor and Stam-

baugh (2003), and Acharya and Pedersen (2005). The following requirements are designed to

eliminate stocks whose proportional cost proxies may behave poorly:

1. Stocks with end of previous year share prices of less than $5 or greater than $1000 are

excluded.

8Chalmers and Kadlec (1998) report that the mean effective spread is 1.11%.
9Acharya and Pedersen (2005) multiply by 0.034, which is the value-weighted monthly turnover and corresponds

to a holding period of 29 months. Because I investigate the equal-weight market portfolio, I use the equal-weighted
monthly turnover, which I calculate to be 0.048.
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2. Only stocks with more than 15 observations in a given month are included. An exception is

made for the month of September 2001 because no stocks meet this requirement due to the

six day market closure. For this month, to be included, a stock must have 15 observations.

3. The first and last partial month that a stock appears on the CRSP tape are excluded from

the sample.

4. Stocks must have at least 120 observations in the previous year.

The initial CRSP sample of ordinary stocks on the NYSE and AMEX between January 1964

and December 2001 includes 1,009,698 observations. 784,908 observations survive the first three

requirements. The fourth requirement is designed to ensure a suitable amount of data is available

for calculating market factor loadings used in the cross-sectional portfolio analysis and eliminates

an additional 27,056 observations. The resulting data set includes 757,852 observations.

4.3 Portfolio Formation

An equal-weight market portfolio is formed each month from January 1964 to December 2002.

Acharya and Pedersen (2005) focus on equal-weighted averages for the market portfolio. They

argue persuasively that equal weights compensate for the over-representation of liquid assets in the

CRSP sample. Because my sample and investigation is similar to and my results are compared

against theirs, I too will focus my empirical work on the equal-weighted market portfolio.

In addition to the market portfolio, for each year-end beginning 1963 and ending 2001, eligible

stocks are sorted into 3 portfolios according to criteria listed below. Portfolio characteristics for

the 12 post-ranking months are linked across years to form a single time series for each quintile.

For the quintile-ranked portfolios, all state variables, zt, are calculated as value-weighted averages.

The breakpoints for the sort are calculated using all eligible stocks so that each portfolio has

approximately the same number of stocks when formed. The sort criteria is listed below:

• Size – Stocks are sorted by end of year market capitalization.

• Proportional Cost – Stocks are sorted by an annualized version of the Amihud (2002)

illiquidity measure for each eligible stock where equation (31) is estimated over the entire
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year.

• Turnover – Stocks are sorted by their respective mean daily turnover calculated over the

entire year.

The purpose of the above sorts is to investigate how liquidity news properties vary over the cross-

section. For example, Stoll and Whaley (1983) report that small-cap stocks tend to be less liquid

than large-cap stocks. Do they also have more liquidity risk? Acharya and Pedersen (2005) report

that less liquid stocks are associated with higher levels of systematic liquidity risk. Does the

finding hold when considering liquidity news risk? The cross-sectional analysis helps to answer

these questions.

4.4 Calculating the News Coefficients

In Section 2, I emphasized that the weight applied to liquidity news is important over the cross-

section. Recall that the liquidity news term is multiplied by the following coefficient:

ωc =
1

D/C − 1
. (33)

The coefficient is sensitive to changes in the long-run dividend-cost ratio. To see this, consider the

dividend cost ratios of the high and low portfolios ranked by market capitalization (Table 5). The

average yield and proportional cost of the high portfolio is respectively 3.5678 and 0.1378 percent.

The resulting coefficient is 0.04. The average yield and proportional cost of the low portfolio is

respectively 1.8915 and 1.2984 percent. The resulting coefficient is 2.19, 55 times larger than that

of the high portfolio.

Using these weights more than likely exaggerates the cross-sectional differences. At the same

time, applying the same market weight to all portfolios is also suspect because the important

cross-sectional differences are completely ignored. My solution is to average each portfolio’s yield

and proportional cost with the market value prior to calculating the weight. This is a reasonable

compromise and a relative conservative approach that assumes the cost-dividend ratio of individual

portfolios converge to that of the market over long horizons. Applying this compromise to the above
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example, I obtain coefficients of 0.12 and 0.644 for the portfolios. The high portfolio’s coefficient

is now approximately 5 times smaller than that of the low portfolio.

Because of the sensitivity of the weight to the dividend-cost ratio and the noisiness of the Acharya

and Pedersen (2005) proportional cost proxy implemented in this paper, I choose to use an alter-

native measure of long-term trading costs for calculating the coefficients. Chalmers and Kadlec

(1998) report the amortized spread for effective spread decile-ranked portfolios. At the end of each

year, I rank stocks by their annual Amihud (2002) illiquidity measure and assign to each stock the

amortized spread reported by Chalmers and Kadlec (1998) for its respective decile-ranked portfolio.

Each month, I calculate the equal-weighted average proportional cost for each portfolio. Finally, I

use the time-series average proportional cost as the long run mean cost-price ratio.

5 Results of the VAR Decompositions

Table 2 reports the coefficient estimates for the VAR model for the equal-weight market portfolio

formed over the period January 1964 to December 2001. Each estimate includes OLS standard

errors in brackets and robust jackknife standard errors in parentheses. The first column is the

intercept and the next seven columns are the coefficient estimates that form the coefficient matrix

Γ. The final two columns report the R2 and F -statistic for each regression. The second panel

reports the correlation matrix of the regression residuals.

The coefficient estimates are consistent with the return predictability literature. Consistent with

the findings of Campbell and Shiller (1988), Campbell (1991), Campbell and Ammer (1993),

Vuolteenaho (2002), Jones (2002), and Campbell and Vuolteenaho (2004), high returns and yields

forecast high returns. High proportional costs positively predict the market return, consistent with

Jones (2002), Amihud (2002), and Bekaert, Harvey, and Lundblad (2006). An increase in turnover

forecasts higher returns, a result that is inconsistent with the findings of Jones (2002).10 The R2

for the regression is 4.8 percent, which is consistent amongst the return predictability literature.

Proportional costs are persistent and predictable. The R2 of the regression is 84.7 percent. Acharya

10These differences can be attributed to the differences in our samples. Jones (2002) considers annual excess returns
and his own constructed measurement of the bid-ask spread for the entire century.
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and Pedersen (2005) report an R2 of 78 percent for the AR(2) regression of proportional costs over

the period 1964–2000. Combining the coefficients of two lags of Kt indicates a cumulative persis-

tence of approximately 0.85. Like Jones (2002), I find that high returns predict low proportional

costs. An increase in turnover forecasts low costs, a result which is again inconsistent with the

findings of Jones (2002).

Tables 3 and 4 report the variance decompositions implied by the VAR coefficients reported in

Table 2. In order to implement the decomposition, values for ωd, ωc, and ρ are required. Using

the time-series mean of the portfolio’s monthly yield and Chalmers and Kadlec (1998) costs, the

calibrated values are: ωd = 1.242, ωc = 0.242, and ρ = 0.99765. Panel A reports the covariance and

correlation matrix for the relevant news terms. Panel B relates the state vector shocks to the news

terms through their correlations and the function that maps the state vector shocks to the individual

news components. The functional mappings are normalized by multiplying by the respective state

variable shock volatility and dividing by the unexpected contemporaneous net return volatility.

The resulting estimate is the impact in standard deviations to contemporaneous returns of a single

deviation shock to a particular state variable. Panel C provides the seven measures of liquidity’s

contribution to portfolio risk. Robust jackknife standard errors are in parenthesis and small-sample

bias corrected estimates using the jackknife procedure are in brackets.

5.1 Proportional Cost Decomposition

Table 3 reports the previously described statistics for the proportional cost decomposition. Discount

rate news has the largest volatility of the three components, a result that is consistent with the

Campbell (1991) decomposition. From Rr̃, we see that discount rate news has approximately 96

percent of the variability of unexpected contemporaneous returns. According to Rd, dividend news

is also an important component with 75 percent the variability of unexpected returns. As expected,

liquidity’s contribution to portfolio volatility is the smallest of the three components; it’s volatility

is approximately 1 percent of that of contemporaneous returns. The beta coefficients (B) take into

account the covariation between the three news terms and paint a similar picture. Discount rate

news is the largest contributor to portfolio variability with Br̃ = −0.601. Dividend news has about

2/3 the impact on returns as discount rate news with Bd = 0.400. The covariation of proportional
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cost news with dividend and discount rate news virtually eliminates its impact on contemporaneous

returns with Bc = 0.001.

Although proportional cost news is a small component of unexpected returns, its volatility is

an order of magnitude larger than that of contemporaneous proportional costs. The persistence

measure PK indicates that the revision in expectated present and future proportional costs has

approximately 7.2 times the volatility as that of contemporaneous proportional costs. Interestingly,

the correlation between shocks to contemporaneous proportional costs and proportional cost news

is low. From Panel B, we see that the correlation is 0.074. If the VAR for proportional costs

were limited to an AR(2) process, then by definition, the correlation between the contemporaneous

shock to the news term would be unity. Apparently, the additional information provided by returns,

yields, and turnover is important for forecasting future proportional costs. In fact, contemporaneous

liquidity shocks are the least informative of the four state variables.

5.2 Fixed Cost Decomposition

Table 4 reports the statistics for the fixed cost decomposition. By definition, the role of discount

rate news is identical in the two decompositions. Fixed cost news has a more significant impact on

contemporaneous returns than proportional cost news. The R̈c statistic shows that fixed cost news

has approximately 17.5 percent the variability of contemporaneous returns versus the 1 percent for

proportional cost news in the previous decomposition. The relationship ηc,t = ηd,t + η̈K,t suggests

that fixed cost news is primarily driven by new information about dividends. Table 3 shows that

ηd,t is substantially more volatile than ηK,t, even after dividing ηK,t by ωc = 0.242. New information

about dividends influences prices and when proportional costs are relatively stable, the price change

due to dividend news is the primary source of fixed cost news variability. As a measure of liquidity

risk, fixed cost news is substantially more volatile than contemporaneous proportional costs: 123

times more volatile according to P̈c. The fixed cost decomposition indicates that new information

about future liquidity costs is an important source of risk for contemporaneous returns and that

liquidity risk, as measured by fixed cost news risk, is significantly more important than the risk

associated with unpredicted contemporaneous proportional costs.

20



5.3 Cross-Sectional Variation in the Variance Decompositions

A number of studies have investigated return predictability using the VAR decomposition initially

proposed by Campbell and Shiller (1988). One study by Vuolteenaho (2002) estimates the variance

decomposition across the cross-section to investigate how the properties of cash flow news and

discount rate news differ across firms. Vuolteenaho (2002) forms ten size-ranked portfolios on an

annual basis. Vuolteenaho’s approach assumes that all portfolios share the same coefficient matrix

and that heterogeneity across portfolios is due to portfolio-specific innovation covariance matrices.

This assumption eliminates the complication arising from invalidation of the infinite sum formulas.

He notes that a result of the assumption is the possibility that heterogeneity in the decomposition

may be an artifact of the imposed constraint. I find that imposing the same restriction is prob-

lematic in my sample. For example, some portfolios would have variances conditional on the state

vector higher than unconditional variances. I choose to take a different approach and assume at the

time of portfolio formation that a stock will always have the same transition matrix going forward.

Therefore, I estimate portfolio dependent transition and innovation covariance matrices.

Each set of results for the various sorts are presented with sample statistics, the two variance

decompositions, and the decomposition of fixed cost news into dividend and proportional cost

news. The portfolio sample statistics include the expected gross returns, variance of gross returns,

variance of the unexpected component of net returns, average market capitalization, yield, Chalmers

and Kadlec (1998)’s amortized spread, the Acharya and Pedersen (2005) proportional cost measure,

and turnover. For the variance decompositions, I include the 14 statistics described earlier. Market

capitalization is measured in billions of dollars and the remaining terms are annualized and reported

as percentages. The rightmost column reports the estimates for the equal-weight market portfolio

for ease of comparison.

5.4 Sort by Market Capitalization

Table 5 presents the results for the portfolios formed after sorting assets by their previous year-end

market capitalizations. The sample statistics indicate that sorting by firm size leads to the usual

results. Expected returns, return variance, and trading costs decrease with firm size, and the yield
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increases with firm size. Annual turnover only varies slightly across portfolios.

The same relationship between liquidity risk and firm size occurs under the two decompositions.

The relative volatility of proportional cost news decreases with firm size, from 0.0392 for the

smallest quintile to 0.0004 for the largest quintile. The relative volatility of fixed cost news also

decreases with firm size, from 0.597 for the smallest quintile to 0.113 for the largest. For all five

portfolios, fixed cost news appears to be primarily driven by dividend news. Panel D reports that

the volatility of fixed cost news is slightly less than that of dividend news for all five portfolios.

Proportional cost news’s contribution to fixed cost news variability decreases with firm size. For

instance, proportional cost news has approximately 6.5 percent the volatility of fixed cost news for

the smallest quintile and 0.33 percent the volatility of fixed cost news for the largest quintile.

5.5 Sort by Amihud (2002) Illiquidity Level

Table 6 reports the results for firms sorted by their illiquidity level. Due to the close inverse

relationship between firm size and liquidity level, the cross-sectional variation of liquidity sorts

almost perfectly mimics that of size sorts, only in the opposite direction. Approximately 67 percent

of firms are placed in the same quintile-ranked portfolio when sorting on size or illiquidity level.

Unfortunately, the close relationship between firm size and firm liquidity makes it difficult to deter-

mine which firm characteristic contributes to the cross-sectional variation of liquidity news. Panel

A shows that firms with high costs have low market capitalization. The variance decomposition

and measures of contribution also closely follow the results of the size sort. Like Acharya and

Pedersen (2005), who show that illiquid securities tend to have high contemporaneous systematic

liquidity risk, I find that illiquid securities also have high liquidity news risk as measured by the

two decompositions.

5.6 Sort by Turnover

Table 7 presents the results for turnover sorted portfolios. The Amihud and Mendelson (1986)

clientele effect predicts that high turnover stocks are more liquid. The reported annualized pro-

portional costs for the five portfolios are consistent with the prediction. The liquid, high turnover
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portfolios have lower returns and yields. Although turnover and liquidity are linked and liquidity

and market capitalization are related, there does not appear to be a relationship between turnover

and size.

The turnover sort leads to an interesting set of results. The relative proportional cost volatility

decreases in turnover, but the relative fixed cost volatility increases in turnover. The volatility

of fixed and proportional cost news is, respectively, high and low for stocks that turn over most

frequently. As Panel D reports, for these stocks, fixed cost news is primarily driven by dividend

news. The volatility of fixed and proportional cost news is, respectively, low and high for stocks

that turn over least frequently and proportional cost news has approximately half the volatility of

fixed cost news. For these stocks, new information about proportional costs is a significant source

of information about fixed costs.

6 Pricing Liquidity Risk

The Liquidity-Adjusted Capital Asset Pricing Model (LACAPM) derived by Acharya and Pedersen

(2005) is a significant contribution that allows liquidity risk to be priced and asset returns to be

explained as a function of their systematic liquidity risk. Their result is the solution to an over-

lapping generations equilibrium model with risk-averse agents and assets with stochastic liquidity

levels. The unconditional expected net return of asset i is

E(r̃it) = E(rft ) + λ
cov(r̃it − Et−1(r̃

i
t), r̃

m
t − Et−1(r̃

m
t ))

var(r̃mt − Et−1(r̃
m
t ))

. (34)

The LACAPM is a natural extension to the CAPM, exchanging the net return that agents care

about in a world with liquidity costs for the gross return in the original CAPM. Acharya and

Pedersen (2005) substitute in the standard decomposition of net return: r̃it ≈ rit−Ki
t , which I refer

to as the contemporaneous decomposition, and obtain the following model for expected returns:

E(rit − rft ) = E
(

Ki
t

)

+ λβir,r + λβic,c − λβic,r − λβir,c (35)
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where

βir,r =
cov

(

rit − Et−1

(

rit
)

, rmt −Et−1 (rmt )
)

var (rmt − Et−1 (rmt ) − [Km
t − Et−1 (Km

t )])
(36)

is the systematic risk associated with covariation between an individual asset’s gross return with

the market gross return,

βic,c =
cov

(

Ki
t − Et−1

(

Ki
t

)

,Km
t − Et−1 (Km

t )
)

var (rmt −Et−1 (rmt ) − [Km
t − Et−1 (Km

t )])
(37)

is the systematic risk due to comovement between an individual asset’s contemporaneous propor-

tional liquidity level with that of the aggregate portfolio,

βic,r =
cov

(

Ki
t − Et−1

(

Ki
t

)

, rmt − Et−1 (rmt )
)

var (rmt − Et−1 (rmt ) − [Km
t − Et−1 (Km

t )])
(38)

represents the non-diversifiable risk due to an individual asset’s proportional liquidity sensitivity

to the market return, and

βir,c =
cov

(

rit − Et−1

(

rit
)

,Km
t − Et−1 (Km

t )
)

var (rmt − Et−1 (rmt ) − [Km
t −Et−1 (Km

t )])
(39)

is the systematic risk that results from an individual asset’s return covarying with the aggregate

proportional liquidity level. In their model, the expected excess net return λ = E(rmt −Km
t − rft )

is the market risk premium.

This paper emphasizes through the return decomposition approach that the gross return contains a

liquidity component and that the net return decomposition may be used to disentangle the liquidity

component from gross returns. Note that equation (34) is equivalent to

E(r̃it) = E(rft ) + λ
cov(ν̃it , ν̃

m
t )

var(ν̃mt )
(40)

= E(rft ) + λβ̃. (41)

The two-way decompositions, ν̃it ≈ η⋆iK,t−ηiK,t for proportional costs and ν̃it ≈ η⋆ic,t−η̈ic,t for fixed costs,

may be substituted into equation (41) to obtain two alternative LACAPMs. For the proportional
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cost decomposition, the four betas are defined as follows:

βir,r =
cov(η⋆iK,t, η

⋆m
K,t)

var(ν̃mt )
βic,c =

cov(ηiK,t, η
m
K,t)

var(ν̃mt )
βir,c =

cov(η⋆iK,t, η
m
K,t)

var(ν̃mt )
βic,r =

cov(ηiK,t, η
⋆m
K,t)

var(ν̃mt )
. (42)

For the fixed cost decomposition, the four betas are defined to be

βir,r =
cov(η⋆ic,t, η

⋆m
c,t )

var(ν̃mt )
βic,c =

cov(η̈ic,t, η̈
m
c,t)

var(ν̃mt )
βir,c =

cov(η⋆ic,t, η̈
m
c,t)

var(ν̃mt )
βic,r =

cov(η̈ic,t, η
⋆m
c,t )

var(ν̃mt )
. (43)

6.1 Estimating the Betas

In the contemporaneous decomposition, the four betas are estimated over the asset’s holding period,

which Acharya and Pedersen (2005) estimate to be 29 months on average, and not over the sampling

period as viewed by the econometrician. In their model, the transaction cost is paid every 29 months

at asset liquidation and dividends are aggregated over the entire holding period. In order to estimate

the betas with the 1 month sampling horizon, Acharya and Pedersen (2005) assume that returns

are independent over time and proportional costs follow a martingale. In the Appendix, I show that

small deviations from the two assumptions can lead to large differences in estimated betas due to

error aggregation over the 29 month period. When returns follow an AR(1) process with coefficient

ρi for portfolio i and ρm for the market portfolio and proportional costs follow an AR(1) process

with coefficient ̺i for portfolio i and ̺m for the market portfolio, the four betas are calculated

using the following equations for the relevant covariance terms:

covt(K
i
t+τ ,K

m
t+τ ) =

1 − ̺τi ̺
τ
m

1 − ̺i̺m
covt(K

i
t+1,K

m
t+1) (44)

covt(r
i
t,t+τ , r

m
t,t+τ ) =
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i
t+1, r

m
t+1)
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(
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1 − ρτi ρ

τ
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1 − ρτm
1 − ρm

− ρm
1 − ρτi
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(45)
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where rt,t+τ is the cumulative log return over the τ periods from time t to t + τ . For instance,

when returns follow an AR(1) process with coefficient 0.167 and proportional costs follow an AR(1)

process with coefficient 0.886, βic,c is estimated to be 6.3 times larger than its true value and βic,r

and βir,c are estimated to be 3.08 times larger than their true values. The inflated estimates of

systematic liquidity risk likely result in estimates of the market price of liquidity risk that are

smaller than the population value.

As detailed in Section 2, I take a different approach for the proportional and fixed cost decomposi-

tions. Rather than aggregate dividends to be distributed at the end of the average holding period,

I assume that at each sampling period, investors bear a cost for holding illiquid assets. Because, by

assumption, costs are incurred and dividends are distributed at the sampling frequency, I am able

to estimate the covariances and variances in equations (42) and (43) at the monthly frequency.

Tables 8 through 10 present the descriptive statistics for the odd-numbered value-weighted port-

folios after sorting assets into 25 portfolios by their annual Amihud (2002) measures for the con-

temporaneous, proportional, and fixed cost decompositions respectively. For the contemporaneous

decomposition, the four betas are estimated using equations (36) through (39) and (44) through

(48). For the proportional and fixed cost decompositions, the betas are computed using equations

(42) and (43), and the monthly estimated news series for the 25 portfolios and the aggregate port-

folio. In addition to the four betas, the aggregate net return beta (β∗i = βir,r + βic,c − βir,c − βc,r)
i)

is reported for each portfolio. All statistics are estimated over the period 1964 to 1999 so that my

sample period matches that of Acharya and Pedersen (2005). The reported estimates are small-

sample bias corrected and the standard errors are computed using the jackknife procedure and

the pre-estimation of the coefficient matrix and residual covariance matrix are taken into account.

For each portfolio, I also report the annualized time-series average proportional cost, net return,

turnover, yield, and market capitalization as well as the time-series volatility of the portfolio’s

proportional cost and net return.

Sorting assets on previous illiquidity levels results in portfolios with monotonically increasing illiq-

uidity, which is further evidence of liquidity’s persistence. The characteristics of the portfolios

are similar to those of the illiquidity sorted portfolios reported by Acharya and Pedersen (2005)

in their Table 1, with the differences attributable to the slight difference in our inclusion require-

26



ments. Highly illiquid portfolios have high net returns, a relationship that is well documented in

the literature. Yield and market capitalization monotonically increase with liquidity. Aside from

portfolios 1 and 25, the inverse relationship between illiquidity and turnover is consistent with the

Amihud and Mendelson (1986) clientele effect.

Sorting on past illiquidity levels produces clear trends in the betas. The net return beta increases

in illiquidity for all three decompositions. By definition, the net return beta for the fixed and

proportional cost decompositions are equal. According to the betas reported in Table 8, taking

into account return’s momentum and liquidity’s mean reversion significantly alters the estimates.

Comparing the liquidity betas reported in table 8 to those reported by Acharya and Pedersen

(2005), we see that the estimates of βc,c, βc,r, and βr,c in this paper are, respectively, approximately

one-tenth, one-third, and one-fourth the magnitude of the Acharya and Pedersen (2005) estimates.

Tables 9 and 10 provide the same information for the betas calculated after performing the pro-

portional and fixed cost decompositions. The magnitudes of the liquidity betas in the fixed cost

decomposition are significantly larger than those obtained in the proportional cost and contempo-

raneous decompositions, reflecting the larger variability in fixed cost news. In the proportional cost

decomposition, the only liquidity beta that is consistently statistically significant is the beta that

represents the covariation between the portfolio’s liquidity and the market return. For fixed costs,

both βc,r and βc,c are, for the most part, statistically significant. As is the case for the contempo-

raneous decomposition, the measures of systematic liquidity risk increase in portfolio illiquidity.

6.2 The Liquidity Risk–Return Relationship

I closely follow the methods of Acharya and Pedersen (2005) to estimate the market price of liquidity

risk. Again, I report the small-sample bias corrected estimates and standard errors calculated using

the jackknife procedure. The reported standard errors take into account the pre-estimation of the

betas, VAR coefficient matrix, and residual covariance matrix.

In addition to the 25 value-weighted portfolios formed by ranking stocks by their annual ILLIQ

measures, Acharya and Pedersen (2005) also form 25 value-weighted portfolios by ranking stocks on

a measure they denote σ(illiquidity), which is the volatility of daily ILLIQ values estimated over
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the previous year. Their reason for forming portfolios in this manner is to consider portfolios that

differ in their liquidity attributes. Tables 8 through 10 demonstrate that sorting by liquidity levels

generates portfolios that differ in their liquidity attributes. I verify that sorting by σ(illiquidity)

also produces portfolios that satisfy this requirement.

To estimate the risk premia, I consider the following specification with a variety of restrictions:

E(rit − rft ) = α+ κE[Ki
t ] + λβi + λ∗β∗i + λr,rβ

i
r,r + λr,cβ

i
r,c + λc,rβ

i
c,r + λcβ

i
c, (49)

where α allows for a nonzero intercept, κ is an estimate of the illiquidity premium, β is the CAPM

beta, β∗ is the net return liquidity-adjusted CAPM beta, and βic ≡ βic,c − βic,r − βr,c is a combined

measure of the three components of systematic liquidity risk. The Acharya and Pedersen (2005)

LACAPM is equation (49) with the following restrictions: α = λ = λr,r = λr,c = λc, r = λc,c =

λc = 0 and κ = 1.

Tables 11 through 12 report the estimated coefficients for both sets of sorted portfolios for the

contemporaneous, proportional, and fixed cost decompositions respectively. The results for the

illiquidity ranked portfolios are reported in Panel A and for the σ(illiquidity) ranked portfolios in

Panel B.

Line 1 estimates the standard CAPM with betas calculated conditional on the state vector. The

second line estimates the LACAPM with restricted liquidity premium and the third line removes

the restriction on the liquidity premium. Lines 4 and 5 estimate the LACAPM allowing the market

price of liquidity risk to differ from the market price of non-liquidity risk, but restricts the three

sources of liquidity risk to have the same price of risk. The fourth line includes a restriction on

the liquidity premium, which the fifth line removes. Finally, lines 6 and 7 remove the restriction

that requires the three liquidity betas to share the same market price of risk. Line 6 includes a

restricted liquidity premium and line 7 is the completely unrestricted model.

As Acharya and Pedersen (2005) report in their empirical analysis, the restricted form of the

LACAPM estimated in the second line provides an improvement in fit over the standard CAPM.

Table 11 shows the adjusted R2 increasing from 53.7 percent for CAPM to 61.3 percent for the

restricted LACAPM. The improvement in fit is not quite as substantial in my estimates as that
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reported by Acharya and Pedersen (2005) because of the difference in how the betas are calculated.

Adjusting the betas for return momentum and liquidity mean-reversion reduces the magnitude

of the liquidity betas and the explanatory power of the model. For the same regression, they

report an adjusted R2 of 73 percent. Releasing the restriction on the liquidity premium provides a

significant improvement in fit with an adjusted R2 of 97.1 percent and more reasonable parameter

estimates. For instance, α is not statistically significant, there is a slight liquidity premium which

may correspond to the Amihud and Mendelson (1986) clientele effect, and the market price of risk

is approximately 6.8 percent per year. The fourth line, which allows the market price of liquidity

risk to differ from that of non-liquidity risk, but includes a restricted liquidity premium provides

a substantive improvement in fit over the estimation in which all betas share the same price of

risk. However, the market price of non-liquidity risk is not statistically significant and the market

price of liquidity risk is 575 percent per year and statistically significant. Lifting the restriction on

the liquidity premium yields a slight improvement in fit, but the parameter estimates are almost

identical. Like Acharya and Pedersen (2005), I find the multi-collinearity problems to be severe in

the unrestricted regressions performed in lines 6 and 7.

Table 12 reports the results of the regressions for the proportional cost decomposition. I find the

explanatory power of the proportional cost decomposition to be similar to, but slightly less than that

of the contemporaneous decomposition. The primary difference between the two decompositions is

in the estimated market prices of risk. For example, line 5 reports that the market price of liquidity

risk is not statistically different from that of non-liquidity risk which has a market price of 10.2

percent per year. The adjusted R2 in line 5 is 96.9 percent compared against 96.8 percent for line

3 in which the four sources of risk are restricted to have the same market price of risk. According

to this restricted regression, the shared market price of risk is approximately 8.8 percent per year.

As is the case for the contemporaneous decomposition, the multi-collinearity problems appear to

be severe in the unrestricted regressions reported in the last 2 lines.

The results of the fixed decomposition are reported in Table 13. By definition, the first three regres-

sions are identical for the fixed and proportional cost decompositions. Similar to the proportional

cost decomposition, the model estimated in the fifth line shows the market price of non-liquidity

risk to not be statistically different than that of liquidity risk, which has a market price of risk of
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9.7 percent per year. For this decomposition, the adjusted R2 for the LACAPM with unrestricted

liquidity premium and restricted market prices of risk is higher than the model in which the market

price of liquidity risk is allowed to differ from that of non-liquidity risk.

6.3 Economic Significance

So far, this section has focused on the explanatory power and the estimated market price of risk for

the adjusted contemporaneous decomposition and the fixed and proportional cost decomposition

within the LACAPM framework. The LACAPM may also be used to estimate how much of the

expected return is attributable to each systematic risk component. In order to calculate the premia

for the different liquidity components, I use the estimates reported in line 3, where the market price

of risk is restricted to be the same for the four betas and the liquidity risk premium is unrestricted.

Lines 6 and 7 are not selected because of the multi-collinearity problems and line 3 is selected over

lines 4 and 5 because the adjusted R2 are similar for the two regressions, but the estimates obtained

in line 3 have lower standard errors.

The model implied liquidity premium between portfolios 25 and 1 is κ
(

E(K25) − E(K1)
)

. For

the contemporaneous decomposition, I calculate the liquidity premium to be 11.2 percent and the

proportional and fixed decompositions provide a similar estimate at 11.4 percent per year.

The annualized risk premium due to comovement between a portfolio’s liquidity news and market

liquidity news is 12λ∗(β25
c,c−β1

c,c). The return difference for the contemporaneous and proportional

cost decompositions is approximately zero and for the fixed decomposition is 0.74 percent.

Comovement between portfolio liquidity news and market non-liquidity news leads to a risk pre-

mium of −12λ∗(β25
c,r − β1

c,r). The contemporaneous, proportional cost, and fixed decompositions

have risk premia of 0.12, 0.48, and -7.66 percent respectively.

Covariation of the portfolio’s non-liquidity component with the market liquidity component results

in a risk premium of −12λ∗(β25
r,c − β1

r,c). The resulting premia are estimated to be 0.02, -0.01, and

-0.91 percent respectively for the contemporaneous, proportional, and fixed cost decompositions.

Like Acharya and Pedersen (2005), I find that of the three sources of liquidity risk, the comovement
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of the asset’s liquidity component with the market non-liquidity component, which is captured by

βc,r, is the most economically important. The total return contribution of systematic liquidity risk

captured by the three betas is 0.14, 0.48, and -6.00 percent for the contemporaneous, proportional,

and fixed cost decompositions respectively.

The following quote from Acharya and Pedersen (2005) appears to be relevant when comparing the

contemporaneous to the proportional cost decomposition:

“The collinearity between liquidity and liquidity risk implies that the most robust num-

ber is their overall effect. Further, our results suggest that studies that focus on the

separate effect of liquidity (or liquidity risk) can possibly be reinterpreted as providing

an estimate of the overall effect of liquidity and liquidity risk.”

The total return difference attributed to liquidity and liquidity risk is 11.54 and 11.68 percent for

the two respective decompositions, which both consider proportional liquidity levels.

Although the liquidity premium is similar under the fixed cost decomposition, the liquidity risk

premium is substantially different and negative. For fixed costs, the above quote can be revised

to relate the collinearity between fixed cost news and dividend news. Studies that focus on the

separate effects of fixed cost risk and dividend risk may be reinterpreted as providing an estimate

of their overall effect.

7 Conclusion

I derive two extensions of the Campbell (1991) unexpected return decompositions in order to include

a liquidity component and investigate how new information about future liquidity levels influence

portfolio volatility. The first extension includes an additional news term that represents changes

in expectated future proportional costs. The second extension’s additional news term represents

changes in expectated future fixed costs.

I estimate the news series for the two decompositions for the aggregate portfolio and across the cross-

section. The primary findings are that proportional cost news and fixed cost news have, respectively,

7 and 122 times the volatility of unexpected contemporaneous proportional costs. Fixed cost news
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has approximately 17 percent the volatility of contemporaneous returns and proportional cost

news has approximately 1 percent the volatility of contemporaneous returns. Thus, fixed cost news

appears to be an economically significant contributor to portfolio risk. Proportional cost news, on

the other hand, is not a significant contributor to portfolio volatility. The impact of liquidity news

risk varies over the cross section. Both measures of liquidity news risk have increasing volatilities

as firm size decreases and illiquidity increases. Stocks that turn over more frequently have less

volatile proportional cost news and more volatile fixed cost news.

I investigate the pricing of the systematic component of fixed and proportional cost news risk by

implementing the Liquidity-Adjusted CAPM model proposed by Acharya and Pedersen (2005).

I report the explanatory power of the LACAPM using the two decompositions proposed in this

paper is similar to that of the original specification investigated by Acharya and Pedersen (2005).

The primary finding of the analysis is that, when including the price impact of revisions in future

expected liquidity levels as a component of liquidity risk, the estimated market price of liquidity

risk under both decompositions is not statistically different than that of non-liquidity risk.
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A The Jackknife

Beginning with the full sample of T observations and their respective lags, T new resampled data

sets with T − 1 observations each are created by removing a different single observation from the

original dataset. The first resampled data set will have the first observation removed, the second will

have the second observation removed, and so on. The VAR is then re-estimated for each resampled

data set. For example, the following estimation would be performed for the second resampling:
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For any statistic of interest, this procedure yields a total of T + 1 estimates: the original estimate

f(Γ,Σ) and the T resampled estimates, f(Γi,Σi), where Γi and Σi are the estimates of the param-

eter matrix and error-covariance matrix for each resampling. The standard error of the statistic,

σ(f(Γ,Σ)), is calculated according to the formula:

σ(f(Γ,Σ)) =
√
T − 1

T
∑

i=1

(

f(Γi,Σi) − f̃(Γ,Σ)
)2
, (51)

where f̃(Γ,Σ) is calculated according to the formula:

f̃(Γ,Σ) = Tf(Γ,Σ) − T − 1

T

T
∑

i=1

f(Γi,Σi). (52)

In addition to providing an estimate of robust standard errors, the jackknife may be used to adjust

for small-sample bias. The small-sample corrected estimate of a statistic, f̂(Γ,Σ) is calculated

according to the formula:

f̂(Γ,Σ) =
1

T

T
∑

i=1

f(Γi,Σi). (53)
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B The Acharya and Pedersen (2005) Betas and Mean Reversion

Let τ denote the holding period of an asset in months and rit,t+τ denote the log gross return for

asset i over the τ month period between time t and t+ τ :

rt,t+τ = rt + rt+1 + · · · + rt+τ−1 + rt+τ (54)

The four betas in the Acharya and Pedersen (2005) adjusted CAPM are:

β1 =
covt(r

i
t,t+τ , r

m
t,t+τ )

vart(rmt,t+τ −Km
t+τ )

β2 =
covt(K

i
t+τ ,K

m
t+τ )

vart(rmt,t+τ −Km
t+τ )

β3 =
covt(r

i
t,t+τ ,K

m
t+τ )

vart(rmt,t+τ −Km
t+τ )

β4 =
covt(K

i
t+τ , r

m
t,t+τ )

vart(rmt,t+τ −Km
t+τ )

.

Acharya and Pedersen (2005) estimate the four betas by assuming that returns are independent

over time and that liquidity follows a random walk. Under these two assumptions, the four betas

are calculated to be

β1 =
covt(r

i
t+1, r

m
t+1)

vart(rmt+1 −Km
t+1)

β2 =
covt(K

i
t+1,K

m
t+1)

vart(rmt+1 −Km
t+1)

β3 =
covt(r

i
t+1,K

m
t+1)

vart(rmt+1 −Km
t+1)

β4 =
covt(K

i
t+1, r

m
t+1)

vart(rmt+1 −Km
t+1)

.

Here, I show that small deviations from the two assumptions may have a substantial impact on the

estimated betas. Suppose returns and proportional costs are first order autoregressive:

rit = αi + ρir
i
t−1 + eit

Ki
t = δi + ̺iK

i
t−1 + ǫit.
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Let randt(xt+τ ) denote the stochastic component of xt+τ conditional on information at time t.

Then it can be shown that

randt(K
i
t+τ ) =

τ
∑

j=1

̺τ−jǫt+j (55)

randt(r
i
t,t+τ ) =

1

1 − ρi

τ
∑

j=1

et+j −
ρi

1 − ρi

τ
∑

j=1

ρτ−ji et+j (56)

The five covariances needed to calculate the four liquidity betas are calculated to be:

covt(K
i
t+τ ,K

m
t+τ ) =

1 − ̺τi ̺
τ
m

1 − ̺i̺m
covt(K

i
t+1,K

m
t+1)

covt(r
i
t,t+τ , r

m
t,t+τ ) =

1

(1 − ρi)(1 − ρm)

(

τ + ρiρm
1 − ρτi ρ

τ
m

1 − ρiρm
− ρi

1 − ρτm
1 − ρm

− ρm
1 − ρτi
1 − ρi

)

covt(r
i
t+1, r

m
t+1)
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i
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m
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1
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As an example, I consider the equal-weight market portfolio over the period 1964 – 2002. For the

portfolio I estimate the AR(1) coefficients to be ρm = 0.167 and ̺ = 0.886 and the covariance of

the residuals to be vart(r
m
t+1) = 28.6%, vart(K

m
t+1) = 0.033%, and covt(r

m
t+1,K

m
t+1) = −0.397%.

Letting β∗1 , β∗2 , β∗3 , and β∗4 be the respective betas calculated using the first-order autoregressive

assumptions and letting the AR coefficients for the individual portfolio equal that of the market

portfolio, I calculate that β1 = 0.98β∗1 , β2 = 6.31β∗2 , β3 = 3.08β∗3 , and β4 = 3.08β∗4 . For this

example, we see that although the calculated return beta β1 appears to be relatively unaffected

but the three liquidity betas are substantially overestimated when not taking into account their

autoregressive properties. For instance, the beta that represents the systematic risk due to the

comovement of a portfolio’s proportional cost with that of the market is overestimated by a factor

of 6.3.

These differences are likely to impact the Acharya and Pedersen (2005) empirical analysis in two
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ways. The first impact is in the regression where all liquidity risk premium are restricted to be

equal. Because the magnitude of the three liquidity betas are reduced, the dispersion of the net

return betas βnet = β1 + β2 − β3 − β4 due to systematic liquidity risk is also reduced and the net

return betas βnet are closer to the standard CAPM beta, which is approximated by β1. Hence, the

large improvement in the liquidity adjusted CAPM’s explanatory power over standard CAPM is

likely to be reduced. The second likely impact is in the regression where the liquidity risk premium

is allowed to differ from the market risk premium. Because the adjusted liquidity beta are lower in

magnitude, the estimated liquidity risk premium is likely to increase.
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Table 1: This table reports the sample statistics for the VAR state variables estimated for the period January 1963 to
December 2001 for the equal-weight market portfolio. The included state variables are the log market gross return (rm),
proportional costs (K), log dividend yield (y), the first difference of log monthly turnover (∆ψ), one lag of proportional costs,
and two lags of log dividend yield. The second panel reports the correlation and first-order autocorrelation of the series.

Descriptive Statistics of the VAR State Variables

Variable Mean Median Std. Dev. Min Max Autocorr.

100 · rm 1.030 1.372 5.424 −31.436 20.835 0.167
100 ·K 0.049 0.045 0.019 0.020 0.136 0.888
y −3.669 −3.662 0.460 −4.754 −2.642 0.378
∆ψ 0.003 0.011 0.170 −0.600 0.658 −0.273

Shock Correlation Matrix

Correlations rm
t+1 Kt+1 yt+1 ∆ψt+1 Kt yt yt−1

rm
t+1 1.000 −0.217 0.048 0.329 0.005 0.113 0.096

Kt+1 −0.217 1.000 −0.126 0.019 0.888 −0.177 −0.216
yt+1 0.048 −0.126 1.000 −0.026 −0.127 0.378 0.383
∆ψt+1 0.329 0.019 −0.026 1.000 0.031 0.131 0.027
Kt 0.005 0.888 −0.127 0.031 1.000 −0.128 −0.172
yt 0.113 −0.177 0.378 0.131 −0.128 1.000 0.373
yt−1 0.096 −0.216 0.383 0.027 −0.172 0.373 1.000

rm
t 0.167 −0.403 0.003 0.075 −0.218 0.052 0.113
Kt 0.005 0.888 −0.127 0.031 1.000 −0.128 −0.172
yt 0.113 −0.177 0.378 0.131 −0.128 1.000 0.373
∆ψt 0.108 −0.089 −0.059 −0.273 0.025 −0.031 0.136
Kt−1 0.024 0.785 −0.092 0.102 0.889 −0.128 −0.123
yt−1 0.096 −0.216 0.383 0.027 −0.172 0.373 1.000
yt−2 0.069 −0.223 0.940 −0.062 −0.216 0.380 0.372
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Table 2: This table reports the OLS parameter estimates for the equal-weight market portfolio for a monthly first-order VAR
model including a constant, the log market gross return (rm), proportional cost (K), log dividend yield (y), the first difference
of log monthly turnover (∆ψ), one lag of proportional costs, and two lags of log dividend yield. The first eight columns report
coefficients for the appropriate explanatory variable. The final two columns report the R2 and F statistics. OLS standard
errors are in brackets below their respective parameter estimates and robust jackknife standard errors are in parentheses. In
addition, the second panel reports the correlation matrix of the shocks with robust jackknife standard errors in parentheses.

VAR Parameter Estimates: Jan 1964 – Dec 2001

Constant rm
t Kt yt ∆ψt Kt−1 yt−1 yt−2 R2 F-stat

rm
t 0.066 0.165 0.347 0.011 0.017 −0.186 0.005 0.002 4.8 3.20

[0.027] [0.057] [0.338] [0.006] [0.016] [0.325] [0.006] [0.006]
(0.030) (0.057) (0.364) (0.006) (0.016) (0.298) (0.007) (0.007)

100 ·Kt −0.003 −0.088 0.630 −0.002 −0.003 0.215 −0.001 0.000 84.7 353.13
[0.004] [0.008] [0.047] [0.001] [0.002] [0.045] [0.001] [0.001]
(0.004) (0.009) (0.088) (0.001) (0.002) (0.079) (0.001) (0.001)

yt −0.049 −0.612 0.457 0.011 −0.187 1.502 0.061 0.940 90.3 592.44
[0.072] [0.153] [0.913] [0.017] [0.043] [0.880] [0.017] [0.017]
(0.071) (0.190) (1.145) (0.016) (0.050) (1.048) (0.016) (0.016)

∆ψt 0.053 0.453 −1.418 0.058 −0.320 2.317 0.020 −0.051 15.0 11.20
[0.079] [0.168] [0.998] [0.018] [0.047] [0.962] [0.018] [0.018]
(0.080) (0.203) (1.487) (0.018) (0.055) (1.639) (0.020) (0.020)

Shock Correlation Matrix

rm
t Kt yt ∆ψt

rm
t 1.000 −0.452 −0.020 0.357

(0.000) (0.053) (0.048) (0.073)

Kt −0.452 1.000 −0.014 −0.009
(0.053) (0.000) (0.051) (0.057)

yt −0.020 −0.014 1.000 0.025
(0.048) (0.051) (0.000) (0.049)

∆ψt 0.357 −0.009 0.025 1.000
(0.073) (0.057) (0.049) (0.000)
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Table 3: Net Return Variance Decomposition (Proportional Cost) – This table reports the properties of dividend
news (ηd), proportional cost news (ηK ), and discount rate news (ηr̃) implied by the VAR model of Table 2. The first panel reports
the annualized covariance matrix of the news terms (multiplied by 100) on the left and the correlation matrix on the right. The
second panel reports the correlation of shocks to individual state variables with the three news terms on the left and the functions
that map the state-variable shocks to the news terms on the right. The functional mappings are normalized by multiplying
the term by its respective state variable shock volatility and dividing by the volatility of unexpected contemporaneous returns.
Panel C provides seven measures of liquidity’s contribution to portfolio risk. Rd, RK , and Rr̃ are respectively the ratios of
dividend news, proportional cost news, and net discount rate news to that of unexpected contemporaneous returns. PK is the
ratio of proportional cost news volatility to that of unexpected contemporaneous proportional costs. Bd, BK , and Br̃ are the
regression coefficients obtained by regressing, respectively, dividend news, proportional cost news, and net discount rate news
on unexpected contemporaneous returns. Net returns, proportional costs, log dividend yield, and log turnover growth rates
are represented by rm, K, y, and ∆ψ respectively. Included in brackets are small-sample bias corrected estimates using the
jackknife procedure detailed in the appendix and robust jackknife standard errors are in parentheses.

Panel A: News Covariance and Correlation Matrices

100 * News Covariance News Correlations
ηd ηK ηr̃ η̂d ηK ηr̃

ηd 2.6353 −0.0243 1.5842 1.0 −0.6256 0.4927
(1.7214) (−0.0125) (0.3732) (−0.6729) (0.5217)
[1.2761] [0.0220] [2.2429] [0.2585] [0.3764]

ηK −0.0243 0.0006 −0.0338 −0.6256 1.0 −0.7118
(−0.0125) (0.0003) (−0.0162) (−0.6729) (−0.7636)

[0.0220] [0.0005] [0.0348] [0.2585] [0.2530]

ηr̃ 1.5842 −0.0338 3.9237 0.4927 −0.7118 1.0
(0.3732) (−0.0162) (2.4626) (0.5217) (−0.7636)
[2.2429] [0.0348] [3.2872] [0.3764] [0.2530]

Panel B: Correlations and Shock → News Mappings

Shock Correlations Functions
shock ηd ηK ηr̃ ηd ηK ηr̃

rm 0.361 0.202 −0.633 0.603 0.002 −0.399
(0.418) (0.203) (−0.636) (0.661) (0.001) (−0.340)
[0.428] [0.267] [0.088] [0.228] [0.003] [0.231]

K 0.257 0.057 0.629 0.508 0.002 0.508
(0.262) (0.074) (0.619) (0.461) (0.003) (0.460)
[0.255] [0.294] [0.104] [0.176] [0.003] [0.178]

y 0.777 −0.963 0.667 0.708 −0.013 0.721
(0.882) (−1.023) (0.694) (0.648) (−0.011) (0.658)
[0.189] [0.076] [0.113] [0.333] [0.005] [0.335]

∆ψ 0.131 0.191 −0.225 −0.113 0.002 −0.115
(0.147) (0.203) (−0.230) (−0.097) (0.002) (−0.099)
[0.189] [0.096] [0.071] [0.074] [0.001] [0.075]

Panel C: Measures of Liquidity’s Contribution to Portfolio Risk
PK Rd RK Rr̃ BD BK Br̃

9.364 0.884 0.013 1.079 0.319 0.003 −0.684
[7.219] [0.745] [0.010] [0.957] [0.400] [0.001] [−0.601]
(3.819) (0.221) (0.005) (0.453) (0.316) (0.004) (0.321)
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Table 4: Net Return Variance Decomposition (Fixed Cost) – This table reports the properties of dividend news (η̈d),
fixed cost news (η̈c), and discount rate news (ηr̃) implied by the VAR model of Table 2. The first panel reports the annualized
covariance matrix of the news terms (multiplied by 100) on the left and the correlation matrix on the right. The second panel
reports the correlation of shocks to individual state variables with the three news terms on the left and the functions that
map the state-variable shocks to the news terms on the right. The functional mappings are normalized by multiplying the
term by its respective state variable shock volatility and dividing by the volatility of unexpected contemporaneous returns.
Panel C provides seven measures of liquidity’s contribution to portfolio risk. R̈d, R̈K , and Rr̃ are respectively the ratios of
dividend news, proportional cost news, and net discount rate news to that of unexpected contemporaneous returns. P̈c is the
ratio of proportional cost news volatility to that of unexpected contemporaneous proportional costs. B̈d, B̈c, and Br̃ are the
regression coefficients obtained by regressing, respectively, dividend news, proportional cost news, and net discount rate news
on unexpected contemporaneous returns. Net returns, proportional costs, log dividend yield, and log turnover growth rates
are represented by rm, K, y, and ∆ψ respectively. Included in brackets are small-sample bias corrected estimates using the
jackknife procedure detailed in the appendix and robust jackknife standard errors are in parentheses.

Panel A: News Covariance and Correlation Matrices

100 * News Covariance News Correlations
η̈d η̈c ηr̃ η̈d η̈c ηr̃

η̈d 4.0616 0.7598 1.9668 1.0 0.9988 0.4927
(2.6530) (0.5005) (0.4635) (0.9991) (0.5217)
[1.9662] [0.3573] [2.7842] [0.0011] [0.3764]

η̈c 0.7598 0.1425 0.3488 0.9988 1.0 0.4665
(0.5005) (0.0946) (0.0742) (0.9991) (0.4942)
[0.3573] [0.0649] [0.5127] [0.0011] [0.3900]

ηr̃ 1.9668 0.3488 3.9237 0.4927 0.4665 1.0
(0.4635) (0.0742) (2.4626) (0.5217) (0.4942)
[2.7842] [0.5127] [3.2872] [0.3764] [0.3900]

Panel B: Correlations and Shock → News Mappings

Shock Correlations Functions
shock η̈d η̈c ηr̃ η̈d η̈c ηr̃

rm 0.361 0.388 −0.633 0.749 0.148 −0.399
(0.418) (0.449) (−0.636) (0.821) (0.161) (−0.340)
[0.428] [0.430] [0.088] [0.283] [0.053] [0.231]

K 0.257 0.270 0.629 0.631 0.124 0.508
(0.262) (0.278) (0.619) (0.573) (0.114) (0.460)
[0.255] [0.258] [0.104] [0.218] [0.041] [0.178]

y 0.777 0.746 0.667 0.880 0.159 0.721
(0.882) (0.853) (0.694) (0.804) (0.146) (0.658)
[0.189] [0.211] [0.113] [0.413] [0.078] [0.335]

∆ψ 0.131 0.148 −0.225 −0.140 −0.025 −0.115
(0.147) (0.167) (−0.230) (−0.121) (−0.022) (−0.099)
[0.189] [0.192] [0.071] [0.092] [0.017] [0.075]

Panel C: Measures of Liquidity’s Contribution to Portfolio Risk

P̈c R̈d R̈c Rr̃ B̈d B̈c Br̃

147.662 1.097 0.206 1.079 0.396 0.080 −0.684
[123.318] 0.924] [0.174] [0.957] [0.496] [0.097] [−0.601]
(34.746) 0.274) (0.048) (0.453) (0.392) (0.074) (0.321)
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Table 5: This table reports statistics for quintile-ranked portfolios. At the end of each year, beginning in 1963 and ending
2001, eligible stocks are sorted into five portfolios. The breakpoints are based on all eligible stocks so each portfolio has
approximately the same number of stocks at the time of formation. The portfolio characteristics for the 12 post-ranking
months are joined across years to form a single time series for each quintile. Panel A reports the annualized sample statistics
including the time series average of log net returns, variance of log net returns, variance of the unexpected component of log net
returns, market capitalization, yield, proportional illiquidity level, and turnover. Market capitalization is reported in billions of
dollars. Everything else is reported in percent per year. Panel B presents the statistics associated with the proportional cost
decomposition. Bd, BK , and Br̃ are, respectively, the regression coefficients of dividend news, proportion cost news, and net
discount rate news on unexpected contemporaneous returns. RK and PK are the volatility of proportional cost news normalized
by the volatility of, respectively, unexpected returns and contemporaneous proportional costs. Panel C presents the statistics
associated with the fixed cost decomposition. B̈d, B̈c, and Br̃ are, respectively, the regression coefficients of dividend news, fixed
cost news, and net discount rate news on unexpected contemporaneous returns. R̈c and P̈c are the volatility of proportional
cost news normalized by the volatility of, respectively, unexpected returns and contemporaneous proportional costs. Panel D
reports the statistics associated with the decomposition of fixed cost news into dividend news and proportional cost news. B∗

d
and B∗

K
are, respectively, the regression coefficients of dividend news and proportional cost news on fixed cost news. R∗

d
and

R∗
K

are, respectively, the relative volatilities of dividend news and proportional cost news normalized by fixed cost news. All
estimates reported in Panels B through D are bias-corrected using the small-sample jackknife bias correction procedure detailed
in the Appendix. Jackknife standard errors are presented in parenthesis.

Sort by Market Capitalization

Decile Low 2 3 4 High Avg

Panel A: Sample Statistics

E[re
i ] 14.4266 11.8481 12.1374 12.0243 10.6678 12.3581

σ2(ri) 5.0893 4.5117 3.9997 3.2715 2.4852 3.5262

σ2(ν) 4.7403 4.3178 3.8924 3.2541 2.4864 3.4221
Market Capitalization 0.0361 0.1163 0.3028 0.8318 6.2945 1.5852
Yield 1.8915 2.4394 2.8232 3.2206 3.5768 2.8278
Cost (Chalmers and Kadlec) 1.2984 0.7245 0.4422 0.2755 0.1378 0.5500
Cost (Acharya and Pedersen) 1.9520 0.5790 0.2918 0.1951 0.1548 0.5884
Turnover 54.2865 57.4259 60.6741 62.1913 54.9171 58.0115

Panel B: Proportional Cost Decomposition

Bd 0.5958 0.4535 0.4962 0.6510 0.6920 0.4014
(0.1891) (0.2436) (0.3124) (0.3186) (0.2853) (0.3134)

BK −0.0167 −0.0062 −0.0033 −0.0015 −0.0003 0.0009
(0.0096) (0.0039) (0.0042) (0.0013) (0.0002) (0.0045)

Br̃ −0.3875 −0.5403 −0.5005 −0.3475 −0.3077 −0.5995
(0.1958) (0.2463) (0.3135) (0.3196) (0.2861) (0.3184)

RK 0.0392 0.0083 0.0039 0.0019 0.0004 0.0102
(0.0102) (0.0038) (0.0048) (0.0016) (0.0005) (0.0052)

PK 7.9410 5.8176 6.5810 7.9314 4.5523 7.2188
(2.5190) (2.9594) (9.6521) (6.9548) (7.4875) (3.8187)

Panel C: Fixed Cost Decomposition

B̈d 0.9792 0.5982 0.6019 0.7538 0.7752 0.4982
(0.3112) (0.3215) (0.3789) (0.3690) (0.3197) (0.3891)

B̈c 0.3667 0.1385 0.1024 0.1013 0.0830 0.0977
(0.1177) (0.0781) (0.0673) (0.0503) (0.0344) (0.0733)

Br̃ −0.3875 −0.5403 −0.5005 −0.3475 −0.3077 −0.5995
(0.1958) (0.2463) (0.3135) (0.3196) (0.2861) (0.3184)

R̈c 0.5970 0.2881 0.1706 0.1312 0.1131 0.1722
(0.0847) (0.0574) (0.0334) (0.0237) (0.0239) (0.0472)

P̈c 122.1230 202.9908 307.6094 553.4767 1502.9899 122.2368
(19.0442) (42.7242) (69.8378) (109.8830) (390.6869) (33.8864)

Panel D: Decomposing Fixed Cost News

B∗

d 1.0425 1.0138 1.0093 1.0052 1.0017 1.0385
(0.0119) (0.0098) (0.0154) (0.0075) (0.0024) (0.0207)

B∗

K −0.0425 −0.0138 −0.0093 −0.0052 −0.0017 −0.0385
(0.0122) (0.0099) (0.0154) (0.0075) (0.0024) (0.0208)

R∗

d 1.0436 1.0140 1.0092 1.0052 1.0017 1.0394
(0.0122) (0.0097) (0.0151) (0.0076) (0.0024) (0.0206)

R∗

K 0.0652 0.0280 0.0229 0.0143 0.0033 0.0594
(0.0163) (0.0142) (0.0255) (0.0114) (0.0041) (0.0228)

45



Table 6: This table reports statistics for quintile-ranked portfolios. At the end of each year, beginning in 1963 and ending
2001, eligible stocks are sorted into five portfolios. The breakpoints are based on all eligible stocks so each portfolio has
approximately the same number of stocks at the time of formation. The portfolio characteristics for the 12 post-ranking
months are joined across years to form a single time series for each quintile. Panel A reports the annualized sample statistics
including the time series average of log net returns, variance of log net returns, variance of the unexpected component of log net
returns, market capitalization, yield, proportional illiquidity level, and turnover. Market capitalization is reported in billions of
dollars. Everything else is reported in percent per year. Panel B presents the statistics associated with the proportional cost
decomposition. Bd, BK , and Br̃ are, respectively, the regression coefficients of dividend news, proportion cost news, and net
discount rate news on unexpected contemporaneous returns. RK and PK are the volatility of proportional cost news normalized
by the volatility of, respectively, unexpected returns and contemporaneous proportional costs. Panel C presents the statistics
associated with the fixed cost decomposition. B̈d, B̈c, and Br̃ are, respectively, the regression coefficients of dividend news, fixed
cost news, and net discount rate news on unexpected contemporaneous returns. R̈c and P̈c are the volatility of proportional
cost news normalized by the volatility of, respectively, unexpected returns and contemporaneous proportional costs. Panel D
reports the statistics associated with the decomposition of fixed cost news into dividend news and proportional cost news. B∗

d
and B∗

K
are, respectively, the regression coefficients of dividend news and proportional cost news on fixed cost news. R∗

d
and

R∗
K

are, respectively, the relative volatilities of dividend news and proportional cost news normalized by fixed cost news. All
estimates reported in Panels B through D are bias-corrected using the small-sample jackknife bias correction procedure detailed
in the Appendix. Jackknife standard errors are presented in parenthesis.

Sort by Acharya and Pedersen (2005) Illiquidity Levels

Decile Low 2 3 4 High Avg

Panel A: Sample Statistics

E[re
i ] 10.3858 10.9297 11.4324 12.0746 16.9009 12.3581

σ2(ri) 2.7788 3.5594 3.9126 4.1433 4.5932 3.5262

σ2(ν) 2.7805 3.5309 3.8414 3.9934 4.2252 3.4221
Market Capitalization 6.1952 0.8787 0.3406 0.1473 0.0533 1.5852
Yield 3.5127 3.1139 2.7875 2.5003 2.0596 2.8278
Cost (Chalmers and Kadlec) 0.1295 0.2611 0.4331 0.7372 1.3346 0.5500
Cost (Acharya and Pedersen) 0.1523 0.1844 0.2750 0.5746 2.0250 0.5884
Turnover 65.9273 67.8055 60.1151 49.7811 44.0212 58.0115

Panel B: Proportional Cost Decomposition

Bd 0.6436 0.7386 0.6008 0.5591 0.5193 0.4014
(0.3397) (0.2497) (0.3219) (0.2525) (0.1721) (0.3134)

BK −0.0002 −0.0011 −0.0036 −0.0082 −0.0121 0.0009
(0.0001) (0.0014) (0.0043) (0.0058) (0.0083) (0.0045)

Br̃ −0.3562 −0.2603 −0.3956 −0.4327 −0.4686 −0.5995
(0.3405) (0.2505) (0.3225) (0.2544) (0.1795) (0.3184)

RK 0.0003 0.0014 0.0041 0.0101 0.0448 0.0102
(0.0002) (0.0017) (0.0052) (0.0066) (0.0100) (0.0052)

PK 3.4355 5.4496 6.6062 6.1349 8.6115 7.2188
(3.9694) (9.6638) (9.7850) (4.3310) (2.1507) (3.8187)

Panel C: Fixed Cost Decomposition

B̈d 0.7208 0.8553 0.7282 0.7372 0.8451 0.4982
(0.3805) (0.2892) (0.3903) (0.3331) (0.2806) (0.3891)

B̈c 0.0770 0.1157 0.1239 0.1699 0.3136 0.0977
(0.0408) (0.0394) (0.0691) (0.0806) (0.1043) (0.0733)

Br̃ −0.3562 −0.2603 −0.3956 −0.4327 −0.4686 −0.5995
(0.3405) (0.2505) (0.3225) (0.2544) (0.1795) (0.3184)

R̈c 0.1046 0.1464 0.1763 0.2989 0.5901 0.1722
(0.0317) (0.0231) (0.0364) (0.0545) (0.0979) (0.0472)

P̈c 1388.3653 670.3755 299.6338 183.4209 114.1302 122.2368
(607.6198) (130.8353) (70.9687) (37.7961) (18.8655) (33.8864)

Panel D: Decomposing Fixed Cost News

B∗

d 1.0014 1.0051 1.0073 1.0113 1.0508 1.0385
(0.0015) (0.0057) (0.0168) (0.0135) (0.0121) (0.0207)

B∗

K −0.0014 −0.0051 −0.0073 −0.0113 −0.0508 −0.0385
(0.0015) (0.0057) (0.0168) (0.0135) (0.0125) (0.0208)

R∗

d 1.0014 1.0051 1.0072 1.0116 1.0521 1.0394
(0.0015) (0.0058) (0.0166) (0.0135) (0.0123) (0.0206)

R∗

K 0.0025 0.0093 0.0233 0.0329 0.0749 0.0594
(0.0024) (0.0113) (0.0270) (0.0220) (0.0165) (0.0228)
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Table 7: This table reports statistics for quintile-ranked portfolios. At the end of each year, beginning in 1963 and ending
2001, eligible stocks are sorted into five portfolios. The breakpoints are based on all eligible stocks so each portfolio has
approximately the same number of stocks at the time of formation. The portfolio characteristics for the 12 post-ranking
months are joined across years to form a single time series for each quintile. Panel A reports the annualized sample statistics
including the time series average of log net returns, variance of log net returns, variance of the unexpected component of log net
returns, market capitalization, yield, proportional illiquidity level, and turnover. Market capitalization is reported in billions of
dollars. Everything else is reported in percent per year. Panel B presents the statistics associated with the proportional cost
decomposition. Bd, BK , and Br̃ are, respectively, the regression coefficients of dividend news, proportion cost news, and net
discount rate news on unexpected contemporaneous returns. RK and PK are the volatility of proportional cost news normalized
by the volatility of, respectively, unexpected returns and contemporaneous proportional costs. Panel C presents the statistics
associated with the fixed cost decomposition. B̈d, B̈c, and Br̃ are, respectively, the regression coefficients of dividend news, fixed
cost news, and net discount rate news on unexpected contemporaneous returns. R̈c and P̈c are the volatility of proportional
cost news normalized by the volatility of, respectively, unexpected returns and contemporaneous proportional costs. Panel D
reports the statistics associated with the decomposition of fixed cost news into dividend news and proportional cost news. B∗

d
and B∗

K
are, respectively, the regression coefficients of dividend news and proportional cost news on fixed cost news. R∗

d
and

R∗
K

are, respectively, the relative volatilities of dividend news and proportional cost news normalized by fixed cost news. All
estimates reported in Panels B through D are bias-corrected using the small-sample jackknife bias correction procedure detailed
in the Appendix. Jackknife standard errors are presented in parenthesis.

Sort by Turnover

Decile Low 2 3 4 High Avg

Panel A: Sample Statistics

E[re
i ] 15.5380 14.2306 13.4685 11.8173 6.5014 12.3581

σ2(ri) 2.0977 2.6178 3.3866 4.4511 6.3724 3.5262

σ2(ν) 2.0091 2.5165 3.3044 4.3523 6.2715 3.4221
Market Capitalization 0.8755 2.1017 2.0154 1.7113 1.1325 1.5852
Yield 3.7056 3.5115 3.0512 2.4226 1.5535 2.8278
Cost (Chalmers and Kadlec) 0.7710 0.5742 0.5135 0.4831 0.4359 0.5500
Cost (Acharya and Pedersen) 0.9944 0.6113 0.5187 0.4636 0.4032 0.5884
Turnover 19.6039 35.1631 49.1702 68.4694 113.4548 58.0115

Panel B: Proportional Cost Decomposition

Bd 0.5865 0.5790 0.5272 0.5712 0.6297 0.4014
(0.2285) (0.2563) (0.2167) (0.2944) (0.3237) (0.3134)

BK −0.0013 −0.0039 −0.0047 −0.0039 −0.0023 0.0009
(0.0233) (0.0039) (0.0025) (0.0037) (0.0040) (0.0045)

Br̃ −0.4123 −0.4171 −0.4681 −0.4249 −0.3680 −0.5995
(0.2411) (0.2604) (0.2197) (0.2966) (0.3240) (0.3184)

RK 0.0717 0.0141 0.0081 0.0080 0.0059 0.0102
(0.0883) (0.0057) (0.0023) (0.0030) (0.0054) (0.0052)

PK 20.3402 7.7029 5.0837 5.9036 3.3661 7.2188
(25.7047) (3.0561) (1.7732) (2.9149) (6.6645) (3.8187)

Panel C: Fixed Cost Decomposition

B̈d 0.7350 0.7038 0.6437 0.7111 0.8124 0.4982
(0.2866) (0.3116) (0.2646) (0.3665) (0.4179) (0.3891)

B̈c 0.1473 0.1209 0.1117 0.1360 0.1804 0.0977
(0.0524) (0.0528) (0.0472) (0.0714) (0.0949) (0.0733)

Br̃ −0.4123 −0.4171 −0.4681 −0.4249 −0.3680 −0.5995
(0.2411) (0.2604) (0.2197) (0.2966) (0.3240) (0.3184)

R̈c 0.1618 0.1879 0.1821 0.2041 0.2757 0.1722
(0.0276) (0.0538) (0.0281) (0.0380) (0.0828) (0.0472)

P̈c 46.1511 102.2716 116.3980 154.0177 207.5717 122.2368
(8.8545) (28.8249) (18.0192) (30.1835) (68.7136) (33.8864)

Panel D: Decomposing Fixed Cost News

B∗

d 1.3053 1.0532 1.0235 1.0256 1.0132 1.0385
(0.4374) (0.0198) (0.0087) (0.0098) (0.0084) (0.0207)

B∗

K −0.3053 −0.0532 −0.0235 −0.0256 −0.0132 −0.0385
(0.4378) (0.0201) (0.0089) (0.0099) (0.0085) (0.0208)

R∗

d 1.3577 1.0543 1.0240 1.0259 1.0130 1.0394
(0.3739) (0.0200) (0.0090) (0.0099) (0.0087) (0.0206)

R∗

K 0.4682 0.0736 0.0430 0.0382 0.0188 0.0594
(0.3799) (0.0254) (0.0155) (0.0170) (0.0230) (0.0228)
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Table 8: This table reports the properties of the odd-numbered value-weighted portfolios obtained by sorting eligible stocks
each year, beginning in 1963 and ending in 1999, according to their annual Amihud (2002) illiquidity measures. The breakpoints
are based on eligible stocks so each portfolio has approximately the same number of stocks at formation. The betas are calculated
using the decomposed returns of the value-weighted portfolios and an equally-weighted market portfolio. β∗ is the portfolio’s
liquidity-adjusted CAPM beta, βr,r is the portfolio’s non-liquidity news sensitivity to the market’s non-liquidity news, βr,c is
the portfolio’s non-liquidity news sensitivity to the market’s liquidity news, βc,r is the portfolio’s liquidity news sensitivity to the
market’s non-liquidity news, and βc,c is the portfolio’s liquidity news sensitivity to the market’s liquidity news. The reported
betas are small-sample bias corrected using the jackknife procedure. Robust standard errors are reported in parenthesis. In
addition, for each portfolio, the average market capitalization, annualized time-series expectation and volatility of proportional
transactions costs and net excess returns, turnover, and yield are reported.

Illiquidity-Ranked Portfolios: Contemporaneous Decomposition

β∗ βr,r βr,c βc,r βc,c E(K) σ(K) E(r̃) σ(r) ψ y mktcap

1 53.06 52.88 −0.17 0.00 −0.00 0.15 0.00 4.77 50.55 39.38 3.64 14.48
(3.57) (3.55) (0.10) (0.00) (0.00)

3 68.42 68.22 −0.23 0.03 −0.00 0.15 0.01 4.24 55.51 51.20 3.72 2.73
(2.87) (2.85) (0.12) (0.04) (0.00)

5 76.37 76.08 −0.26 −0.03 0.00 0.16 0.01 5.62 58.33 52.32 3.81 1.48
(3.01) (2.99) (0.13) (0.01) (0.00)

7 79.67 79.35 −0.27 −0.05 0.00 0.17 0.02 6.16 58.78 52.46 3.30 0.91
(2.68) (2.68) (0.13) (0.01) (0.00)

9 85.78 85.38 −0.32 −0.08 0.00 0.19 0.04 6.21 62.47 48.71 3.22 0.60
(2.62) (2.61) (0.14) (0.03) (0.00)

11 88.99 88.54 −0.32 −0.13 0.00 0.21 0.05 5.65 63.02 49.08 3.18 0.41
(2.47) (2.48) (0.16) (0.04) (0.00)

13 91.86 91.35 −0.33 −0.18 0.00 0.24 0.07 7.07 63.95 45.53 2.95 0.28
(2.88) (2.90) (0.15) (0.07) (0.00)

15 94.24 93.68 −0.35 −0.21 0.00 0.30 0.11 7.55 67.28 42.74 2.82 0.21
(3.40) (3.38) (0.16) (0.10) (0.00)

17 94.19 93.46 −0.37 −0.35 0.00 0.39 0.16 8.16 66.61 38.75 2.77 0.15
(2.68) (2.71) (0.15) (0.12) (0.00)

19 96.45 95.56 −0.40 −0.49 0.01 0.53 0.23 8.72 69.33 37.92 2.60 0.11
(3.69) (3.73) (0.16) (0.16) (0.00)

21 102.24 101.12 −0.41 −0.69 0.01 0.84 0.43 10.61 73.45 37.22 2.41 0.07
(3.20) (3.21) (0.17) (0.32) (0.01)

23 106.90 105.49 −0.42 −0.97 0.02 1.39 0.62 11.79 77.71 41.78 2.02 0.04
(4.61) (4.65) (0.16) (0.24) (0.00)

25 104.24 102.01 −0.40 −1.79 0.04 2.92 1.59 18.73 81.99 49.21 1.84 0.02
(5.55) (5.51) (0.18) (0.52) (0.01)
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Table 9: This table reports the properties of the odd-numbered value-weighted portfolios obtained by sorting eligible stocks
each year, beginning in 1963 and ending in 1999, according to their annual Amihud (2002) illiquidity measures. The breakpoints
are based on eligible stocks so each portfolio has approximately the same number of stocks at formation. The betas are calculated
using the decomposed returns of the value-weighted portfolios and an equally-weighted market portfolio. β∗ is the portfolio’s
liquidity-adjusted CAPM beta, βr,r is the portfolio’s non-liquidity news sensitivity to the market’s non-liquidity news, βr,c is
the portfolio’s non-liquidity news sensitivity to the market’s liquidity news, βc,r is the portfolio’s liquidity news sensitivity to the
market’s non-liquidity news, and βc,c is the portfolio’s liquidity news sensitivity to the market’s liquidity news. The reported
betas are small-sample bias corrected using the jackknife procedure. Robust standard errors are reported in parenthesis. In
addition, for each portfolio, the average market capitalization, annualized time-series expectation and volatility of proportional
transactions costs and net excess returns, turnover, and yield are reported.

Illiquidity-Ranked Portfolios: Proportional Cost Decomposition

β∗ βr,r βr,c βc,r βc,c E(K) σ(K) E(r̃) σ(r) ψ y mktcap

1 64.07 64.05 −0.02 0.00 −0.00 0.15 0.00 4.77 50.55 39.38 3.64 14.48
(2.58) (2.58) (0.15) (0.00) (0.00)

3 76.99 77.06 −0.05 0.12 −0.00 0.15 0.01 4.24 55.51 51.20 3.72 2.73
(2.18) (2.18) (0.17) (0.11) (0.00)

5 83.29 83.21 −0.04 −0.04 0.00 0.16 0.01 5.62 58.33 52.32 3.81 1.48
(1.97) (1.99) (0.19) (0.03) (0.00)

7 84.99 84.87 −0.02 −0.10 0.00 0.17 0.02 6.16 58.78 52.46 3.30 0.91
(2.00) (2.03) (0.20) (0.06) (0.00)

9 90.71 90.54 −0.05 −0.12 0.00 0.19 0.04 6.21 62.47 48.71 3.22 0.60
(1.93) (1.93) (0.21) (0.12) (0.00)

11 92.42 92.17 −0.03 −0.22 0.00 0.21 0.05 5.65 63.02 49.08 3.18 0.41
(1.53) (1.56) (0.22) (0.13) (0.00)

13 93.96 93.59 −0.03 −0.34 0.00 0.24 0.07 7.07 63.95 45.53 2.95 0.28
(1.59) (1.67) (0.22) (0.26) (0.00)

15 97.53 97.00 −0.03 −0.50 0.00 0.30 0.11 7.55 67.28 42.74 2.82 0.21
(1.97) (2.01) (0.23) (0.25) (0.00)

17 95.63 94.93 −0.03 −0.67 0.00 0.39 0.16 8.16 66.61 38.75 2.77 0.15
(1.84) (1.96) (0.23) (0.34) (0.00)

19 98.42 97.38 −0.02 −1.02 0.00 0.53 0.23 8.72 69.33 37.92 2.60 0.11
(2.81) (2.97) (0.24) (0.43) (0.00)

21 103.99 102.85 0.03 −1.16 0.00 0.84 0.43 10.61 73.45 37.22 2.41 0.07
(2.30) (2.46) (0.26) (0.59) (0.00)

23 99.99 98.08 −0.01 −1.89 0.01 1.39 0.62 11.79 77.71 41.78 2.02 0.04
(3.57) (3.50) (0.24) (0.49) (0.00)

25 103.94 98.60 0.06 −5.38 0.03 2.92 1.59 18.73 81.99 49.21 1.84 0.02
(3.56) (3.90) (0.26) (1.87) (0.02)
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Table 10: This table reports the properties of the odd-numbered value-weighted portfolios obtained by sorting eligible stocks
each year, beginning in 1963 and ending in 1999, according to their annual Amihud (2002) illiquidity measures. The breakpoints
are based on eligible stocks so each portfolio has approximately the same number of stocks at formation. The betas are calculated
using the decomposed returns of the value-weighted portfolios and an equally-weighted market portfolio. β∗ is the portfolio’s
liquidity-adjusted CAPM beta, βr,r is the portfolio’s non-liquidity news sensitivity to the market’s non-liquidity news, βr,c is
the portfolio’s non-liquidity news sensitivity to the market’s liquidity news, βc,r is the portfolio’s liquidity news sensitivity to the
market’s non-liquidity news, and βc,c is the portfolio’s liquidity news sensitivity to the market’s liquidity news. The reported
betas are small-sample bias corrected using the jackknife procedure. Robust standard errors are reported in parenthesis. In
addition, for each portfolio, the average market capitalization, annualized time-series expectation and volatility of proportional
transactions costs and net excess returns, turnover, and yield are reported.

Illiquidity-Ranked Portfolios: Fixed Cost Decomposition

β∗ βr,r βr,c βc,r βc,c E(K) σ(K) E(r̃) σ(r) ψ y mktcap

1 64.07 77.39 7.76 6.39 0.83 0.15 0.00 4.77 50.55 39.38 3.64 14.48
(2.58) (4.85) (3.62) (1.11) (0.26)

3 76.99 96.64 10.20 10.91 1.46 0.15 0.01 4.24 55.51 51.20 3.72 2.73
(2.18) (5.41) (4.28) (2.41) (0.44)

5 83.29 101.78 10.25 9.32 1.09 0.16 0.01 5.62 58.33 52.32 3.81 1.48
(1.97) (6.50) (4.79) (3.26) (0.52)

7 84.99 106.94 10.39 12.94 1.39 0.17 0.02 6.16 58.78 52.46 3.30 0.91
(2.00) (7.33) (5.17) (4.19) (0.69)

9 90.71 112.42 10.84 12.45 1.59 0.19 0.04 6.21 62.47 48.71 3.22 0.60
(1.93) (7.55) (5.32) (3.51) (0.54)

11 92.42 115.68 11.00 13.86 1.59 0.21 0.05 5.65 63.02 49.08 3.18 0.41
(1.53) (7.96) (5.62) (4.31) (0.65)

13 93.96 119.88 11.49 16.30 1.88 0.24 0.07 7.07 63.95 45.53 2.95 0.28
(1.59) (9.38) (5.72) (5.86) (0.77)

15 97.53 127.82 12.07 20.54 2.32 0.30 0.11 7.55 67.28 42.74 2.82 0.21
(1.97) (10.75) (6.17) (7.11) (1.01)

17 95.63 126.16 11.57 21.41 2.45 0.39 0.16 8.16 66.61 38.75 2.77 0.15
(1.84) (9.44) (6.08) (5.94) (0.93)

19 98.42 132.68 11.78 25.34 2.87 0.53 0.23 8.72 69.33 37.92 2.60 0.11
(2.81) (11.03) (6.55) (7.48) (1.14)

21 103.99 147.83 12.92 34.95 4.03 0.84 0.43 10.61 73.45 37.22 2.41 0.07
(2.30) (12.58) (7.46) (8.67) (1.55)

23 99.99 157.45 14.32 48.11 4.96 1.39 0.62 11.79 77.71 41.78 2.02 0.04
(3.57) (14.10) (7.83) (9.70) (2.36)

25 103.94 205.99 18.12 93.18 9.25 2.92 1.59 18.73 81.99 49.21 1.84 0.02
(3.56) (21.89) (10.53) (19.16) (4.67)
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Table 11: Contemporaneous Decomposition: This table reports the estimated coefficients from cross-sectional re-
gressions of the liquidity-adjusted CAPM for the contemporaneous decomposition. At the end of each year, beginning in
1963 and ending in 1999, eligible stocks are sorted into 25 portfolios according to their annual Amihud (2002) illiquid-
ity measures in Panel A and according to volatility of their daily illiquidity measures in Panel B. The breakpoints are
based on eligible stocks so each portfolio has approximately the same number of stocks at formation. The individual port-
folios are value-weighted and the market portfolio is equal-weighted. I report special cases of the following relationship:

E(rit − r
f
t ) = α + κE[Ki

t] + λβi + λ∗β∗i + λr,rβ
i
r,r + λr,cβ

i
r,c + λc,rβ

i
c,r + λcβ

i
c,

where β is the portfolio’s CAPM beta, β∗ is the portfolio’s liquidity-adjusted CAPM beta, βr,r is the portfolio’s non-liquidity
news sensitivity to the market’s non-liquidity news, βr,c is the portfolio’s non-liquidity news sensitivity to the market’s liquidity
news, βc,r is the portfolio’s liquidity news sensitivity to the market’s non-liquidity news, βc,c is the portfolio’s liquidity news
sensitivity to the market’s liquidity news, and βc ≡ βc,c − βc,r − βr,c is the aggregate liquidity risk beta as defined by Acharya
and Pedersen (2005). The reported estimates are small-sample bias corrected using the jackknife procedure. Robust standard
errors are reported in parenthesis. Both jackknife procedures take into account the pre-estimation of the news series and the
betas. The R2 is obtained in a single cross-sectional regression and the adjusted R2 is in parenthesis.

Panel A: Portfolios Ranked by Proportional Liquidity Levels

α E[K] β β∗ βr,r βr,c βc,r βc,c βc R2

1 −1.291 2.108 0.557
(0.215) (0.237) (0.537)

2 −0.569 1.000 1.325 0.629
(0.128) (0.143) (0.613)

3 −0.033 4.045 0.567 0.974
(0.052) (0.144) (0.060) (0.971)

4 0.315 1.000 −0.050 47.883 0.961
(0.195) (0.341) (12.902) (0.957)

5 0.289 0.875 −0.027 48.261 0.979
(0.139) (1.110) (0.249) (15.552) (0.976)

6 0.237 1.000 0.075 −35.446 −35.587 452.404 0.973
(0.097) (0.313) (78.240) (16.462) (706.488) (0.967)

7 0.468 −11.829 1.146 267.287 −59.602 7013.411 0.983
(0.154) (7.156) (0.319) (97.854) (28.318) (4077.016) (0.979)

Panel B: Portfolios Ranked by Liquidity Risk

α E[K] β β∗ βr,r βr,c βc,r βc,c βc R2

1 −1.167 1.943 0.661
(0.197) (0.216) (0.646)

2 −0.455 1.000 1.174 0.607
(0.114) (0.127) (0.590)

3 0.014 3.997 0.503 0.912
(0.054) (0.184) (0.064) (0.905)

4 0.733 1.000 −0.728 71.140 0.862
(0.185) (0.315) (15.402) (0.850)

5 0.437 2.233 −0.241 39.216 0.918
(0.308) (2.076) (0.551) (38.910) (0.907)

6 0.492 1.000 2.304 674.338 −242.822 −5693.701 0.887
(0.272) (1.154) (188.416) (87.041) (3176.492) (0.864)

7 0.453 8.892 0.050 116.541 −179.903 −924.823 0.943
(0.187) (5.153) (1.156) (246.159) (53.068) (3276.901) (0.928)
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Table 12: Proportional Cost Decomposition: This table reports the estimated coefficients from cross-sectional re-
gressions of the liquidity-adjusted CAPM for the proportional cost decomposition. At the end of each year, beginning in
1963 and ending in 1999, eligible stocks are sorted into 25 portfolios according to their annual Amihud (2002) illiquid-
ity measures in Panel A and according to volatility of their daily illiquidity measures in Panel B. The breakpoints are
based on eligible stocks so each portfolio has approximately the same number of stocks at formation. The individual port-
folios are value-weighted and the market portfolio is equal-weighted. I report special cases of the following relationship:
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where β is the portfolio’s CAPM beta, β∗ is the portfolio’s liquidity-adjusted CAPM beta, βr,r is the portfolio’s non-liquidity
news sensitivity to the market’s non-liquidity news, βr,c is the portfolio’s non-liquidity news sensitivity to the market’s liquidity
news, βc,r is the portfolio’s liquidity news sensitivity to the market’s non-liquidity news, βc,c is the portfolio’s liquidity news
sensitivity to the market’s liquidity news, and βc ≡ βc,c − βc,r − βr,c is the aggregate liquidity risk beta as defined by Acharya
and Pedersen (2005). The reported estimates are small-sample bias corrected using the jackknife procedure. Robust standard
errors are reported in parenthesis. Both jackknife procedures take into account the pre-estimation of the news series and the
betas. The R2 is obtained in a single cross-sectional regression and the adjusted R2 is in parenthesis.

Panel A: Portfolios Ranked by Proportional Liquidity Levels

α E[K] β β∗ βr,r βr,c βc,r βc,c βc R2

1 −1.291 2.108 0.557
(0.215) (0.237) (0.537)

2 −1.028 1.000 1.772 0.601
(0.178) (0.195) (0.584)

3 −0.212 4.110 0.736 0.970
(0.069) (0.140) (0.077) (0.968)

4 −0.183 1.000 0.733 14.891 0.947
(0.267) (0.342) (5.216) (0.942)

5 −0.287 3.037 0.846 4.158 0.973
(0.135) (1.468) (0.153) (8.138) (0.969)

6 0.196 1.000 0.310 445.643 −25.267 −4883.022 0.957
(0.410) (0.679) (158.539) (15.012) (2916.760) (0.949)

7 0.343 3.854 0.011 319.675 −22.069 −5587.924 0.980
(0.211) (2.621) (0.436) (99.384) (12.999) (2031.381) (0.974)

Panel B: Portfolios Ranked by Liquidity Risk

α E[K] β β∗ βr,r βr,c βc,r βc,c βc R2

1 −1.167 1.943 0.661
(0.197) (0.216) (0.646)

2 −0.907 1.000 1.615 0.673
(0.162) (0.177) (0.659)

3 −0.190 3.809 0.711 0.912
(0.083) (0.231) (0.097) (0.903)

4 0.400 1.000 0.009 24.375 0.880
(0.330) (0.425) (6.519) (0.869)

5 0.964 −4.206 −0.670 56.460 0.918
(0.675) (6.214) (0.806) (40.423) (0.906)

6 0.510 1.000 −0.130 −97.456 −30.907 −647.621 0.880
(0.434) (0.562) (178.076) (20.137) (3564.101) (0.856)

7 −0.326 13.426 0.749 −172.028 30.998 −3193.662 0.918
(0.803) (22.243) (0.780) (255.296) (72.182) (13583.971) (0.897)
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Table 13: Fixed Cost Decomposition: This table reports the estimated coefficients from cross-sectional regres-
sions of the liquidity-adjusted CAPM for the fixed cost decomposition. At the end of each year, beginning in 1963 and
ending in 1999, eligible stocks are sorted into 25 portfolios according to their annual Amihud (2002) illiquidity mea-
sures in Panel A and according to volatility of their daily illiquidity measures in Panel B. The breakpoints are based
on eligible stocks so each portfolio has approximately the same number of stocks at formation. The individual portfo-
lios are value-weighted and the market portfolio is equal-weighted. I report special cases of the following relationship:
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where β is the portfolio’s CAPM beta, β∗ is the portfolio’s liquidity-adjusted CAPM beta, βr,r is the portfolio’s non-liquidity
news sensitivity to the market’s non-liquidity news, βr,c is the portfolio’s non-liquidity news sensitivity to the market’s liquidity
news, βc,r is the portfolio’s liquidity news sensitivity to the market’s non-liquidity news, βc,c is the portfolio’s liquidity news
sensitivity to the market’s liquidity news, and βc ≡ βc,c − βc,r − βr,c is the aggregate liquidity risk beta as defined by Acharya
and Pedersen (2005). The reported estimates are small-sample bias corrected using the jackknife procedure. Robust standard
errors are reported in parenthesis. Both jackknife procedures take into account the pre-estimation of the news series and the
betas. The R2 is obtained in a single cross-sectional regression and the adjusted R2 is in parenthesis.

Panel A: Portfolios Ranked by Proportional Liquidity Levels

α E[K] β β∗ βr,r βr,c βc,r βc,c βc R2

1 −1.291 2.108 0.557
(0.215) (0.237) (0.537)

2 −1.028 1.000 1.772 0.601
(0.178) (0.195) (0.584)

3 −0.212 4.110 0.736 0.970
(0.069) (0.140) (0.077) (0.968)

4 −0.016 1.000 0.337 −0.569 0.941
(0.161) (0.248) (0.383) (0.936)

5 −0.250 4.600 0.812 0.968 0.970
(0.113) (1.618) (0.208) (0.672) (0.966)

6 0.124 1.000 −0.351 4.508 −1.000 25.034 0.966
(0.152) (0.383) (3.902) (1.645) (12.792) (0.960)

7 0.086 2.514 0.072 1.081 −1.276 21.114 0.980
(0.162) (2.318) (0.354) (3.043) (1.413) (10.752) (0.975)

Panel B: Portfolios Ranked by Liquidity Risk

α E[K] β β∗ βr,r βr,c βc,r βc,c βc R2

1 −1.167 1.943 0.661
(0.197) (0.216) (0.646)

2 −0.907 1.000 1.615 0.673
(0.162) (0.177) (0.659)

3 −0.190 3.809 0.711 0.912
(0.083) (0.231) (0.097) (0.903)

4 −0.048 1.000 0.401 −0.355 0.872
(0.161) (0.234) (0.347) (0.861)

5 −0.020 −1.673 0.269 −1.086 0.913
(0.246) (5.181) (0.509) (1.817) (0.901)

6 −0.120 1.000 0.480 0.099 0.166 −1.958 0.876
(0.205) (0.635) (7.158) (2.525) (28.103) (0.851)

7 −0.200 0.878 0.467 1.207 0.086 −2.756 0.915
(0.299) (5.461) (0.792) (7.343) (2.967) (27.662) (0.893)
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